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Abstract 
Diffraction in quasicrystals is in irrational and geometric series with icosahe-
dral point group symmetry. None of these features are allowed in Bragg dif-
fraction, so a special theory is required. By means of a hierarchic model, the 
present work displays exact agreement between an analytic metric, with a 
numeric description of diffraction in quasicrystals—one that is founded on 
quasi-structure-factors that are completely indexed in 3-dimensions. At the 
quasi-Bragg condition, the steady state wave function of incident radiation is 
used to show how resonant response, in metrical space and time, enables co-
herent interaction between the periodic wave packet and hierarchic quasi-
crystal. The quasi-Bloch wave is invariant about all translations a τm, where 
a  is the quasi-lattice parameter. This is numerically derived, analyzed, meas-
ured, verified and complete. The hierarchic model is mapped in reverse den-
sity contrast, and matches the pattern and dimensions of phase-contrast, op-
timum-defocus images. Four tiers in the hierarchy of icosahedra are con-
firmed, along with randomization of higher order patterns when the speci-
men foil is oriented only degrees off the horizontal. This explains why images 
have been falsely described as having “no translational symmetry”. 
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1. Introduction 

The most profound physical effect that is found in a quasicrystal (QC), is dif-
fraction in geometric series. The effect is incompatible with Bragg’s law for crys-
tals, which is in integral order n. His ordering is due to the physical harmonies 
that occur at a Bragg condition, between a crystal scattering a periodic probe— 
whether of photons or electrons—from planes of atoms that are ordered and pe-
riodic. 
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By contrast, the QC was described as a “Metallic phase with long range order 
and no translational symmetry” [1]. Evidence for long range order is implied by 
its sharp diffraction. However, there is imaging evidence for hierarchic symme-
try, at least in reasonably short range, and this may be called translational. Fur-
thermore, numeric and analytic simulations prove that the probe’s quasi-Bloch 
wave also has, at the quasi-Bragg condition, translational symmetry about a τm, 
where a  is the measured and calculated quasi-lattice parameter [2]; and where 

( )1 5 2τ ≡ +  is the golden section; while the hierarchic order m is integral.  
Bragg diffraction is, in momentum space, a quantum effect. It resembles quan-

tized transitions between energy states in the hydrogen atom: we know these states 
are harmonic, in time and space, because they are solutions to Schrödinger’s eq-
uation. In this paper, we refresh the argument and add new data, i.e. by project-
ing atoms in the Hierarchical Icosahedral (HI) structure onto the 5-fold (1τ0) 
plane. This is done in reverse contrast for the first time and compares closely 
with transmission electron microscope (TEM) images, including randomization 
of off-plane cells in the long range.  

2. Harmonic Scattering between a Periodic Probe and  
Hierarchic Quasicrystal  

In crystals, elastic scattering is illustrated in Figure 1. Applying Bragg’s law, quan-
ta nΔk may be generated from a quantum ( )cosk θ λ∆ =   where the order n 
is integral; θ is the Bragg angle; λ the wavelength of the scattered radiation, and ħ 
the reduced Planck constant. In case of small angles, as in high energy electron 
scattering, the interplanar spacing on first order 1 2nd λ θ=   is unique and har-
monic at any Bragg order n, so that the scattering crystal diffraction is period-
ic—like the crystal—and harmonic. 
 

 
Figure 1. Following Bragg’s law, quanta of momentum nΔk are transferred for each scat-
tered beam on the periodic Bragg diffraction pattern: the periodic probe and crystal lat-
tice cooperatively harmonize in the well-known way. In high energy electron scattering at 
the quasi-Bragg condition, the irrational quasi-lattice that is hierarchic and geometric, 
will be found to cooperate with the beam probe via a quasi-Bloch wave and metric.  
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The physical basis for this quantization is similar for the quantized eigenva-
lues of Schrödinger’s hydrogen atom in energy space: the eigenstates do not self 
destruct by interference precisely because their orbits are harmonic as in Bohr’s 
atom. In electron state transitions, energy is transported in wavepackets with 

