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Abstract 
We investigate light meson mass spectra with massive u, d, and s quarks and 
with a spin effect under a bound system in 3 + 1 dimensional QCD by using 
the first order perturbation correction. In the process of determining charged 
kaon and neutral kaonmasses, we obtain masses of u, d, and s quarks that are 
slightly smaller than the currently accepted values. Using these masses, we 
obtain light meson mass spectra that includes mass splitting of charged and 
neutral kaons and ρ mesons. The most interesting of our results is that the 
pion mass remains unchanged even though u, d, and s quarks become mas-
sive. 
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1. Introduction 

It is well understood that properly explaining meson properties such as mass 
spectra, decay constants, and the pion form factor (the pion wave function in 
momentum space) is fundamental to understanding hadron physics because a 
meson is the simplest composite particle system. It is especially important to ex-
plain meson properties within a quantum chromodynamics (QCD) framework 
because it is widely accepted that the interactions between quarks (or antiquarks) 
are described by QCD. Currently, there are two main approaches to explaining 
meson properties. One is based on the consideration that covariance should be 
the first priority when describing mesons. The other approach of describing 
mesons without setting the covariance as the first priority was developed mainly 
to investigate mass spectra. The mass spectra and pion wave functions in mo-
mentum space (pion form factor) resulting from these two descriptions are dif-
ferent. Although it is well-known that the former description cannot explain the  
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 property of pion mass spectra, the latter description can explain light meson  

mass spectra (including pion mass spectra) fairy well, as shown by Braw and 
Semay [1], Choi et al. [2] and our published results [3]. Significantly, the main 
terms of the corresponding eigenfunction are Gaussian in both the configuration 
space (r space) and momentum space in all three references even though the ap-
proaches are different. In addition, the two descriptions give different results in 
the case of the t’Hooft problem, in which mass spectra in two dimension can be 
dealt with exactly. The former description cannot obtain a zero mass simulta-
neously with a nonzero mass spectrum, as shown by t’Hooft [4] and Hornbostwl 
et al. [5]. By contrast, the author [6] showed the existence of zeromass simulta-
neously with a nonzero mass spectrum, which is consistent with the results of 
t’Hooft. For a pion wave function in momentum space, it is also well known that 
the former description gives Reggae-like profile functions. For example, inMello 
et al. [7], a pion is described by three simple pole solutions in r space (Reg-
gae-like functions in momentum space),whereas in the latter case, the descrip-
tion for satisfying light meson mass spectra (including a pion mass spectrum) is 
Gaussian in momentum space, as mentioned before. In addition, for considering 
the pion electromagnetic form factor, the following three methods are proposed. 
The first is the covariant spectator theory (CST) by Biernat et al., but this wave 
function is Reggae-like [8]. The second is Dyson-Schwinger equation method, 
but this wave function is not Gaussian either, as shown in Chang et al. [9]. In 
addition, according to Arrington et al. [10], the pion valence quark distribu-
tion function (DF), ( ),q xπ ζ , describes behavior of hadron wave functions at 
large valence-quark relative momenta. Numerous analyses predict the following 
large-x behavior ( ) ( ), ~ 1Hq x x= − βπ ζ ζ . Here x is a light-front fraction of the 
system’s total momentum at resolving scale ζ . The apparent β  exponent can 
range between ~1 and ~2.5. The Drell-Yan-West relation provides a link be-
tween the large behavior of DFs and the large -Q2 dependence of hadron elastic 
form factors of which leading elastic electromagnetic form factor scales as 

( )21
n

Q . For a pseudo-scalar meson, n = 2 and ( ) ( )2, ~ 1Hq x x−π ζ . Thus , this 
DFs derive Reggae-like wave functions. The third is the Drell-Yan frame shown 
by Li et al. [11]. The Drell-Yan frame restores dynamical covariance but does not 
include zero-mode contribution which needs to fit to the pion electromagnetic 
form factor. To include zero-mode contribution lose the dynamical covariance. 
The most recent experimental results by the Jefferson Lab Hall A collaboration 
[12] show that the t-dependence of the cross section, usually parametrized by 
Reggae-like profile functions, is no longer valid at typical values of 21 Gevt− > , 
and that a fitting form of t dependence is ( )exp Bt′−  where mint t t′ = − ,  

( )2t q q′= − , q and q′  are photon and 0π  momentum, respectively. This 
shows that 0π  is described as Gaussian in momentum space. To consider this 
experimental result seriously, Reggae like profile functions for pion wave func-
tion should be reconsidered. For decay constants, both the former and the latter 
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descriptions give satisfactory results, as shown in Aoki et al. [13] for the former 
(although the wave function is not Gaussian) and in Ref [2] for the latter (a 
Gaussian description). Based on these comparisons, the Gaussian description 
seems to be better for mesons, or at least for light mesons. However, the Gaus-
sian description has not been given a global physics rule like covariance for the 
former description. This problem should be considered seriously. Fitting of the 
light meson mass spectra in Ref. [3] is not good enough. Instead, these results 
are taken for granted because these are obtained under the chiral limit condition, 
which sets the masses of u, d, and s quarks at zero without considering the spin 
effect for vector mesons. In this paper, we investigate light meson mass spectra 
under the conditions that u, d, and s quarks are massive and that vector mesons 
have a spin effect. 

2. Formulation 

We previously showed the chiral limit of light meson mass spectra [3]. Here we 
extend our method to the non-chiral limit case in which the masses of u, d, and s 
quarks are non-zero and there is a spin effect for vector mesons. To do this, we 
recall the Dirac equation in QCD with a mass term. The Dirac equation is ex-
pressed as 

k
Ak

qi i D q mq
t

∂
= − −

∂
α β                        (1) 

The Dirac equation of the complex conjugate †q  becomes as the following. 
†

† †k
Ak

qi i D q mq
t

∂
= − +

∂
α β                      (2) 

where 
2

a a
Ak k kD igA  ≡ ∂ −  

 

λ
. 

The 
2
aλ  components are generators of the adjoint representation of the color  

gauge group. 
We employ the metric system and γ  matrices as follows, according to 

Weinberg [14]. 
00 11 22 331, 1= − = = =η η η η  

( ) ( )00

0

0 0
,

0 0
kk

k

i i
   

= − = −   −   

σ σ
γ γ

σ σ
 

where 0σ  is a unit matrix of a 2 × 2 matrix and kσ  is the 2 × 2 Pauli-matrix 
specified by (k = 1, 2, 3) 

0 0andk k i= =α γ γ β γ  

First, we briefly describe our formalism and the equation of motion we ob-
tained previously [3]. Suura [15] [16] defined the Bethe-Salpeter-like amplitude 
as 

( ) ( )1,2 0 1,2q P=χ                       (3) 
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where 0  and P  denote the vacuum and physical states, respectively, and 
the gauge invariant bi-local operator ( )1,2q  is defined in the non-Abelian 
gauge field as 

( ) ( ) ( ) ( )2†
1

1, 2 2 exp d 1
2

c a a
rq T q P ig x A x q

  ≡   
  

∫
 



η ξ
λ

            (4) 

Here ξ  and η  denote the Dirac indices, P denotes the path ordering, and  

the 
2
aλ  components are generators of the adjoint representation of the SU(N)  

color gauge group, as mentioned previously. The trace is calculated for color 
spin a. The Dirac equation for quarks and antiquarks shows the dependence of 
local gauge fields. Thus, the operator ( )1,2q  would be gauge variant if the 
string term is absent. However, because of the existence of the string term, the 
defined operator of Equation (3) is not dependent of gauge fields explicitly, as 
shown in Ref. [17]. In this sense, the defined operator is gauge invariant but path 
dependent. Because the physical properties of an observable color singlet should 
be the path independent, Suura chose a straight line for the zeroth order [15]. 
We also adopt this choice to investigate chiral limit light meson mass splitting 
[3]. For the chiral limit case, the starting equation of motion is the following as 
given in Ref. [3]. 

( ) ( ) ( ) ( ) ( )

( ) ( )2 2

1 1

1, 2 2 1,2 1,2 1

d 1,2; d 1,2;E B

i q i q q i
t

g x q x g x q x

∂
= − ⋅∇ − ⋅∇

∂

+ + ⋅ ×∫ ∫

 

 

 

α α

α
         (5) 

Thus, for the non-chiral limit case, from Equation (1) and Equation (2) leads 
to the starting equation of motion as follows. 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 1

2 2

1 1

1, 2 2 1,2 1,2 1 1,2 1,2

d 1,2; d 1,2;E B

i q i q q i m q q m
t

g x q x g x q x

∂
= − ⋅∇ − ⋅∇ + −

∂

+ + ⋅ ×∫ ∫

 

 

 

α α β β

α
  (6) 

where ( ) ( ) ( ) ( ) ( )†1, 2; 2 2, ,1 1
2

a a
Oq x q U x O U x q ≡  

 

λ
 O is any operator 

( ) ( )
1

2
1, 2 exp d

2
a aU P ig x A x

  ≡   
  

∫


 
λ

 

Here we adopt the center of mass of the system and relative coordinates as 

( ) ( )1 2

1 2

1 2m r m r
G

m m
+

=
+

 



                      (7) 

( ) ( )2 1r r r= −
                            (8) 

where ( ) ( )2 , 1r r   denote the point 2 and 1, respectively. 
In the relative coordinates and in the rest frame, we obtain the kinetic term as 

follows. 

