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Abstract 
An intriguing quasi-relativistic wave equation, which is useful between the 
range of applications of the Schrödinger and the Klein-Gordon equations, is 
discussed. This equation allows for a quantum description of a constant 
number of spin-0 particles moving at quasi-relativistic energies. It is shown 
how to obtain a Pauli-like version of this equation from the Dirac equation. 
This Pauli-like quasi-relativistic wave equation allows for a quantum descrip-
tion of a constant number of spin-1/2 particles moving at quasi-relativistic 
energies and interacting with an external electromagnetic field. In addition, it 
was found an excellent agreement between the energies of the electron in 
heavy Hydrogen-like atoms obtained using the Dirac equation, and the ener-
gies calculated using a perturbation approach based on the quasi-relativistic 
wave equation. Finally, it is argued that the notable quasi-relativistic wave 
equation discussed in this work provides interesting pedagogical opportuni-
ties for a fresh approach to the introduction to relativistic effects in introduc-
tory quantum mechanics courses. 
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1. Introduction 

Most physicists are familiar with the Schrödinger equation, which describes the 
movement of a spin-0 particle with mass (m) moving at speeds much smaller 
than the speed of light (c) [1] [2] [3] [4] [5]. The one-dimensional Schrödinger 
equation corresponding to a free particle is given by the following expression [1] 
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[2] [3] [4] [5]: 

( ) ( )
2 2

2, , .
2Sch Schi x t x t

t m x
ψ ψ∂ ∂

= −
∂ ∂



                  (1) 

In Equation (1),   is the Plank constant (h) divided by 2π  and Schψ  is 
the (scalar) wavefunction. Most Physics Ph.D. graduates know about the Klein- 
Gordon equation, which describes the movement of a spin-0 particle with mass 
moving at relativistic speeds [6] [7]. The one-dimensional Klein-Gordon eq-
uation corresponding to a free particle is given by the following expression [6] 
[7]: 

( ) ( ) ( )
2 2 2 2

2 2 2 2
1 , , , .KG KG KG

m cx t x t x t
c t x

ψ ψ ψ∂ ∂
= −

∂ ∂ 

           (2) 

In Equation (2), KGψ  is also a scalar wavefunction. Equation (2) is not a 
Schrödinger-like equation because in contrast to the Schrödinger equation, Equ-
ation (2) includes a second order temporal derivative. Introductory Quantum 
Mechanics courses often cover the Schrödinger equation [1] [2] [3] [4] [5]. More 
advance Quantum Mechanics courses often cover the Klein Gordon equation [6] 
[7]. This is done for introducing the readers to the consequences for quantum 
mechanics of taking seriously the concepts and ideas of Einstein’s Special Theory 
of Relativity [8] [9].  

Historically, while looking in 1926 for the right quantum equation, Erwin 
Schrödinger first explored, but did not publish, the equation that we today call 
the Klein-Gordon equation, which was also published in 1926 by Oskar Klein 
and Walter Gordon. Schrödinger was well-aware of the special theory of relativ-
ity; thus, he was looking for a Lorentz invariant wave equation [6] [7] [8] [9] 
[10]. The Schrödinger equation is not Lorentz invariant but Galilean invariant 
[10] [11]; therefore, a relativistic quantum mechanics cannot be based on the 
Schrödinger equation.  

A fully relativistic quantum theory requires to be founded on equations like 
the Klein-Gordon equation, which is valid for any two observers moving respect 
to each other at constant velocity [6] [7]. However, judging by its popularity 
among present physicists, Schrödinger took the correct decision. The solutions 
of the Klein-Gordon equation are plagued with several unwanted properties that 
made Equation (2) less easy to work with than using Equation (1) [6] [7]. Equa-
tion (1) describes a particle of mass (m), linear momentum (p), and kinetic 
energy (K) related by the classical relation 2 2K p m= , which is not valid at re-
lativistic speeds [6] [7] [11].  

Fortunately for Schrödinger, he was able to reproduce the results previously 
obtained by Bohr for the energies of the bounded states of the electron in the 
Hydrogen atom [1] [2] [3] [4] [5]. This was possible because the electron in the 
Hydrogen atom has non-relativistic energies [1] [2] [3] [4] [5]. However, elec-
trons are not spin-0 particles but spin-1/2 particles.  