( )2 2
H f iE R n n− −∆ = − , where ni and nf are initial and final state principal quantum 

numbers, and RH is the Rydberg unit of energy. 
The same theoretic basis is needed for diffraction in QCs that have multiple 

interplanar spacings, that are not periodic, are not harmonic and that—far from 
being integral—are actually irrational and in geometric series, τm; with  

, 1,0,1, 2,3,m = −∞ −  . The quasi-Bragg law is observed [3] [4]: 

( )2 sinm dτ λ θ′= ′                         (1) 

where the quasi-Bragg angle turns out to be scθ θ′ = ; with cs the coherence 
factor, or metric [5] that will be defined below; and where the quasi-interplanar- 
spacing is found to be d' = dcs. Every atom scatters from locations on jumbled 
planes with multiple values of d. We shall see how coherent scattering is won in 
the QC from this group of properties: the metric, that results from resonant re-
sponse of the periodic probe to the hierarchic quasi-lattice [6], digitizes its irra-
tional measure, and harmonizes the probe with the QC. The hierarchy is uni-
quely icosahedral, with cells, clusters and superclusters uniformly aligned by 
multiple edge sharing at each element.  

Quantum mathematics is not enough: to understand digitization and harmo-
ny in the scattered wave, we need to briefly recall radiant scatterers in the broader 
scope of physics. After the Michelson-Morley experiment falsified the ether hy-
pothesis, an attempt was made to salvage it with the Lorentz transformation. 
This was not as successful as Einstein’s foundational relativity: “Physical laws are 
invariant in all inertial reference frames.” A consequence is the Pythagorean eq-
uation: 2 2 2 2 4

0E c m c= +p . After quantization by Planck’s law for energy E; and 
by the de Broglie hypothesis for momentum p; and with simplification of units ħ 
= c = 1 for the reduced Planck constant ħ; and for the speed of light c; the rest 
mass reduces to: 

( )( )2 2 2
0m k k kω ω ω= − = + − .                  (2) 

The brackets govern in turn particulate conservation laws, and response that is 
wave-like. The former bracket is real; the latter imaginary. In the diffractive in-
teractions considered here, the response is resonant and harmonic. The par-
ticle-wave duality is thus formulated in respective real and imaginary parts of the 
normal wave packet [7]:  

2

2exp
2
XA Xϕ
σ

 
= ⋅ + 

 
 

with imaginary:  

( )X i t kxω= −                          (3)  

where σ depends on initial conditions that determine the coherence of the pack-
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et in space and time1 (rank R4), and where A2 is a normalizing constant2. The 
angular frequencies ω and wave vectors k are in fact distributed, but they are 
represented in Equation (1) by mean values. The intensity *φ φ  is a probability 
density function for a particle, or for a photon having zero mass, m0 = 0. Notice 
that the response is elastic because its absolute, measurable value is unity:  

( )*e e 1X X = , everywhere and at all time. 
When an electron binds to an atom, the latter’s central potential wraps the 

extended, interacting electron wavepacket into compact harmonic space. This 
process would be destructive if the wavefunction orbitals were not harmonic in 
motion, with discreet wavevector and frequency. In quantized quasicrystal dif-
fraction, the scattering is likewise integrated over space and time. Every atom 
scatters: the integration occurs over multiple, jumbled planes. Scattering at the 
quasi-Bragg angle is due to discreet integrands and these will be calculated in the 
next section by the quasi-structure factor (QSF). This factor is independent of 
scattering angle which is theoretically unknown a priori. The QSF is therefore 
descriptive where Bragg’s law is not. However, we will show how the scattering 
angle is calculated numerically, and exactly matched analytically.  