( ) ( ) ( ) ( ) ( ) ( )2 1,2 1,2 1 , ;i q q i i r q t r − ⋅∇ − ⋅∇ = − ⋅∇ 
  

    α α α        (9) 
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This is same as in the chiral limit case [3]. 
Because quarks and antiquarks are point-like particles and our string is con-

sidered to be a straight line, the three dimensional integral for the string can be 
written as 

( ) ( )2

1

2

1
d d d d

z

z
x z x x y y

−∞

∞

∞

∞

−
=∫ ∫ ∫ ∫
 δ δ                 (10) 

where ( )1 11 0,0,z z=  and ( )2 22 0,0,z z= . This description is used in Ref. [3]. 
Then, r  means r r=

  because we set 1 0z =  and 2z r=  in relative coordi-
nate (r is the distance between ( )1q  and ( )† 2q ). 

Then Equation (6) is expressed in relative coordinate as below. 

( ) ( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) ( ) ( )

2 1

2

0

2

0

; , ; ; ;

d ; ;
2

ˆd d ; ;
2

r

t r

i q t r i r q t r m q t r q t r m
t

g z q t r z r z q t z

g t r t t z q t r z q t z
−∞

∂  = − ⋅∇ + − ∂

− − −

′ ′ ′ ′+ ⋅ − −

∫

∫ ∫







α β β

α δ

      (11) 

Except for the mass terms, Equation (11) was previously obtained in Ref. [3]. 
We decompose ( )q r  to a Lorentz invariant description as follows. 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3ˆ ˆ; 1 ; ; ; ;q t r q t r i r q t r q t r i r q t r= + − ⋅ + + ⋅
 α β β α      (12) 

The following kinetic terms are derived after sandwiching ( );q t rν  with a 
vacuum state 0  and a physical state P . 

Unit matrix component: ( )1
2 ;t r
r

− χ  

( )ˆi r− ⋅
α  component: 0 

β  component: ( ) ( )3 3
22 ; ;t r t r

r r
∂

− −
∂

χ χ  

( )ˆi r⋅β α  component: ( )22 ;t r
r
∂
∂

χ  

The derivation of kinetic terms of β  and ( )ˆi r⋅β α  components is shown 
in Ref. [17]. The derivation of Unit matrix and ( )ˆi r− ⋅

α  components is given 
in Appendix A. 

For an evaluation leading to the electric terms, we follow the argument in Ref. 
[3]. After sandwiching it with the vacuum state 0  and the physical state P , 
the electric term becomes as follows. 

( )( ) ( )

( )( ) ( )( )

2

0

2 †
† †

0

0 d ; ;
2

d ; ;
2

r

r

g z q t r z r z q t z P

g P z q t z r z q t r z

− − −

= − − −

∫

∫
               (13) 

In Ref. [3] we showed that the Hermitian conjugate of ( )1,2q  in relative 
coordinates, i.e., ( );q t r , is equal to taking ˆ ˆr r→ − . The decomposition of the 
Hermitian conjugate of ( );q t r  becomes  

( ) ( ) ( ) ( ) ( ) ( ) ( )† † † † †
0 1 2 3ˆ ˆ; 1 ; ; ; ;q t r q t r i r q t r q t r i r q t r= + − ⋅ + − ⋅

 α β β α      (14) 
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Equation (13) then becomes as follows. 

( ) ( )( ( ) ( ) ( )(
( ) ( ))( ) ( )( ( ) ( )

( ) ( ) ( )) )

2
† † †
0 1 20

† † †
3 0 1

†† †
2 3

ˆEq. 13 d 1 ; ; ;
2

ˆ ˆ; 1 : ;

ˆ; ; 0

rg P z q t z i r q t z q t z

i r q t z r z q t r z i r q t r z

q t r z i r q t r z

= − + − ⋅ +

− ⋅ − − + − ⋅ −

+ − − ⋅ −

∫


 



α β

β α α

β β α

  (15) 

Here, we consider the contribution of each component. As an example, we 
show the detailed calculation of the β  component. 

( ) ( ) ( )(( ( ) ( )

( ) ( ) ( ) ( )) )
( ) ( ) ( )(( ( ) ( )

( ) ( ) ( ) ( )) )
( ) ( )( )

2
† † † †
0 2 2 00

†† † † †
1 3 3 1

2
† † † †
2 0 0 20

†† † † †
3 1 1 3

2 †
† † †

3 10

 term d ; ; ; ;
2

; ; ; ; 0

d ; ; ; ;
2

; ; ; ; 0

d ; 0 0 ; 0
2

r

r

r

g P z r z q t z q t r z q t z q t r z

q t z q t r z q t z q t r z

g P z r z q t r z q t z q t r z q t z

q t r z q t z q t r z q t z

g z P q t r z q t z

= − − − + −

+ − − −

= − − − + −

+ − − −

= − −

∫

∫

∫

β β

β

β

 

( ) ( ) ( )((
( ) ( ) ( ) ( )

( ) ( )) )
( ) ( )

2
† †
2 00

† † † †
0 2 3 1

†† †
1 3

2

1 30

d ; 0 0 :
2

; 0 0 ; ; 0 0 ;

; 0 0 ; 0

d 0 ; 0 0 ;
2

r

r

g P z r z q t r z q t z

q t r z q t z q t r z q t z

q t r z q t z

g z q t z q t r z P

= − − −

+ − + −

− −

 
= − − 

 

∫

∫

β

β

 

(16) 

In the second line of Equation (16), we commute fields because these are sca-
lar quantities. In the third line, we insert a 0 0  term. Rigorously, this should 
be 1 n n= ∑  where n denotes all states including the vacuum state. The ex-
pression ( )0 q r P  represents a real meson as a bound system but  

( ) ( )0n q r P n ≠  represents an unbound state such as q q−  jet state (refer 
Ref. [3]). Thus we neglect all states except the vacuum state given by the 0 0  
term. 

In the fourth line, we use the condition from Ref. [3] that 

( ) ( ) ( ) ( ) ( )0 1 1 2 30 ; 0 0, 0 ; 0 , 0 0 0, 0 0 0q t r q t r L r q r q r= = = =δ  

where the vacuum expectation value is ( ) ( ); 0 ; 0S t r q t r= . 
The reason of this choice of conditions is given in Ref. [17].  
Using †1 1= , ( ) ( )†ˆ ˆi r i r− ⋅ = − − ⋅

 α α , † =β β , ( )( ) ( )†ˆ ˆi r i r⋅ = ⋅
 β α β α , we 

obtain the electric term as follows. 

Unit matrix component: ( )
2

1
1 ;

2
g L r t rχ  

( )ˆi r− ⋅
α  component: ( )

2
1

0 ;
2

g L r t rχ                              (17) 
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Β component: ( )
2

1
3 ;

2
g L r t r− χ  

( )ˆi r⋅β α  component: ( )
2

1
2 ;

2
g L r t r− χ  

Here, we use the definition of the amplitude given in Equation (3). 
For the magnetic term, using the same argument as the electric term, we ob-

tain:  

Unit matrix component: ( ) ( )
2

1
0d ;

2
tg Li t t t t r
−∞

′ ′ ′− −∫ δ χ  

( )ˆi r− ⋅
α  component: ( ) ( )

2
1

1d ;
2

tg Li t t t t r
−∞

′ ′ ′− −∫ δ χ                 (18) 

Β component: ( ) ( )
2

1
2d ;

2
tg Li t t t t r
−∞

′ ′ ′− −∫ δ χ  

( )ˆi r⋅β α  component: ( ) ( )
2

1
3d ;

2
tg Li t t t t r
−∞

′ ′ ′− −∫ δ χ  

Remembering that we work in the center of mass of the system and in the rest 
frame in relative coordinates, ( )1,2χ  is expressed as follows. 

( ) ( ) ( ) ( )0 01, 2 e e e ;P t iP tiP G r r t r− −⋅= = =


χ χ χ χ               (19) 

Then, a time integral is carried out as shown in Ref. [3] and we obtain in the 
following. 

( ) ( ) ( ) ( )0

0

0
d ; e

t P tt t t t r r
iP

−

−∞
′ ′ ′− =

−∫ ν ν

δ
δ χ χ                (20) 

In the case of the mass term, from Equation (11), after sandwiching ( );q t rν  
by the vacuum state 0  and physical state P , each component becomes the 
following. 