Electrons moving at low velocities respect to c, can be approximately de-
scribed by a two-component vector wavefunction (spinor) [2] [6] [7]. The spinor 
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nature of the electron wavefunction produces experimentally detectable results 
when the electron interacts with an external electromagnetic field [4] [6] [7]. 
The Pauli equation, which was discovered by Wolfgang Ernst Pauli in 1927, is a 
Schrödinger-like equation; therefore, it is not a Lorentz-invariant. The Pauli eq-
uation describing the interaction of a free electron with a constant magnetic field, 
with magnitude extB  pointing in the z direction, can be written in the following 
way [4]: 

( ) ( ) ( )
2

2, , , .
2P P B ext z Pi t t B t

t m
ψ ψ µ σ ψ∂

= − ∇ −
∂



 r r r           (3) 

In Equation (3), 2∇  is the Laplace operator [1] [2] [3] [4] [5],  
( )2B e mcµ =   is the Bohr magneton [4], e  is the electron charge, and zσ  is 

the 2 × 2 Pauli matrix [2]: 

1 0
.

0 1zσ
 

=  − 
                         (4) 

Pψ  is not a scalar wavefunction but the two-component spinor wavefunc-
tion: 

( ) ( )
( )

,
, .

,
P

P
P

t
t

t
ψ

ψ
ψ

+

−

 
=  
 

r
r

r
                      (5) 

Consequently, Equation (3) is equivalent to a system of two independent 
Schrödinger equations for Pψ +  and Pψ −  that are only different in the sign of 
the last term in the right side of the equations. When 0extB = , both equations 
are equal to the three-dimensional version of Equation (1) [1] [2] [3] [4] [5]. The 
exact description of electrons moving at relativistic velocities requires a four- 
component (biespinor) wavefunction, and the solution of the Lorentz invariant 
Dirac equation [6] [7]. The Dirac equation of a free electron is given by the fol-
lowing equation [2] [6] [7] [12]: 

( ) [ ] ( ) ( )2 ˆˆ ˆ, , , .D D Di t C t mc t
t
ψ ψ βψ∂

= ⋅ +
∂
 r p r rα           (6) 

In Equation (6), each of the three components of the vector operator α  and 
the operator β  are 4 × 4 Dirac’s matrices [2] [6] [7] [14]. Each of the tree 
components of the linear momentum operator p is the differential operator [2] 
[6] [7] [12]. 

ˆ ,  , , .jp i j x y z
j
∂

= − =
∂
                       (7) 

Consequently, the Dirac equation is not a Schrödinger-like equation because 
only includes spatial derivatives of first order, while Equations (1) and (3) in-
clude spatial derivatives of second order. The bispinor Dψ  has four compo-
nents; therefore, it can be represented using two spinors in the following way [2] 
[12]: 

( ) ( )
( )

,
,

.,D

t
t

t
ϕ

ψ
χ

 
= 
 

r
r

r
                      (8) 
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Clearly, a price in mathematical complexity is paid for improving the relati-
vistic description of quantum particles. Consequently, from a purely pedagogical 
point of view, it would be convenient to be able to have a Schrödinger-like equa-
tion capable to describe quantum-particles at relativistic energies. Unfortunately, 
this is not in general possible [6] [7]. Nevertheless, it was recently found a 
Schrödinger-like equation capable to describe quantum-particles at quasi-relativistic 
energies [11] [13] [14] [15] [16].  

Rigorously, the number of particles may not be constant in a fully relativistic 
quantum theory [6] [7]. This is because when the sum of the kinetic and the po-
tential (U) energy of a particle with mass m doubles the energy associate to the 
mass of the particle, i.e., 22E K U mc′ = + = , then a pair particle-antiparticle 
could be created from E′  [2] [6] [7]. Consequently, the number of particles is 
constant at quasi-relativistic energies, i.e., when 2 2E K U mc′ = + < . At qua-
si-relativistic energies close to 2mc , the Schrödinger equation does not provide 
a good description of the states of the quantum particle because it assumes that 

2 2K p m= , while at relativistic speeds the correct relation between K, p, and 
the square of the velocity of the particle ( 2v ) is given by the following equation 
[8] [9] [11] [13] [14] [15] [16]: 