Meanwhile, Equation (2) represents the steady state for the incident radiation 
and, after a transition involving a change in wave-vector k, it will represent like-
wise, the steady state of the diffracted wave. When the incident wave strikes the 
QC, it interacts with its electric field to form quasi-Bloch waves. You can think 
of these as lattice images observed in crystalline thin foils in the two-beam con-
dition. The waves, as they proceed through the QC, oscillate (by the pen-
dellösung effect) between the two beams (in crystals: [8]; cf. in QCs: [2] [9]). In 
wedge specimens, this oscillation produces images of “thickness fringes”. The 
process requires and ensures harmonic interaction, in both space and time, in 
the propagation direction as in the transverse. An example will be given in the 
next section, though the “quasi-lattice image” will not be a true lattice image be-
cause of the metric.  

Notice that Equations (3) effectively linearize the second order Equation (2) of 
special relativity, and so do for the free particle what Dirac’s equation does for 
the bound electronic states in atoms. Moreover, the Equations (2) separate the 
propagation direction from the transverse direction, and this has many conse-
quences including: solutions for negative mass [10]3, phase velocity [7], uncer-
tainty, Newton’s second law, electron spin (as induced paramagnetism in phase 
space, that is consistent with Hundt’s rules in atomic structure), intrinsic mag-
netic radius [11] and fine structure constant, reduction of the wave packet [12] 
etc. The equations apply in harmonious diffraction by quasicrystals and crystals, 
as they do in the Schrödinger equation that operates on steady-state, harmonic 

 

 

1Typically, the coherence has transverse components, σy, σz as well, but these are only implied here 
for simplicity. Furthermore, when an atom is excited or decays, its central potential wraps the ex-
tended, interacting wavepacket into compact harmonic space.  
2A * A = (∫exp(X2/σ2)·dτ)−1. 
3To avoid unphysical singularities when k= −moc, our antiparticle travels with forward velocity but 
reverse spin (cf. [6]). 
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bases. The diffraction orders and quantum numbers respectively describe inte-
raction requirements that are quantized by necessary constructive interference 
over space and time. The formalism in Equation (3) will enable our understand-
ing of the fundamental interaction required in the coherent diffraction in QCs 
that will be described in what follows. 

It is obvious that the diffraction depends on the phase properties of the probe, 
especially its wavelength; but it also resonates coherently in both space and time. 
Meanwhile, the metric provides corresponding coherence in spite of the multi-
tude of interplanar spacings that have precise order and symmetry in the HI, as 
QSFs will prove. The diffraction pattern of i-Al6Mn has been completely indexed 
and simulated in three dimensions [4] [13]. Dimensions should not be multip-
lied without necessity. It is one role of theory to invent short cuts, but quantum 
math4 turned the egg upside down and ate the cup. In Aristotle’s informal logic, 
the fallacy is called, Ignoratio Elenchi, which is translated: “missing the point”. 

3. The Metric: Numeric, Analytic and Measured  

Since QCs do not obey Bragg’s law of diffraction, nothing is known a priori 
about corresponding relationships between θ', λ and d'. However, the structure 
factor (SF) method is independent of θ: we can use the method by applying the 
known relationship between d' and the index hhkl in cubic structures:  

2 2 2d a h k l= + + . Here a  represents the lattice parameter, and subscripts h, 
k and l represent the 3-dimensional indices in the diffraction pattern [14] [15]. It 
turns out that all structure-factors in the QC are zero. The implied absence of 
diffraction should be expected in a solid whose images demonstrate multiple in-
terplanar atomic spacings. However it turns out further, that by introducing a 
coherence factor cs, which is specific to the hierarchic icosahedral structure, a 
quasi-Bragg condition is discovered that is as sharp as the Bragg condition 
commonly observed by rocking crystals. The coherence factor is discovered by 
simulations in which the factor is numerically scanned while evaluating the qua-
si-structure-factor (QSF), first over the unit cell (order p = 0) with atomic scat-
tering factors fi = fAl or fMn in Equation (4), and secondly over clusters order p, by 
iteratively adding cluster centers at r = rcc in Equation (5) [2]: 

( )( )Al,Mn cos 2 s hklhkl i iif cF π⋅= Σ ⋅h r                 (4) 

( )( )1 2cos 2p p
hk

p
s hkll hkl c cc cF F c τ− πΣ ⋅= ⋅⋅ h r              (5) 

All atoms scatter. 
In crystals, the SF is simpler and is represented by Equation (4) with cs = 1. 