Unit matrix component: ( ) ( )2 1 2 ;m m t r− χ  

( )ˆi r− ⋅
α  component: ( ) ( )2 1 3 ;m m t r− + χ                          (21) 

Β component: ( ) ( )2 1 0 ;m m t r− χ  
( )ˆi r⋅β α  component: ( ) ( )2 1 1 ;m m t r− + χ  

If we consider that these terms describe the mass terms of a meson particle, 
those of an anti-meson particle would be described as follows, because  

( ) ( )† 1, 2 2,1q q=  [3]. 
Unit matrix component: ( ) ( )1 2 2 ;m m t r− χ  

( )ˆi r− ⋅
α  component: ( ) ( )1 2 3 ;m m t r− + χ                          (22) 

Β component: ( ) ( )1 2 0 ;m m t r− χ  
( )ˆi r⋅β α  component: ( ) ( )1 2 1 ;m m t r− + χ  

Remembering that the masses of a particle and an anti-particle are the same, 
the mean value must be as below. 

( )1 mass of particle mass of antiparticle
2

+  

Then, the actual mass terms become the following. 
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Unit matrix component: 0 

( )ˆi r− ⋅
α  component: ( ) ( )1 2 3 ;m m t r− + χ                          (23) 

Β component: 0 
( )ˆi r⋅β α  component: ( ) ( )1 2 1 ;m m t r− + χ  

After factoring out 0e iP t− , the equations of motion for the wave functions be-
come as follows. 

( ) ( ) ( ) ( ) ( )
22

11
0 0 1 1 0

0

02
2 2

g Lg LP r r r r r
r P

= − + +
δ

χ χ χ χ           (24) 

( ) ( ) ( ) ( ) ( ) ( )
22

11
0 1 0 1 1 2 3

0

0
2 2

g Lg LP r r r r m m r
P

= + − +
δ

χ χ χ χ        (25) 

( ) ( ) ( ) ( ) ( ) ( )
22

11
0 2 3 3 3 2

022
2 2

g Lg LP r r r r r r
r r
∂

= − − − +
∂

δ
χ χ χ χ χ    (26) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
22

11
0 3 2 2 3 1 2 1

0

0
2

2 2
g Lg LP r r r r r m m r

r P
∂

= − + − +
∂

δ
χ χ χ χ χ  (27) 

Here we introduce new notation for 0P . 

( )2
1

0 0
0

0
2

g L
P P

P
= −

δ
 

Then, Equation (24) can be written as below. 

( ) ( ) ( )
2

1
0 1 1

0

1 2
2

g Lr r r
rP

 
= − + 

 
χ χ χ                (28) 

Substituting Equation (28) into Equation (25), ( )1 rχ  is expressed by ( )3 rχ  
as the following. 

( ) ( ) ( )

( )
0 1 2 3

1 222 2 1
0 1 2

P m m r
r

g LP g L r

+
= −

 
+ −  

 

χ
χ                (29) 

From Equation (26), ( )2 rχ  can be expressed by ( )3 rχ  as follows. 

( ) ( ) ( ) ( )
2

1
2 3 3 3

0

1 22
2

g Lr r r r
r rP

 ∂
= − + + 

∂ 
χ χ χ χ          (30) 

Substitute Equation (30) into Equation (27) and using Equation (28), we ob-
tain the equation for ( )3 rχ  as below. 

( )

( )

22 22 23 3 1
0 3 3 32 2

2 2
0 1 2

3222 2 1
0 1

4 44
2

2

g LP r
r rr r

P m m

g LP g L r

 ∂ ∂
= − − + +  ∂∂  

+
+

 
+ −  

 

χ χ
χ χ χ

χ
         (31) 

Starting with Equation (27) and using Equation (29) to express ( )3 rχ  as a 
function of ( )2 rχ , we then substitute into Equation (26) to obtain the following 
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equation for ( )2 rχ . 

( )

( )
( ) ( )

( ) ( )

22 2 22 22 2 1 1
0 2 2 22

2 2
0 1 2

2222 2 1
0 1

2
2 2 1

1 2 1 2
2 1

222 22
0 1 1 2

44 4
2 2

2

2
4 2

2

g L g LP r
r rr

P m m

g LP g L r

g Lm m g L r
g L r

rP g L m m

χ χ
χ χ χ

χ

χ
χ

   ∂ ∂
= − − + +   ∂∂    

+
+

 
+ −  

 
 

+     ∂ + − +   ∂    + − +  

   (32) 

where  

( )2
1

0 0
0

0
2

g L
P P

P
= −

δ
 

and 3χ  and 2χ  denote ( )3 rχ  and ( )2 rχ , respectively. 
Here, we denote ( )3

0H χ  and ( )2
0H χ  as below. 

( )3

222
21

0 2 2

4 44
2

g LH r
r rr r

 ∂ ∂
= − − + +  ∂∂  

χ               (33) 

( )2

22 22
21 1

0 2

44 4
2 2

g L g LH r
r rr

   ∂ ∂
= − − + +   

∂∂    

χ            (34) 

Equation (33) and Equation (34) are exactly the same Hamiltonian as the 
chiral limit case for ( )3 rχ  and ( )2 rχ , respectively, as shown in Ref. [3]. Thus, 
we consider ( )3

0H χ  and ( )2
0H χ  to be unperturbed Hamiltonians of Equation 

(31) and Equation (32), respectively. Then the remaining terms denoted as 
( )3
1H χ , ( )( )2 1

1H χ  and ( )( )2 2
1H χ  are considered to be perturbed Hamiltonians of 

Equation (31) and Equation (32), respectively. These terms are expressed as be-
low. 

( ) ( )

( )
3

2 2
0 1 2

1 222 2 1
0 1 2

P m m
H

g LP g L r

+
=

 
+ −  

 

χ                 (35) 

( )( ) ( )

( )
2

2 2
1 0 1 2

1 222 2 1
0 1 2

P m m
H

g LP g L r

+
=

 
+ −  

 

χ                 (36) 

( )( )
( ) ( )

( ) ( )
2

2
2 2 1

1 2 1 2
2 1

1 22 22
0 1 1 2

2
4 2

2

g Lm m g L r
g LH r

rP g L m m

 
+     ∂ = − +   ∂    + − +  

χ        (37) 

Then, we use the first order perturbation to evaluate the corrective light me-
son mass. For the ( )3 rχ  case, we use Equation (35) to determine the first order 
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change in energy (mass) as follows. 
( ) ( ) ( ) ( )3 3 3 3
1 0 1 0E n H n=χ χ χ χ                      (38) 

where ( )3
0n χ  is the normalized wave function of the unperturbed Hamiltonian 

for ( )3 rχ . 
As mentioned before, because the unperturbed Hamiltonian is the same as the 

Hamiltonian of the chiral limit case, the wave function of the unperturbed Ha-
miltonian for ( )3 rχ  is as follows. 

( ) 3
2 2

2 21 1
3 cont exp 1 , 2;

8 4
g L g Lr r r F rχχ κ

   
= − −   

   
         (39) 

where 3χκ  is positive integer. 
F is the confluent hypergeometric series, as defined in Ref. [18]. 

( ) ( ) ( )
( ) ( )0

1 1
, ;

1 1 !

nn

n

n zF Z
n n=

+ + −
=

+ −∑


 ＋

α α α
α γ

γ γ γ
             (40) 

The corresponding eigenvalue is the following, as given in Ref. [3]. 

3
2 2

0 14P g L= χκ                         (41) 

Then, the normalized wave function of the unperturbed Hamiltonian ( )3
0n χ  

is expressed as the following. 

( ) ( ) ( )( )3 2
0 3 30

4 dn r r r r
∞

= π∫χ χ χ                 (42) 

The same argument used for ( )3 rχ  can be used to express ( )2 rχ , as below. 

( ) 2
2 2

2 21 1
2

1const exp ,1;
8 2 4

g L g Lr r F r
   

= − −   
   

χχ κ       (43) 

where 2χκ  is a positive half integer. 
The corresponding eigenvalue is the following. 

2
2 2

0 1
14
2

P g L  = + 
 

χκ                     (44) 

Then, the normalized wave function 2
0nχ  is expressed as below. 

( ) ( )( )2 2
0 2 20

4 dn r r r r
∞

= π∫χ χ χ                (45) 

Note that the eigenvalue of ( )3 rχ  and ( )2 rχ  is the same for each corres-
ponding meson, as shown in Ref. [3]. 

Then, using Equation (36) and Equation (37), the first order correction of the 
mass (energy) for ( )2 rχ  is evaluated as below. 

( ) ( )( ) ( )( )2 2 22 2 2 21 2
1 0 1 0 0 1 0E n H n n H n= +χ χ χχ χ χ χ          (46) 

3. Evaluation 

In this section, we show how to perform the first order perturbation. Before 
proceeding with this argument, we insist on the fact that pion solutions are un-
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changed even though the masses of u, d, and s quarks become nonzero. This is ob-
vious when we substitute the following pion wave functions with an eigenvalue  

of 
( )2

12 2
0

0
2

g L
P m= = π

δ
 into Equations (24)-(27). 