( )
2

2

2

1,  .
1

1
v

v

pK
m v

c

γ
γ

= =
+

−

                   (9) 

A free spin-0 particle can be (approximately) described by the following qua-
si-relativistic wave equation, which was first proposed by one of the authors of 
this work [11] [13] [14] [15] [16]:  

( ) ( ) ( )
2 2

2, , .
1v

i x t x t
t m x
ψ ψ

γ
∂ ∂

= −
∂ + ∂



               (10) 

Clearly, Equation (10) is a Schrödinger-like equation. Like in Equation (1), 
ψ  is a scalar wavefunction. Moreover, Equation (10) coincides with Equation 
(1) at low velocities when ~ 1vγ . However, Equation (10) describes a particle at 
quasi-relativistic energies because it implies the relation between K, p, and 2v  
given by Equation (9) [11] [13] [14] [15] [16]. Consequently, from a purely pe-
dagogical point of view, the quasi-relativistic wave equation (Equation (10)) is 
very interesting.  

Moreover, the quasi-relativistic wave equation can be solved following the 
same mathematical steps required for solving the Schrödinger equation in most 
of the problems often included in Introductory Quantum Mechanics courses. 
This includes a free particle [11], confinement of a quantum particle in box [11] 
[14] [15], reflection by a sharp quantum potential [15], tunnel effect [15], and 
the quasi-relativistic description of Hydrogen-like atoms [14] [15] [16]. There-
fore Equation (10) allows for a smooth introduction of special relativity concepts 
and ideas in Introductory Quantum Mechanics courses.  

The quasi-relativistic wave equation also enriches the accumulated physics 
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knowledge, and open new ways to tackle quantum problems involving particles 
at quasi-relativistic energies. Because Equation (10) is a Schrödinger-like equa-
tion, it permits to calculate probabilities like it is done for Equation (1) [11]. 
Moreover, Equation (10) allows for a quasi-relativistic description of mul-
ti-particle systems where the number of particles is constant [17]. This includes 
all problems in Chemistry where the number of electrons is constant and 

22E mc′ < . The energy of the most energetic electrons in heavy elements is qua-
si-relativistic. Therefore, often their description either involves a perturbative 
theory based on the Schrödinger equation [2] [4] [5], or a more precise but 
much more complicate quantum electrodynamic description [18].  

The quasi-relativistic wave equation potentially represents a novel non-per- 
turbative approach for tackling such problems without having to pay a heavy 
price in mathematical complexity, thus helping to grasp the essence of the con-
sequences of introducing the ideas and concepts of spatial theory of relativity in 
quantum mechanics.  

In this work, first, for completeness, the connection between Equation (10) 
and the Klein-Gordon equation will be summarized. Then, for the first time, a 
quasi-relativistic version of Equation (3) will be directly obtained from the Dirac 
equation. Finally, also for the first time, an equation giving the quasi-relativistic 
energies of the bound states of the electron in Hydrogen-like atoms will be ob-
tained using a perturbative approach based on the quasi-relativistic wave equa-
tion. The quasi-relativistic energies calculated in this way have a much better 
correspondence, with the energies calculated using the Dirac equation, than the 
energies calculated using a perturbative theory based on the Schrödinger equa-
tion.  

2. Relationship between the Klein-Gordon and the  
Quasi-Relativistic Wave Equations 

From the following well-known relativistic equations [8] [9] [15]: 

( )( )2 2 4 2 2 2 2 2 2.E m c p c E mc E mc p c− = ⇔ + − =            (11) 

And: 
2 2,  ,  .v vE mc p mV E K mcγ γ= = = +                 (12) 

One can formally obtain Equation (2) by substituting E  and p  in Equa-
tion (11) by the following energy and momentum quantum operators [1] [2] [3] 
[4] [6] [7]: 

ˆ ˆ,  .E i p i
t x
∂ ∂

= = −
∂ ∂
                        (13) 

The factor ( )2E mc+  in Equation (11) is always different than zero for 
0E > ; consequently, Equation (11) and the following algebraic equation are 

equivalents for 0E > : 

( ) ( )
2

2 .
1v

pK E mc
mγ

= − =
+

                   (14) 

https://doi.org/10.4236/jmp.2021.128068


L. G. de Peralta, H. Farooq 
 

 

DOI: 10.4236/jmp.2021.128068 1150 Journal of Modern Physics 
 

Then from Equations (13) and (14) follow the following differential equation 
[13] [14] [15]: 

( ) ( ) ( ) ( )
2 2

2
2, , , .