There, the calculation is comparatively easy because the summation is limited to 
one unit cell which repeats periodically. Symmetry in the unit cell often forces 
Fhkl = 0, or to a small range of values. In QCs, by contrast, the QSFs are calcu-
lated over all the atoms in a selected order of HI. They contain a spectrum of 

 

 

4Including P.A.M. Dirac’s The Principles of Quantum Mechanics (1958) Oxford, with such ugly 
concepts as unstable wavepackets; unexamined internal motion; unphysical electron speed v = c; 
etc.: anomalies falsified by QC diffraction. 
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amplitudes, whose intensities match measured intensities [4]. 
The main argument in favor of the hierarchic structural solution is—in phys-

ics—overwhelming5: uniquely, the solution is in geometric series, fitting the dif-
fraction pattern, and it is consistent with imaging that will be simulated below. 

The most substantial result is the discovery of the numeric metric. This will be 
subsequently proven, firstly by its analytic explanation, and secondly by verified 
measurement of the lattice parameter. These calculations were initially thought 
to be ideal; later we will discuss defects, both short range vacancies and intersti-
tials, and also long-range quasi-lattice congruities.  

Figure 2 shows one simulation for the (τ00) intensity in a supercluster order 
6. Here, cs is scanned across the quasi-Bragg condition. There is no Bragg dif-
fraction when cs = 1; diffraction occurs at the quasi-Bragg condition when cs = 
0.894. 

The coherence factor is the same for all of the beams in the original data [1] 
and so is called a metric. What is it? Equation (4) and (5) show that it has the 
same influence as the lattice parameter or reciprocal lattice parameter. The co-
herence factor is a virtual breathing strain that switches the quasi-Bragg diffrac-
tion on or off, like the rocking curve of a rotating crystal. In consequence, the 
quasi-Bragg angle in QCs is increased from the corresponding Bragg angle in 
crystals by about 11%. This difference will become significant in the measure-
ment of the quasi-lattice parameter. 

The most remarkable feature of the QSF is its precise value for cs, as calculated 
in the HI model (Figure 2)—less than 1/1000th of the quasi-Bragg angle. After 
analyzing the metric when it is applied to quasi-Bloch waves, the special transla-
tional symmetry will become apparent.  

 

 
Figure 2. Quasi structure factor for the HI (τ00) diffracted beam, due to a supercluster 
order 6. On scanning cs, the QSF is zero at the Bragg condition when cs = 1; at the qua-
si-Bragg condition cs = 0.894. The quasi-Bragg angle is ~11% greater than the corres-
ponding Bragg angle in crystals due to equivalent, except periodic, d. The calculated line 
width is less than 1/1000th of the corresponding Bragg angle. 

 

 

5In mathematics, all axioms are allowed. 
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The coherence factor cs is analyzed as follows. Consider the following mathe-
matical fact that is proved by mathematical induction: 

( ) ( ) ( ) ( )1,01, 0,1 0,1m
m m mmF F Fτ τ τ+= = ∂ + +             (6) 

where ( ),mF a b  represents the mth term in the Fibonacci sequence, base (a, b), 
and ( ),0m∂  is the Dirac delta function. From the terms at right, the natural part 
is separable by approximating 3 2τ → , and the metric function is derived by 
subtracting out the irrational residue from its corresponding geometric order τm: 

4

1

21 11
0.894

m
m

s m

F
c F

τ +

+

−
= + =                   (8) 

This function turns out to be the exact inverse of the numeric metric that was 
derived from the QSF. The fact is extremely surprising because the numeric and 
analytic derivations are independent. The formula is identical for all terms in the 
series, and in all three spatial dimensions. In QCs, the divergence from the Bragg 
angle is due to the irrational parts of the indices; this divergence digitizes the se-
parated natural part that provides coherent, harmonic scattering [2], i.e. with cs =1. 