( ) ( ) ( ) 2
21

1 2 8
0 2 2

1

2 1const e
g L

rm m
r

g L r
−+

=πχ               (47) 

( ) ( )1 0r =πχ                           (48) 

( ) ( )2 0r =πχ                           (49) 

( ) ( )
2

21
8

3
1const e

g L
r

r
r

−
=πχ                     (50) 

These solutions exactly satisfy Equations (24)-(27) with an eigenvalue of  
( )2

12 2
0

0
2

g L
P m= = π

δ
. Thus, pion mass is unchanged even though the constituent  

quark mass becomes nonzero. Next we show how to evaluate the first order cor-
rection of mass for light mesons except pions. In this procession, we also con-
sider the contribution of the spin effect for vector mesons. From Equation (38), 
Equation (39), Equation (42), Equation (43), Equation (45), and Equation (46), 
the essential integrations we must perform are as follows. 

( ) ( )

( )

2
21

3

22 22
0 1 24 414

1 20 22 2 1
0 1

d e
4

2

ng L
r n P m mg LI r r

g LP g L r

∞ − + + 
=  

  
+ −  

 

∫χ         (51) 

( )( ) ( )

( )

2
21

2

22 22
1 0 1 24 214

1 20 22 2 1
0 1

d e
4

2

ng L
r n P m mg LI r r

g LP g L r

− +∞ + 
=  

  
+ −  

 

∫χ       (52) 

( )( )
( ) ( )

( ) ( )

2
21

2

22
2 2 1

2 1 2 12
2 4 214

1 20 2 22
0 1 1 2

3 2 4
2 2

d e
4

ng L
r n

g Ln m m g L r
ng LI r r

P g L m m

− +∞

 +
+     =  

   + − +  

∫χ    (53) 

where 3 2
11 1
2

n  = − = + − 
 

χ χκ κ  and 3 2
2 2 2

0 1 1
14 4
2

P g L g L = = + 
 

χ χκ κ . 

Equation (53) is obtained from the following consideration. Remembering 
that the expression of ( )2 rχ  is given in Equation (43), the factor  

2
2 1

24 2
2

g L r
r

 ∂
− +  ∂  

χ
χ  can be evaluated by changing the variable 

2
21

4
g Lz r=   

as follows. 

( ) ( ) 2
2 2

1 1 2
2

1 14 2 4 e ,1;
2 2 2 2

zg L g Lr r r F z
r z

−      ∂ ∂   − + = − − −         ∂ ∂         

χχ κ      (54) 

Using the following formula from Ref. [18] for the derivative of the confluent 
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hypergeometric series, 

( ) ( ) ( ), ; , ; 1 , 1;F z F z F z
z

 ∂
= + − + ∂  

αα γ α γ α γ
γ

 

We obtain Equation (54) as follows. 

( )

( ) 2 2 2

2

2
1 2

2
1 2

Eq. 54

1 1 1 14 e 1 ,1; , 2;
2 2 2 2 2

3 2 14 e ,1;
2 2 2

z

z

g L r F z F z

g Ln r F z
n

−

−

        = − − + − − + −        
       

 +  = −   
  

χ χ χ

χ

κ κ κ

κ

  (55) 

For the second line, we use the fact that 2
1
2

n = −χκ  and obvious result that 

( ) ( ) ( )11 1 ,2; 1 ,1;nn F n z F n z
n
+

+ − = − . 

Equation (55) is satisfied under the condition that n is a positive integer, that  

is, 2χκ  is a half integer larger than 3
2

. For the 2
10
2

n  = = 
 

χκ  case, we use  

Equation (37) to evaluate ( )( )22 22
0 1 0n H nχχ χ . Either way, we neglect this term, 

for the following reasons. 

Remembering that 
( )2

1 20
2

g L
m= π

δ
 and that ( )0δ  is considered as a  

renormalization factor, we can conclude that ( )0 1=δ . This is because, under 
this setting, we obtain the plausible light meson mass spectra for the chiral limit 
case and the equal time commutation relation gives also ( )0 1=δ . Thus  

2 2
1 2g L m= π . Because the integral of Equation (52) has a simple pole at  

2 2
0 12

1

2r P g L
g L

= +  and that of Equation (53) has order 2 pole at  

( )2 22
0 1 1 22

1

2r P g L m m
g L

= + − + , rough estimation shows that Equation (53) is  

smaller than Equation (52) by the factor 2
1g L . Thus, we can neglect ( )( )2 2

1H χ  
compared to ( )( )2 1

1H χ . From now on, to proceed the evaluation of Equation 
(51) and Equation (52), we use the notation 

2 2
0 0 1P' P g L= + . Then, Equation 

(51) is evaluated as below. 

( ) ( )

( )

2
21

3

2
21

22 22
0 1 24 41 4

1 2 20
1 1

0 0

22 2 24 41 4
0 1 22 20

0 0 1 0 1

d e
4

2 2

1 1 1d e
4 2

n g L
r n

n g L
r n

P m mg LI r r
g L g LP' r P' r

g L r r P m m
P P' g L P' g L'

− +

− +

∞

∞

+ 
=  

    − +  
  

  
= + +    − +   

∫

∫

χ

  

(56) 

For the first term, changing the variable to 
2

1
0 2

g Lz P' r= −  yields the follow-

ing. 
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( )
( ) ( )

( )

( )

( )

03

0

222
01

1 first 22
10 1

4 4

2 20
0 1 22

1

2

0

2
1

2 2 52
0 1

4 4 24 4
4 4 0 0

0

1 1d exp
4 2

2

1

2

exp
1 1 1 d

22
2

n
P '

n

P '

n n

n
s n s

n s
s

P' zg LI z
g LP' g L

P' z
P m m

zg L

z P'

g L
z

zP' g L

C z P' P m

χ

−∞

+

+ −∞

+
+ −

+
=

 −   = −       
  

 

 
 −
 × +
 
 
 

 − −  
 =

 
 
 

× −

∫

∫

∑ ( )2
1 2m+

       (57) 

For the second term, changing the variable to 
2

1
0 2

g Lz P'= +  leads to the  

following. 

( )
( )

( )

( ) ( )

3

0

2

0

2
1

1 second 2 2 52
0 1

4 4 2 24 4
4 4 0 0 1 2

0

exp
1 1 1 d

22
2

n n P '

n
s n s

n s
s

z P'

g L
I z

zP' g L

C z P' P m m

χ ∞

+

+
+ −

+
=

 − −  
 =

 
 
 

× − +

∫

∑

       (58) 

Here we use the fact that ( ) ( )4 4 4 4

0 0

n n
z P' z P'

+ +
− = − + . 

Then, ( )3
1I
χ  is expressed as 

( )
( )
( )

( )
( )

( )

( ) ( )

3 33
1 1 first 1 second

2

0

2
1

2 2 52
0 1

4 4 2 24 4
4 4 0 0 1 2

0

2

0
2 2

1 1

2 5 2
2 2 1

1

exp
1 1 1 d

22
2

1exp
2

2 21 1 1 d
2 2

22

n n

n
s n s

n s
s

n

I I I

z P'

g L
z

zP' g L

C z P' P m m

P'z
g L g L

z

g Lg L

χ χχ

∞

+ −∞

+
+ −

+
=

∞

−∞

= +

 − −  
 =

 
 
 

× − +

  
  
  − −

        =
 

   
   
 

∫

∑

∫
2

1

2

z
g L





 
 
 


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( ) ( )

52
2 2

224 4
20 0

4 4 1 22 220 1 01

1

22

ss n

n
s

n s
s

P' PzC m m
g L P'g L

+ −

+

+
=

      
   × − +
   
   

  

∑  

(59) 

Remembering the fact that 3
2 2

0 14P g L= χκ , 22 2
0 0 1P' P g L= +  and 3χκ  is  

positive integer, 0

2
1

2

P

g L
, 0

2
1

2

P'

g L
, 

2
1

2

z

g L
 are dimensionless. Thus, the dimen-

sion of ( )3
1I
χ  is ( )2

5
2 2

1

1 mass

2
g L

×
 
 
 

. Because 3
0nχ  is a normalized wave 

function, to evaluate ( )33 3
0 1 0n H nχχ χ , we must consider the denominator of 

Equation (43). The essential integral of this denominator is expressed as 

( )
( )

2
21

3

22
4 41 4

1 5
2 2

1

5
2

5
2 2

1

0

1 1 5d e Γ 2
4 2 2

4

2 1 5Γ 2
2 2

2

n g L
rn

den
g LI r r n

g L

n
g L

−+∞   = = +   
    

 
 

 = + 
  

 
 

∫χ

     (60) 

Notice that the factor 

5
2 2

1

2
g L

−
 
 
 

 is cancelled out so that the dimension of 

( ) ( )3 3
1 1E H=χ χ  is (mass)2 (i.e., energy). 

Changing the variable to 
2

1

2

zz
g L

′ = , Equation (59) can be expressed as  

below. 