Details of the effects of the metric function are illustrated by quasi-Bloch waves. 
These can be thought of as amplitudes used to construct quasi-lattice images in 
the 2-beam condition. The quasi-Bloch waves are created in the incident probe 
by atomic potentials in the hierarchic icosahedral structure. Consider first, a 
typical Bloch wave in a crystal, like the blue wave in Figure 3. The wave is com-
mensurate with the unit cell and with all unit cells, periodically repeating. This 
wave is not commensurate with the irrational and geometric series intercepts, 
that mark the central locations of atoms, cells, clusters and super clusters, of 
whatever order. However, when the blue axis is multiplied by the metric func-
tion, the resulting red quasi-Bloch wave becomes commensurate. This is partly 
due to the rational denominator Fm+1 in Equation (8). The metric function digi-
tizes and harmonizes the periodic probe when it enters the irrational, geometric, 
quasi-lattice potential. The function enables coherent diffraction when the probe 
scatters from the many aperiodic atoms in the hierarchic quasi-lattice. The co-
herence results from the combined and characteristic translations in the HI. This 
coherence is calculated in the QSFs (Figure 2). 

Notice that the probe contains long range order with translational symmetry 
about all geometric intercepts a τm, where a  is the quasi-lattice parameter. 
The symmetry occurs also in short range in the quasi-Bloch wave. Only with the 
analysis provided here, can the parameter be measured. 

In QCs, the “lattice parameter” was measured a long time ago, based on the 
doubtful supposition of Bragg’s law of diffraction. The measurement compared 
the dominant scattering angle in the 5-fold diffraction pattern of i-Al6Mn with a 
known scattering angle in a crystalline second phase. The measured value was 
0.206 ± 0.005 nm [16] [17]. This corresponds to the indexed beam (τ, 0, 0) and 
corresponds also with the cell length and intercellular spacing throughout the 
QC (Figure 4), namely a τ, where the golden-rectangle cross-section of the unit 
cell is τ × 1 in icosahedral units, or a (τ × 1) in SI. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a) Incident, time-dependent, beam probe (Equation (2)), rank R4, inclined at quasi-Bragg angle from normal:  

( ) ( )1 2 2 2sin 2q sh k l acθ λ−= + + , in electron scattering. (b) Crystalline Bloch waves (blue) are commensurate with their corres-

ponding periodic crystal lattice at the Bragg condition. When this wave is stretched horizontally by the inverse coherence factor 
1/cs, the quasi-Bloch-wave (red) commensurates with the irrational, geometric and hierarchic, quasi-lattice. Its geometric order is 
represented by the intercepts on the horizontal line above it. The digitized number of periodic cycles between successive intercepts 
is in Fibonacci sequence (denominator in Equation (3)), and the diffraction is logarithmically periodic. The natural and irrational 
parts of the indices are separable: the irrational part is expressed by the metric stretch; the natural part scatters with sharp, cohe-
rent diffraction. (c) Diffracted beams emitted beneath foil, including indices. (d) In TEM, beams can be magnetically refocused to 
produce a quasi-lattice image of the probe at the base of the specimen foil. The lattice image is the interference due to the super-
position. 
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Figure 4. Golden-rectangle cross-section of the icosahedral unit cell in i-Al6Mn, having 
side width a  (the lattice parameter) and length τ a . The unit cell contains 15 identical 
sections at various orientations. The structure is extremely dense, and depends on atomic 
diameter ratios 2

Mn Al 1 1d d τ= + − .   
 

By using the same formula as applies to cubic crystals to find the interplanar 
quasi-spacing 2 2 2d a h k l= + + , the correction for the quasi-Bragg law is 
therefore given 0.205 0.05 nmsa c τ= × ± . The resulting value is close to the stan-
dard value of the diameter of Al in the pure metal. This measurement confirms 
the structural model and method. 

4. Ideals and Defects  

The overwhelming advantage of the ideal HI model is the explanation it provides 
for the observed geometric series diffraction that is apparently unique to QCs. A 
subsidiary advantage is the explanation for icosahedral symmetry in the diffrac-
tion pattern from a structure that repeats, uniquely, as hierarchic. The repetition 
occurs at the unit cell level and throughout the quasi-lattice. The unit cell is 
denser than can occur in crystals; but space-filling is taken up beyond the unit. 
The cell contains a single Mn atom at its center, surrounded by 12 closely packed 
Al atoms [2]. The extreme density depends on the atomic diameter ratios,  

2
solute solvent 1 1d d τ= + − . At short range, space occupation is simple enough 

and is consistent with phase-contrast, optimum-defocus imaging up to the first 
order of superclusters [18]. At this range, vacancies at cluster centers and inters-
titial atoms (including tetrahedra or unit cells) at supercluster centers minimally 
affect the diffraction pattern [5]. However, extracellular holes become an ev-
er-expanding problem in higher orders. Now that the metric is consistently un-
derstood in the ideal HI, we return to less conventional ways in which filling 
may occur in higher orders of the hierarchy. 

In crystals, the SF is calculated in the periodically repeating unit cell. The 
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symmetry of a single unit cell defines the diffraction pattern (whether simple cu-
bic, face-centered cubic (fcc), body centered cubic etc.) for the whole crystal, re-
peating lattice and all. All cells are uniquely aligned because they are face shar-
ing. Meanwhile, no crystal is perfect: interstitials and vacancies are common; as 
are growth defects such as twinning; and various dislocations that are products 
of deformation strains. We understand that such defects should be common in 
HI as they would relieve quasi-lattice stresses, especially those arising from un-
even atomic densities near holes but also due to thermal stresses during rapid 
cooling.  

The HI structure proved essential to demonstrating the effects of irrational in-
dices in setting the metric and in establishing harmonic scattering in diffraction. 
Notice firstly that cell alignment is necessary for the sharp diffraction pattern. 
This must be due to the multiple edge sharing of the icosahedral cells, clusters 
and superclusters as they indeed occur in the HI. Moreover, since, in crystals, 
the diffraction pattern symmetry is set by the structure factor of the unit cell, we 
need to assess, for QCs, the relative importance of the unit cells versus qua-
si-lattice structures, i.e. short range versus long range, as needed to ensure cohe-
rence and pattern identity. After describing atomic maps in oriented thin films, 
we shall consider long range lattice irregularities.  

5. Maps onto the 5-Fold Icosahedral (1τ0) Plane  

The decoration of the unit cell (in icosahedral units) is as follows:  
Mn on the site (0, 0, 0), with  
Al on the 12 permutations of (±1, ±τ, 0). 
On the cluster:  
12 unit cells centered on the 12 permutations of (±τ, ±τ2, 0). 
On the supercluster, order p: 
12 superclusters order (p − 1) centered on permutations of τ2p (±τ, ±τ2, 0). 
Our purpose is to simulate the most significant atomic maps that can be ob-

served in the original diatomic quasi-crystal, bearing in mind that our phase- 
contrast, optimum-defocus shows both limited resolution, and reverse contrast 
[2] [14] [18]. It is relatively simple to plot every atom: we construct the struc-
ture on Cartesian axes and rotate it to make the (1τ0) horizontal [19]. Then we 
select a foil thickness as observed in TEM. This thickness might contain the 
hemisphere of a cluster, for example, or a horizontal slice of the structure. The 
result has so much structure with unaccounted intensity that it hides the de-
sired pattern [5]. We simplify by plotting only to the low resolution that 
represents unit cells. We do this by omitting the weakly scattering Al atoms 
(Figure 5(a)). The resulting pattern shows the diameter of the cluster to be 0.9 
nm which is close enough to Bursill and Peng’s measurement (0.85 nm) based 
on microscope micron markers and the indefiniteness of their reverse contrast. 
Our next step is to reverse our simulated contrast by omitting the Al atoms; 
instead, simulating a cluster of cluster peripheries (Figure 5(b)). The peripheries  
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(a)                                                 (b) 