( )

( ) ( )

3

2

0
2

1

1 2 5
2 2

1

52
2 2

224 4
20 0

4 4 1 22 2
0 1 0

1exp
2

21 1 1 d
2 2

2

1

2

n

sn

n
s s

n s
s

P'z
g L

I z
z

g L

P' P
C z m m

g L P'

χ

−∞

+ −

+
=

∞

+

  
  
  ′− −  
     ′=

′
 
 
 

 
 

′  × − +
 
 
 

∫

∑

       (61) 

Note that z' is dimensionless. From Equation (52), the difference of integral of 
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( )( )2 1
1I
χ  and the integral of ( )3

1I
χ  is 4 2nr +  instead of 4 4nr + . Thus, using the 

same argument as for ( )3
1I
χ , ( )( )2 1

1I
χ  becomes the following. 

( )( )

( ) ( )

2

2

0
2

1

1
1 2 3

2 2
1

32
2 2

224 2
20 0

4 2 1 22 2
0 1 0

1exp
2

21 1 1 d
2 2

2

1

2

n

sn

n
s s

n s
s

P'z
g L

I z
z

g L

P' P
C z m m

g L P'

χ

−∞

+ −

+

+
=

∞

  
  
  − −  
     =

 
 
 

 
 
 × − +
 
 
 

∫

∑

       (62) 

Here, we use the notation z instead of z'. We use this integral notation from 
here on. The essential integral in the denominator of Equation (45) is expressed 
as below. 

( )
( )( )

2
21

2

22
1 4 21 4

1 30
2 2

1

3
2

3
2 2

1

1 1 3d e Γ 2
4 2 2

4

2 1 3Γ 2
2 2

2

n g L
rn

den
g LI r r n

g L

n
g L

−+∞   = = +   
    

 
 

 = + 
  

 
 

∫χ

      (63) 

Then, the dimension of ( ) ( )( )2 22 21
1 0 1 0E n H n=χ χχ χ  is again (mass)2 (i.e. ener-

gy). 
The Integral part of Equation (61) is described as the following. 

( )

( )

3

2

0
52 2
21

2
0

1 2
1

2 2 2
2

24 3
10 0

4 4 1 22 0 11

1exp
2

2
d

2

1d exp 1
2

22

s

s s
s

s

n

n

n

n

P'z
g L

P'
J z

z g L

P' P'
z z C z

g Lg L

χ

+

∞

−∞

+ −

+
+

+ +−
=

∞

∞

  
  
  − −  
           =

 
 
 

            + − − −             

∫

∑∫

  (64) 

From this description, we can notice the obvious fact that the main contribu-
tion of ( )3

1J χ  comes from the first term because the integral appears to have a 
singularity. Thus, we must evaluate this integral carefully. 

To perform the integration of the first term, we modify it as follows. 
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0

2

0
1 2

1

2 2

0 0
02 2

1 1

1 1d exp
2

2

1 1 1 1d exp d exp
2 2

2 2

P'
T z z

z g L

P' P'
z z z z

z zg L g L

−∞

∞

−∞

∞

  
  
  = − −  
     
            
      = − − + − −      
               

∫

∫ ∫

   (65) 

After changing the variable with z z′= − , the first term becomes as follows. 

( )

( )

2

0
1 first 0 2

1

2 2
0 0
2 0 2

1 1

1 1d exp
' 2

2

1exp d 1 exp
2

2

P'
T z z

z g L

P' P'zzz
zg L g L

∞

∞

    
  ′ ′= − − +  
     

 
   ′′ ′= − − − −    ′   
 

∫

∫

       (66) 

The second term becomes the following. 

( )

2 2
0 0

1 second 2 0 2
1 1

1exp d exp
2

2

P' P'zzT z
zg L g L

∞

 
    = − − +       
 

∫          (67) 

Thus, integral 1T  is expressed as below. 

( ) ( )1 1 first 1 second

2 2
0 0 0
2 0 2 2

1 1 1

0
2

1
2 2

0
2 0

1

1exp d exp exp exp
2

2 2

2sinh

2exp d exp
2

T T T

P' P'z P'zzz
zg L g L g L

P'z

g L
P' zz

zg L

∞

∞

= +

    
           = − − − −                     

 
 
 
 
      = − −       

∫

∫

   (68) 

Notice that Equation (68) does not have singularity. When 
2

1
0 2

g LP'  is  

sufficiently large, 1T  becomes as follows. 
2

0
1 2

1

exp
P'

T
g L

 
≈ π −  

 
                       (69) 

The derivation of this form is shown in Appendix B. 
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In this paper, we use this expression for the calculation of correction masses 
except for the case of a kaon, an 0f  meson and anη meson. For the kaon and 

0f  meson cases, we use the exact representations of the integral and the second 
term of Equation (64). This is given in Appendix C. For the η  meson case, we 
use the exact representation of Equation (68) and calculate only the principal 
part of the second term of Equation (64). For the second terms of Equation (64), 
denoted by ( )3

2T χ , we use the following integral formula [19]. 

( )( ) ( ) ( )2d exp 2 nn
nx x x b i H ib−

−∞

∞
− − = π∫  

where ( ) ( ) ( )
2

2
2

0
1 2 1 !!

n

r n r
n n r

r
H x r C x

 
  

−

=

= − −∑  (Hermite function).  

Then, the second term of Equation (64) is expressed as follows. 

( ) ( ) ( )3

2 2
2

1 24 3
1 0 02

2 2 20 1 1

1 2 2

2

sn

sn
s s

s
s

P' P'
T i H i

g L g L

+ −

++
+ −

=

 
  
  = − π
     

 

∑χ       (70) 

We neglect the ( )3
2T χ  terms because they are small compared to the 1T  term  

multiplied by 

32
2

2
0
2

1

2

n

P'
g L

+
 
 
 
 
 
 

 when 0

2
1

2

P'

g L
 becomes large. For the 2χ  case, we 

use the same argument because the only difference is the exponent of 
2

0
2

1

2

P'
g L

  

term and the end term of summation. 

4. Results 

To determine masses of u, d, and s quarks, we use the evaluation of the masses of 

( )+ −κ κ  and ( )0 0κ κ  because the constituent quarks of ( )+ −κ κ  is ( )us us  
and those of ( )0 0κ κ  are ( )ds ds . The quantities of ( ) ( )3 2

1 2iH m m+χ  and 
( ) ( )2 2
1 1 2H m m+χ  are calculated by using the 0f  meson wave functions 

obtained in Equation (39) with 3 1=χκ  for 3χ  and Equation (43) with  

2
1
2

=χκ  for 2χ . The reasoning for this is that 0f  meson appears always  

appears with a kaon and that kaon mass is close to 0f  meson mass. Table 1 
shows the obtained masses of u, d, and s quarks in the process of kaon mass 
evaluation. To evaluate each mass term, we use quark and antiquark constitu-
ents. For example, the mass term of ( )+ −κ κ  is ( )2

u sm m+  because we con-
sider that the quark and antiquark masses are the same. 

For the η  and ′η  mesons case, we evaluate the mass term as below. 

( ) ( ) [ ]2 2 2: cos sinu u d d s sm m m m m m + + + − + η θ θ
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Table 1. Quark masses. 

quark u d s 

Estimated mas 
(MeV) 

1.12 3.56 62 

Estimated mass 
(Particle Data 

Group) (MeV) [20] 

0.49
0.472.16+
−  0.48

0.174.67+
−  11

593+
−  

 

( ) ( ) [ ]2 2 2: cos sinu u d d s sm m m m m m ′ + + + + + η θ θ  

This is because the quark and antiquark constituents are as follows. 

( ): cos sinuu dd ss+ −η θ θ  

( ): cos sinuu dd ss′ + +η θ θ  

For the ρ  meson and ω  meson cases, the mass terms are expressed as be-
low. 

( ) ( )2: u dm m+ − +ρ ρ  

( ) ( )2 20 : cos sinu u d dm m m m+ − +ρ θ θ  

( ) ( )2 20 : cos sinu u d dm m m m+ + +ω θ θ  

These reflect the following quark and antiquark constitutions. 

( ) ( ): ud udρ ρ+ −

 
0 : cos sinuu dd−ρ θ θ  

meson 0 : cos sinuu dd+ω θ θ  

Because its constituent quark and antiquark are ss , the mass term for a φ  
meson becomes the following. 

( )2: s sm m+φ  

For the vector meson, we have to consider the contribution of a spin effect. 
To do this we define the spin contribution as below. 

( ) ( ) ( )3 21
1 1

11
q

Q Q
s

q

H H
m m

+ +  − + 
χ χα                (71) 

where Q and Q  denote the charges of a quark and an antiquark, respectively. 
In addition, sα  is a spin parameter, qm  and qm  denote masses of a quark 
and an antiquark, respectively. This description of spin contribution is based on 
that of Choi et al. [2]. 

The total perturbative energy ((mass)2 correction))can then be described as 
below. 

( ) ( ) ( ) ( )3 21
1 1 11

11 1 Q Q
S Spert

q q

E H H
m m

+ +   = + − +     

χ χδ α        (72) 
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where 1Sδ  is the Kronecker delta, which becomes 1 when a meson spin is 1 and 
it becomes 0 otherwise. 

For the actual calculation, we use 1

u dm m
 for the 

1

qqm m
 terms of ±ρ , 0ρ  

and 0ω . For the φ  meson case, recalling that φ  is constituted as ss , we 

adopt 
1 1

q s sqm m m m
= . 

Notice that we use the fact that the quark and antiquark masses are equivalent 
for all cases. This yields the results in Table 2 for the pseudo-scaler case and in 
Table 3 for the vector meson case. 

Here, the estimated mass estM  is obtained by following equation. 

( ) ( ) ( ) ( )3 2

1
2

12
1 1 1 

11 1 Q Q
est S Schiral limit

q q

M M H H
m m

+ +     = + + − +       

χ χδ α   (73) 

where ( ) chiral limitM  is the meson mass of the chiral limit case, determined by an 
eigenvalue of non-perturbative Hamiltonian 0H  in Equation (33) or Equation 
(34). Recall that these eigenvalues are the same in Ref. [3]. The calculation is 
performed in the GeV region. Our corrected light meson mass spectra is better  
 
Table 2. Pseudo-scalar mesons. 

meson 0f  ( )+ −κ κ  ( )0 0κ κ  η  ′η  0a  

quark 
cos

sin
uu

dd+

θ
θ

 ( )us us  ( )ds ds  
( )cos

sin

uu dd

ss

+

−

θ

θ
 ( )cos

sin

uu dd

ss

+

+

θ

θ
 

cos
sin

uu
dd−

θ
θ

 

3χκ  1 1 1 2 5 6 

2χκ  
1
2

 
1
2

 
1
2

 
3
2

 
9
2

 
11
2

 

n 0 0 0 1 4 5 

( )

( )
3

1
2

1 2

H
m m+

χ

 9.70645 9.70645 9.70645 7.517288 7.098759 0.009287 

( )

( )
2

1
2

1 2

H
m m+

χ

 2.70136 2.70136 2.70136 8.548402 1.790447 0.034424 

cosθ  
1
2

 - - 0.977172 0.503492 
1
2

 

sinθ  
1
2

 - - 0.21245 0.864 
1
2

 

eM  
(MeV) 

441.339 493.672 497.623 547.816 957.772 989.780 

mM  
(MeV) [21] 

400 - 550 
493.677 
(±0.016) 

497.614 
(±0.024) 

547.862 
(±0.018) 

957.78 
(±0.06) 

980 
(±20) 

Note: Me and Mm denote estimated mass and measured mass, respectively. 
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Table 3. Vector mesons. 

meson ±ρ  0ρ  0ω  φ  

quark ( )ud ud  cos sinuu dd−θ θ  cos sinuu dd+θ θ  ss  

3χκ  3 3 4 7 

2χκ  
5
2

 
5
2

 
7
2

 
13
2

 

n 2 2 3 6 

( )

( )
3

1
2

1 2

H
m m+

χ

 0.794996 0.794996 1.647083 0.03221 

( )

( )
2

1
2

1 2

H
m m+

χ

 0.541695 0.541695 0.017138 2.831617 

cosθ  - 0.5599 0.977 - 

sinθ  - 0.82856 0.213239 - 

Sα  0.0125 0.0125 0.0125 0.0125 

eM  
(MeV) 

775.038 775.309 782.688 1018..426 

mM  
(MeV) [21] 

775.11 ± 0.34 775.26 ± 0.25 782.65 ± 0.12 1019.461 ± 0.019 

Note: Sα  denotes spin parameter. 
 
fit compared to those in Ref. [1] and Ref. [2]. 

5. Conclusion 

We obtain plausible light meson mass spectra by invoking the masses of u, d, 
and s quarks and the contribution of a spin effect. There is a discrepancy be-
tween our values and those of the Particle data group values. However, the Par-
ticle data group uses a Lattice QCD approach that shows a Reggae-like function 
(for examples, see Ref. [7]). As mentioned in the Introduction, the Jefferson Lab 
Hall A collaboration showed that a Gaussian function is better for fitting to ex-
perimental data. Because our estimation is based on a Gaussian-like wave func-
tion, our values are still meaningful despite this discrepancy. We consider non-
zero quark masses and a spin effect as perturbative corrections of the chiral limit 
mass spectra given in Ref. [3]. By invoking the masses of u, d, and s quarks, we 
can obtain the mass difference between charged kaons ( )+ −κ κ  and neutral 
kaons ( )0 0κ κ  as well as the mass difference between charged ρ  mesons ±ρ  
and neutral ρ  mesons 0ρ . The significant point is that the pion mass is 
unchanged even though quarks become massive. The corresponding pion 
wave functions are unchanged for 3 2,χ χ  and 1χ , but 0χ  is no longer zero  

because it is expressed as 
2

21
8

2

1 e
g L

r

r
−

. We then notice the following interesting  

correspondence to the results from lattice QCD approach. Broniowski et al. [22] 
showed in NJL model that the pseudo-scaler wave function of pions corresponding  
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to 0χ  becomes 3
2

1 e kr

r

−  and the axial vector wave functions corresponding to 

3χ  becomes 1
2

1 e kr

r

−  when r is large. Because 
2

21
8

3
1 e

g L
r

r
−

∝χ , the correspon-

dence that 2 3
2

1 1
r

r
⇔  and 1

2

1 1
r

r
⇔  are obvious. Because the characteristic  

part of a pion wave function is Gaussian as shown in Ref. [11] (Gaussian in r 
space is Gaussian in momentum space), Our pion wave function is very plausi-
ble. We next argue for the value of our proposition stated in the Introduction 
that the first priority governing meson evaluation should be the use of a gauge 
invariance system instead of a covariance system. 

6. Discussion 

We estimate the masses of η  and ′η  and those of ρ  and ω  independent-
ly. Usually, the assumption of a mixed state is used to obtain those masses, as in 
Ref. [2]. Instead, we estimate the masses from different chiral limit masses and 
calculate each of them within a closed process. However, from the view point of 
quark contents, η  and ′η  and also 0ρ  and 0ω  are not linearly indepen-
dent. Precisely, as quark contents, η  and ′η  are usually described as  

2
6

uu dd ss+ −
=η  and 

3
uu dd ss+ +′ =η  and also 0

2
uu dd−

=ρ  and  

0

2
uu dd+

=ω . In our description, ( )cos sinuu dd ss= + −η ηη θ θ  and  

( )cos sinuu dd ss′ ′′ = + +η ηη θ θ  whereas 0 cos sinuu dd= −ρ ρρ θ θ  and  
0 cos sinuu dd= +ω ωω θ θ . The θ  values in Table 2 and Table 3 show that η  

and ′η  and also 0ρ  and 0ω  are not linearly independent. At this time, we 
cannot interpret the meaning of these results. Also, as previously mentioned in 
Results, the mass of a pion is unchanged so we cannot obtain the mass difference 
between ±π  and 0π . We consider that the investigation of mass difference 
between ±π  and 0π  might address the question of why a zero mass meson is 
still unobserved. In other words, we consider that this might clarify whether a 
pion is a Goldstone boson or not. We can at least say, from our previous results 
in Ref. [3] and this paper, that a pion is unique among mesons because it has a 
singularity in its wave function and its mass is unchanged even though its con-
stituent quarks become massive. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Braw, F. and Semay, C. (1998) Physical Review D, 58, Article ID: 03015.  

https://doi.org/10.4236/jmp.2021.1211093


T. Kurai 
 

 

DOI: 10.4236/jmp.2021.1211093 1566 Journal of Modern Physics 
 

https://doi.org/10.1103/PhysRevD.58.034015 

[2] Choi, H.-M., Ji, C.-R., Li, Z. and Ryu, H.-Y. (2015) Physical Review C, 92, Article 
ID: 055203. 

[3] Kurai, T. (2018) Results in Physics, 10, 865.  
https://doi.org/10.1016/j.rinp.2018.07.034 

[4] t’Hooft, G. (1974) Nuclear Physics B, 75, 461.  
https://doi.org/10.1016/0550-3213(74)90088-1 

[5] Hornbostul, K., Brodsky, S. and Pauli, C. (1990) Physical Review D, 41, 3814.  
https://doi.org/10.1103/PhysRevD.41.3814 

[6] Kurai, T. (2014) Progress of Theoretical and Experimental Physics, 2014, 053B01. 