 
(c)                                                     (d) 

Figure 5. (a) Simulation of an HI supercluster of HI unit cell centers. The sample orientation is (1τ0) horizontal. The diameter of 
the circle of cell centers is 0.9 nm. (b) Simulation in reverse contrast that matches the corresponding pattern in Bursill & Peng [18] 
among others. (c) Simulation of a horizontal supercluster order 2. (d) Simulation of the same supercluster tilted about the vertical 
axis to a slope of 1:25. Notice that, even with small tilts, the pattern is lost except for apparently random cells and clusters.  
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occur at a radius τ times greater than atomic separations from corresponding 
cluster centers. This process yields an excellent simulation of a supercluster in 
Bursill and Peng’s image. In particular, the clusters in reverse contrast touch, i.e. 
at cluster edges [5]6. Moreover, the dimensions are confirmed along with the 
hierarchic model up to four tiers of order. The match with Bursill and Peng be-
comes irresistible, and is generally comparable to other miscroscopic images of 
quasicrystals. 

What about the supercluster order 2? This is shown in reverse contrast in 
Figure 5(c). As the images expand in area, they become harder to observe be-
cause of the precision required in locating a thin foil prepared by either electro-
polishing or ion milling. For example, an error of only 1:25 in the slope of the 
polished foil about the vertical axis yields the simulation shown in Figure 5(d). 
After tilting, the supercluster pattern is, for the most part, lost; though remnants 
of apparently random cells and clusters are identifiable. It is therefore impractic-
al to expect that large areas of a QC should exhibit superclusters of high order. 
Nevertheless, hierarchic order is demonstrated in the images, along with their 
geometric series diffraction. 

6. Possibility for Quasi-spherical Cells  

In principle, the Hi is infinite in extension. The units are initially and progres-
sively edge-sharing and holey. Defects have been a long-time concern, but given 
the firm ideal model, progressive solutions are possible. 

Previously, we have considered defects in the short range: vacancies, intersti-
tials, disloctions etc. They are natural products of the edge-sharing structure of 
the HI, but they are not sufficiently dense to noticeably affect the diffraction 
pattern. Now we consider defects in longer range. 

Consider the regular icosahedron as being quasi-spherical. This is justified 
by its having 15 identical cross-sections (Figure 4) at various orientations. Se-
condly, consider metallic atoms as approximately spherical, so that they may, 
from a structural viewpoint, be replaced by icosahedra. We may therefore 
imagine two structures: one an fcc lattice with icosahedral unit cells; and ano- 
ther the icosahedral lattice containing fcc unit cells7. In neither case need the 
cells be edge sharing and space filling. What effect might transformations be-
tween the two structures have on the diffraction pattern, can be investigated 
by QSFs. 

Simulated QSFs are shown in Figure 6. The specimen sizes are typical for a 
supercluster order 2. These are compared with each other, and also with the QSF 
calculated on an HI supercluster order 6, in Figure 2. It is clear that for pure fcc 
Al (Figure 6(a)) at the Bragg condition, cs = 1 at the origin, as it must be. In 
Figure 2, cs = 0.894 for i-Al6Mn, as described above.  