[7] Mello, C.S., de Mollo, J.P.B.C. and Frederico, T. (2017) Physics Letters B, 766, 86.  
https://doi.org/10.1016/j.physletb.2016.12.058 

[8] Biernat, E.P., Gross, F., Pena, M.T. and Stadler, A. (2014) Physical Review D, 89, 
Article ID: 016006. https://doi.org/10.1103/PhysRevD.89.016005 

[9] Chang, L., Cloet, I.C., Roberts, C.D., Schmidt, S.M. and Tandy, P.C. (2013) Physical 
Review Letters, 111, Article ID: 141802.  
https://doi.org/10.1103/PhysRevLett.111.141802 

[10] Arrington, J., et al. (2021) Revealing the Structure of Light Pseudoscalar Mesons at 
the Electron-Ion Collider. 

[11] Li, Y., Maris, P. and Vary, J.P. (2018) Physical Review D, 97, Article ID: 054034.  
https://doi.org/10.1103/PhysRevD.97.054034 

[12] Dlamini, et al. (2020) Deep Exclusive Electroproduction of π^0 at High Q^2 in the 
Quark Valence Regime. 

[13] Aoki, K., Bando, M., Kugo, T. and Nakanishi, H. (1990) Progress of Theoretical 
Physics, 84, 683. https://doi.org/10.1143/ptp/84.4.683 

[14] Weinberg, S. (2000) The Quantum Theory of Fields III. Press Syndicate University, 
Cambridge. https://doi.org/10.1017/CBO9781139644198 

[15] Suura, H. (1978) Physical Review D, 17, 469.  
https://doi.org/10.1103/PhysRevD.17.469 

[16] Suura, H. (1979) Physical Review D, 20, 1412.  
https://doi.org/10.1103/PhysRevD.20.1412 

[17] Kurai, T. (2017) Results in Physics, 7, 2066.  
https://doi.org/10.1016/j.rinp.2017.05.028 

[18] Moriguchi, S., Udagawa, K. and Hitotsumatsu, S. (1975) Formula of Mathematics 3 
Special Functions, Iwanami. 

[19] Gradshteyn, I.S. and Ryzhik, M. (1980) Table of Integrals, Series and Products. 
Academic Press, Cambridge. 

[20] Zyla, P.A., et al. (2020) Progress of Theoretical and Experimental Physics, 2020, 
083C01. 

[21] Olive, K.A., et al. (2014) Chinese Physics C, 38, Article ID: 090001.  
https://doi.org/10.1088/1674-1137/38/9/090001 

[22] Broniowski, W., Prelovsec, S., Santeij, I. and Arriora, E.R. (2010) Physics Letters B, 
686, 313.  

https://doi.org/10.4236/jmp.2021.1211093
https://doi.org/10.1103/PhysRevD.58.034015
https://doi.org/10.1016/j.rinp.2018.07.034
https://doi.org/10.1016/0550-3213(74)90088-1
https://doi.org/10.1103/PhysRevD.41.3814
https://doi.org/10.1016/j.physletb.2016.12.058
https://doi.org/10.1103/PhysRevD.89.016005
https://doi.org/10.1103/PhysRevLett.111.141802
https://doi.org/10.1103/PhysRevD.97.054034
https://doi.org/10.1143/ptp/84.4.683
https://doi.org/10.1017/CBO9781139644198
https://doi.org/10.1103/PhysRevD.17.469
https://doi.org/10.1103/PhysRevD.20.1412
https://doi.org/10.1016/j.rinp.2017.05.028
https://doi.org/10.1088/1674-1137/38/9/090001


T. Kurai 
 

 

DOI: 10.4236/jmp.2021.1211093 1567 Journal of Modern Physics 
 

Appendix A. Derivation of Kinetic Terms 

In Equation (9) we obtain the following. 

( ) ( )Kinetic term ,i r q r = − ⋅∇ 


α                 (A1) 

Here, we deal only with space coordinates so that the t variable is omitted. 
In order to evaluate Equation (A1), we use the fact that 

 ( ) 1 2 3

1 2 3

r
x x x
∂ ∂ ∂

⋅∇ = + +
∂ ∂ ∂



α α α α                (A2) 

and the decomposition of ( )q r  given Equation (12). For the β  and ( )ˆi r⋅β α  
components, the derivation is given in Appendix D of Ref. [17]. Thus, we can 
derive the ( )ˆi r− ⋅

α  component and Unit matrix component. 
For ( )ˆi r− ⋅

α  component, we obtain the following 

( ) ˆr r
r
∂

⋅∇ = ⋅
∂



 α α  

The considered commutation equation becomes as follows. 

( ) ( ) ( )0 0ˆ ˆ,1 , 0i r q r i r q r
r r
∂ ∂   − ⋅ = − ⋅ =   ∂ ∂   

 α α             (A3) 

For Unit matrix component, we use Equation (A2). The commutation equa-
tion becomes the following 

( ) ( ) ( )

( )

( )

1
1 2 3

1 2 3 1 2 3
1

1 2 3
1 2 3

1 2 31 2 3
1

1 2 3

ˆ,i r i r q r

x x x
q r

x x x r
x x x

q r
r x x x

α α

α α α
α α α

α α α
α α α

 − ⋅∇ − ⋅ 
  + +∂ ∂ ∂

= − + + × ∂ ∂ ∂ 
 + + ∂ ∂ ∂

+ × + + ∂ ∂ ∂ 



 

       (A4) 

The first term of Equation (A4) is written as below. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 3
1

1 2 3

1 2 3
1 1 1

1 2 3

ˆ ˆ ˆFirst term

ˆ ˆ ˆ

r r r q r
x x x

r q r r q r r q r
x x x

α α α α α α

α α α α α α

 ∂ ∂ ∂
= − ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

∂ ∂ ∂
− ⋅ − ⋅ − ⋅

∂ ∂ ∂

  

  

  (A5) 

In order to evaluate the upper part of Equation (A5) further, we use the fol-
lowing result. 

For l m≠  case 

3 3

3

3

3

1
2

1
2

1 ,
2
1 ,
2

0

m m l
l l mm m l

l l m

l m m lm l l m

l m l m

l m l m

lm l m

x x x
x r x r x r

x x x x
r r

x x
r

x x
r

x x
r

+

+

 ∂ ∂ ∂
= + 

∂ ∂ ∂ 
− − = + 

 

 = −  

 = −  

= − =

α α α
α α α

α α α α

α α

γ γ

η
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Here we use the fact that 2l m m l lm+ =γ γ γ γ η , ( )1lm l m= =η  and  
( )0lm l m= ≠η . 

For l m=  case, we obtain the following. 
3 2 2 21 2

1 2 3 3 1 2 31 2
3

1 2 3

3 2x x x xx x
x r x r x r r rr

   + +∂ ∂ ∂
− + + = − − = −   

∂ ∂ ∂   

αα α
α α α  

Together with the second term of Equation (A4), the lower term of Equation 
(A5) becomes as below. 

( ) ( )

( ) ( )

( )

1 1

1 1

1
1

m m
l lm m

l l
m l

l mm l

l m

l m
m l

l m

x x
q r q r

r x r x
x x

q r q r
r x l x

x x q r
r x x

α α
α α

α α
α α

α α

∂ ∂
− +

∂ ∂
∂ ∂

= − +
∂ ∂

 ∂ ∂
= − − ∂ ∂ 

 

For the second term in the first line, we exchange l and m because  

( )l m
l mx xα α  denotes a summation convention. We use the following polar 

coordinate description. 

1 2 3sin cos , sin sin , cosx r x r x r= = =θ φ θ φ θ  

1

cos cos sinsin cos
sinx r r r

∂ ∂ ∂ ∂
= + −

∂ ∂ ∂ ∂
θ φ φθ φ

θ θ φ
 

2

cos sin cossin sin
sinx r r r

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
θ φ φθ φ

θ θ φ
 

3

sincos
x r r
∂ ∂ ∂

= −
∂ ∂ ∂

θθ
θ

 

Because 1q  is only the function of r, 1 0
q∂

=
∂θ

 and 1 0
q∂

=
∂φ

. 

Then,  

( )1 0m l
l m

x x q r
x x

 ∂ ∂
− = ∂ ∂ 

 

Thus, reviving the time variable and sandwiching ( )1 ;q t r  with the vacuum 
state and the physical state, Unit matrix component of kinetic term becomes the 
following. 

Unit matrix component: ( )1
2 r
r

− χ  

Appendix B. Evaluation of 
( ) 

 
 

∫
zzz

z

2

0

sinh
d exp

2
γ∞ −  

To evaluate the integral, we use the following formula [19]. 

( )

( )( )

22 1
0

2

2 2

d e sinh

1 2 2 exp
2 8 2 2

xx x x

D D

− −

−
−

∞

−

     
= Γ − −                

∫ µ β

µ
µ µ

γ

γ γ γµ β
β β β

      (A6) 
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( )D zλ  is the following Weber function, as defined in Ref. [18]. 

( )
2 2 2

2 4 1 1 2 1 32 e , ; , ;
1 2 2 2 2 2 2

2 2

z z z zD z F F
−

 
    − = π − −   −       Γ Γ −        

λ

λ
λ λ

λ λ
  (A7) 

where ( ), ;F zα γ  is confluent hyper geometric series, as shown in Equation 
(40). 