 

 

6The simulation is partly fortuitous: the radius of the cluster is τ times the radus of the unit cell and 
coincides with the outer edge of cell, i.e. including both Mn and the outer lining of Al atoms. 
7The fcc unit cell is cubic, but its stacking is similar to the unit cell in i-Al6Mn ([4], p.19). 

https://doi.org/10.4236/jmp.2021.1212096


A. J. Bourdillon 
 

 

DOI: 10.4236/jmp.2021.1212096 1630 Journal of Modern Physics 
 

 
Figure 6. (a) QSFs for a cubic cluster of fcc Al, having about 20,000 atoms, similar to a 
supercluster order 2. Note cs = 1, i.e. Bragg reflection. (b) Computed QSF for (111) dif-
fraction due to an imaginary fcc cell on an icosahedral grid, as in a supercluster order 2. 
Note cs ≃ 0.9. (c) Computed QSF for (τ, τ, τ) diffraction due to an icosahedral cell on an 
imaginary cubic grid of side τ. Site population about 20,000 (like a and b). Notice that cs is 
similar to configuration in b. [Bourdillon, A.J. (2010) Quasicrystals’ 2D Tiles in 3D Su-
perclusters. UHRL, San Jose, ISBN 978-0-9789839-2-5 p. 66]. 
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Meanwhile the two imaginary solids in Figure 6(b) and Figure 6(c) have cs ≃ 
0.9. This simulation for the metrics of imaginary structures demonstrates that 
the QSFs are determined by the lattice as well as the unit cells. (contrast crystals, 
where SFs are calculated within individual cells and are identical for all cells and 
for the lattice). The observation implies that, if higher order icosahedra are subs-
tituted by cubic structures, or even by quasi-speherical structures, as defects in 
the quasi lattice, then the diffraction pattern may be approximated by the pat-
tern that is calculated in the ideal HI model. The lattice may then be locally de-
fective, while retaining the principal scattering properties of the ideal HI struc-
ture. By this means, a mixture of local quasi-cubic lattice sites with icosahedral 
quasi-lattice sites of high order might reduce density fluctuations. These would 
add to conventional vacancies and interstitials as possible defects in the long 
range. There is no evidence that this occurs, but the data signals that, with re-
gard to long range defects, the geometric series diffraction in QCs is as robust as 
Bragg diffraction in crystals. 

7. Conclusions  

Scattering by Hiearchic Icosahedral structures is the most obvious instrument 
for diffraction of periodic probes into geometric series. The physical process for 
this fact has been described in detail. It is classical, 3-dimensional, and indepen-
dent of tiling theory. The quantum requirements for the diffraction in geometric 
series contain necessary relationships of harmony and digitization. In conse-
quence, resonant quasi-Bloch waves in the scattering probe have translational 
symmetry at geometric series orders a τm. The Hierarchic Icosahedral structure 
is consistent with phase-contrast, optimum-defocus imaging. This is simulated 
by reverse-contrast mapping of atoms that scatter X-ray or electron probes inci-
dent on a thin QC foil. However, owing to the hierarchic translational symme-
tries, higher orders appear to randomize by specimen tilts of small angles away 
from horizontal. The difficulty of thin-film specimen preparation with opti-
mized quasicrystollagraphic orientation results in the common conclusion: there 
is “no translational symmetry”; However this view not only contradicts expecta-
tions in “long range order”, but is not necessary since hierarchic icosahedra in-
deed have translational symmetry. This occurs consistently, both in the hierar-
chic structure and in the resonant response. 

Finally this solution for both the structure and diffraction differs from the two 
dominant objectives commonly followed in QC research: Our method is entirely 
classical and verified [2] [5] [6] [7]: it concentrates on the simplest and original 
(diatomic) system with minimal complication. The method has successfully 
identified the principal principles. Those other methods have been admittedly 
tentative and wishful for forty years. The first is mathematical and in-complete, 
viz. the mathematics of non-periodic tilings e.g. [19]; the second has covered for 
its shortcomings by spreading the net: the method attempts to find the extent of 
possible quasicrystals, especially with respect to composition and process e.g. 
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[20]. The net has not uncovered the desired conclusion. Scientific method is em-
pirical; we used to wish, and used to collect data, but our comprehension has 
since expanded to higher orders.  
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