Because, β  is 1 2  for our case, the Weber function term simplifies to  
( ) ( )D D− −λ λγ γ . 

Here we replace 2− µ  with λ . To calculate this term, we use the following 
recursion formula from Ref. [18]. 

( ) ( ) ( ) ( ) ( )1 1

1
2

D z i D iz i D iz− − − −

Γ +  = + − − π
λλ

λ λ λ

λ
          (A8) 

The difference of the Weber function term becomes as follows. 

( ) ( )
( ) ( )( ) ( ) ( )( ) ( )1 1

1
2

D z D z

i i i D iz i i D iz

− −

− −− −
− −

− −

Γ − +  = − − − + − −  π

λ λ

λ λλ λ
λ λ

λ     (A9) 

Because 
( )

2 2e e
i i

i
π π
− −− = =
λ λλ , Equation (A9) is expressed as below. 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
1 1

1 1

1
e e e e

2

1
2 sin

22

i i i i

D z D z

D iz D iz

i D iz D iz

− −

π π π π
− −

− −

− −

− −

    Γ − +
= − − + −       π      
Γ − + π = − − +    π  

λ λ

λ λ λ λ

λ λ

λ λ

λ

λ
λ

    (A10) 

Here, using the definition of a Weber function as shown in Equation (A6), we 
obtain the following. 

( ) ( ) ( )
21 2

2 4
1 1

2 2 2 32 e 1 , ;
1 2 2 2

2

z iz zD iz D iz F
−

− −

 −
− − + = π − − −   Γ 

 

λ

λ λ
λ

λ
  (A11) 

Thus, 

( ) ( )
( ) ( ) ( )

( )

2

2

1 2
2 4

1 2
2 4

1 2 2 2 32 sin 2 e , ;
12 2 2 22

2

2 31 4sin 2 e , ;
12 2 2 2

2

z

z

D z D z

iz zi F

z zF

λ λ

λ

λ

λ λλ
λ

λλ λ
λ

− −

−

−

− −

Γ − + −  π − = π −   − π    Γ 
 

 π − = Γ − + −   −    Γ 
 

 

Taking 2λ ε=  and allowing ε  to approach 0, Equation (A6) becomes the 
following. 
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( ) ( )( ) ( ) ( )

( ) ( )

2 2 2

2

2

2 1
2 4 2 4

0 0

2

2
2

0

2
2

sinh 1d e lim 2 1 e 2 1 4sin 2 e
2

31 , ;
1 2 2 2

2

1 1 1 3lim e 1 4 1, ;
12 2 2 22
2

3e 1, ;
2 2 2

x x
x

x

F

zF

F

γ ε γ
ε

ε

γ

ε

γ

γ
ε ε ε

γ γε
ε

γε
ε

γγ

−
− −

→

→

∞
= Γ − Γ − + π

 
− − −   Γ 

 

 
= Γ π − 

   Γ

×


 

 π
= − 

 

∫

 (A12) 

where 0

2
1

2

P'

g L
γ = . 

For the last line, we use the fact that ( ) 11 1,
2

 Γ = Γ = π 
 

. 

Note that Equation (67) is obtained by multiplying this form by a factor 2. 
To obtain an approximation form of Equation (67), we use the following 

integral representation form of a confluent hypergeometric series [19]. 

( ) ( ) ( ) 11
0

11, ; d e
,

tz
F z z t t z t

B
ζ αζ αα ζ

α ζ α
− −− −= −

− ∫         (A13) 

where ( ),B α ζ α−  is the Beta function below, as defined in Ref. [18]. 

( ) ( ) 11
0

1
, d 1 qpB p q t t t −−= −∫                  (A14) 

Because 
231, ,

2 2
z γα ζ= = = −  in our case, Equation (A13) becomes as be-

low. 

2

2

1 1
2 2 22 2

2

1
2 20

1
22 2

0

3 11, ; d e
12 2 2 21,
2

1 1 d e
1 21,
2

2

t

t

F t t
B

t t
B

γ

γ

γ γ γ

γ

γ

− −
−

−

−

     
− = − − −     

       
 

 
= + 

     
   

 

∫

∫
      (A15) 

With the variable substitution t u= − , the integral part of Equation (A15) be-
comes the following. 

22

22
0 2

ed e

2

u

I u
u

γγ

γ

− −
= ≈

−
∫                  (A16) 

The last result is obtained by the consideration that the maximum contribution  

to this integral comes from 
2

2
u γ
= . 
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Because, using Equation (A13) and Equation (A14), 
11,
2

B  
 
 

 is easily calcu-

lated as 
11, 2
2

B   = 
 

. 

Equation (A15) becomes as follows. 
22

23 11, ; e
2 2 2

F
γγ

γ

− 
− = 

 
 

Then, final result is obtained as Equation (A12) ≈ 
2
π . 

Thus, after multiplying by a factor 2, the approximated form of Equation (68) 
becomes the following. 

( )
2

0
2

1

Eq. 68 exp
P'
g L

 
≈ π −  

 
 

This is the form of Equation (69). 

Appendix C. Evaluation of Mass of κ ±  and 0κ  

The nonperturbative wave function of a kaon is expressed as follows: 

( ) ( )
2

21
3 exp

8
g Lr r rκχ

 
= − 

 
 ( 3 1χκ =  for Equation (39)) 

( )
2

21
2 exp

8
g L rκχ

 
= − 

 
 ( 2

1
2

χκ =  for Equation (43)) 

We show here, as an example, how to evaluate numerator of ( )3
1H χ , the 

integral part of Equation (61) becomes as below. 

( ) ( ) ( )3

4
2

1
1d exp
2

z
I z z

z
χ γ

γ
−

∞

∞

− = − − 
 ∫  

where 
2

1
0 2

g LP'γ = , The factor 4π is omitted because is cancelled out by  

denominator calculation. 

( ) ( ) ( ) ( ) ( )3
0

4 2
2 4

1 0

1 1d exp d exp
2 2

z z
I z z z z

z z
χ γ γ

γ γ
∞

∞−

− −   = − − + − −   
   ∫ ∫  (A17) 

For the first term, use of a variable substitution z z′= −  converts Equation 
(A16) to the following. 

( ) ( )

( ) ( )

( ) ( )

2 2

3

2 2

2 2

4
3 2 2 32 2

1 0

4
3 2 2 32 2

0

3 22 2
0

2 3 4

e 1 d e e 4 6 4

e d e e 4 6 4

e d e e e 4 e e

e e6 e e 4 e e

z
z

z
z

z
z z z z

z z
z z z z

I z z z z
z

z z z z
z

z z z

z
z

γ
χ γ

γ
γ

γ
γ γ γ γ

γ γ
γ γ γ γ

γγ γ γ

γγ γ γ

γ

γ γ γ

∞

∞

∞

− − −

− −

− − − −

−
− −

 
= − + + + + 

 
 

+ − + − + 
 

= − − +
−

+ − − + + 


∫

∫

∫
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( ) ( )

( ) ( )
( )

2 2 2

2 2

2

3 22 2 2
0 0

2 32 2
0 0

42
0

e 2 d e sinh 4 d e cosh

6 d e sinh 4 d e cosh

sinh
d e

z z

z z

z

z z z z z z

z z z z z

z
z

z

γ

γ γ γ

γ γ γ γ

γ
γ

∞ ∞

∞ ∞

− − −

− −

∞ −


= −



+ −




+ 



∫ ∫

∫ ∫

∫

 

For the last integral, we use the description of Equation (A11) multiplied by 
factor 2. For the other integrals, we use the following formula from Ref [19]. 

( )2
2

0

1d e cosh exp
2 4

zz zβ γγ
β β

−∞  π
=  

 
∫            (A18) 

( )2
2

0
d e sinh exp

4 4
zz z zβ γ γγ

β β β
∞ −  π

=  
 

∫           (A19) 

( )
( )2

2 2
2

20

2
d e cosh exp

48
zz z zβ

β γ γγ
ββ β

∞ −
π +  

=  
 

∫        (A20) 

To obtain 3z  integral, we use integration by parts as below. 

( )

( ) ( ) ( ) ( )

2

2 2 2

2
0

2 2 2
2 2 2

0 0
0

d e sinh

e sinh d e sinh d e cosh
2 2 2

z

z z z

z z z

z z zz z z z z z

γ

γ γ γ γ

−

∞
−

∞

−∞ ∞− 
 = − − −
  

∫

∫ ∫
 

Thus, 

( ) ( ) ( )
2 2 2

3 22 2 2
0 0 0

d e sinh 2 d e sinh d e cosh
z z z

z z z z z z z z zγ γ γ γ
− ∞ − −∞ ∞

= +∫ ∫ ∫  (A21) 

For Equations (A18)-(A20), taking 1
2

β = , the first four terms yields 

( )
2

3 2 22 2 2 eJ
γ

γ γ γ= − + − π  
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