1KG KG KG
v

x t x t mc x t
t m x
ψ ψ ψ

γ+ + +
∂ ∂

= − +
∂ + ∂



       (15) 

A simple substitution in Equations (2) and (15) shows that the following plane 
wave is a solution of both equations for 0E > : 

( ) ( )
, e .

i px Et

KG x tψ
−

+ =                      (16) 

Moreover, the following wavefunction is a solution of Equation (10): 

( )
2

, e .,  miw t
KG m

mcx t wψ ψ += =


                (17) 

Therefore, Equation (17) allows finding a solution of Equation (2) with 
0E >  from a solution of Equation (10). This is the relationship between the free- 

particle Klein-Gordon and quasi-relativistic wave equations. This relationship is 
also valid when the particle is moving through a potential U [11] [13] [14] [15] 
[19]. For instance, the quasi-relativistic wave equation for a particle moving at 
quasi-relativistic energies through piecewise constant potentials is given by the 
following equation [15]: 

( ) ( ) ( ) ( ) ( )
2 2

2, , , .
1v

i x t x t U x x t
t m x
ψ ψ ψ

γ
∂ ∂

= − +
∂ + ∂



         (18) 

Looking for a solution of Equation (18) of the form: 

( ) ( ), e .,  
i Kt

x t X x K E Uψ
−

′= = −                 (19) 

It is obtained the time-independent quasi-relativistic wave equation [15]: 

( ) ( )

( ) ( ) ( )

2
2

2
d 0,
d

1 1 .11
v v

X x X x
x

p mK m E U

κ

κ γ γ+

+

= −+

=

′= =
  

         (20) 

At low velocities, when ~ 1vγ , Equation (1) coincides with the time-inde- 
pendent Schrödinger equation for the same problem [1] [2] [3] [4]. The allowed 
values of κ  are determined by the boundary conditions of the problem. From 
Equations (12) and (14) follows that [15] [17]: 

2 2 2
2 1 .

1 1
v

k K
mc

k m
mc

κγ  = + ⇒ =    
+ + 

 

 



            (21) 

At low velocities, when 1vγ   and mcκ  , Equation (21) gives  
2 2 2K mκ=  , which is the non-relativistic relation between K  and κ  [1] [2] 

[3] [4]. It is worth noting that Equations (10) and (18) are not linear equations 
[11] [13] [14] [15]. This may rise some objections due to the importance of the 
superposition principle in quantum mechanics [1]-[7] [11] [13] [14] [15]. How-
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ever, it should be noted that, if X1 and X2 are two solutions of the time-independent 
quasi-relativistic wave equation (Equation (20)), respectively corresponding to 
different kinetic energies K1 and K2, then the following wavefunction is a solu-
tion of the Klein-Gordon equation: 

( ) ( ) ( ) ( ) ( )2 2
1 2

1 2 e ., e
i iK mc t K mc t

KG x t X x X xψ
− + − +

+ = +            (22) 

From this point of view, the time-independent relativistic wave equation 
should not be considered a fundamental equation, but a useful auxiliar equation 
for finding solutions of a fundamental Lorentz invariant wave equation satisfy-
ing the superposition principle [14]. 

3. The Quasi-Relativistic Wave Equation of a Free Electron  

The wavefunction in Equations (1), (2), (10), and (18) are scalars, thus describe 
the state of a spin-0 particle with mass. However, electrons are not spin-0 par-
ticles but spin-1/2 particles. Equation (6) gives the correct relativistic equation of 
a free electron. However, as it is shown below, a spinor quasi-relativistic wave 
equation can be obtained when E > 0. Proposing a solution of Equation (6) of 
the following form [2]: 

( ) ( )
( )

, e .
i Et

D t
ϕ

ψ
χ

− 
=  
 



r
r

r
                   (23) 

Substituting Equation (23) in Equation (6), and considering that for a free 
electron 2E K mc= + , allows for rewriting Equation (6) as the following system 
of two time-independent spinor equations [2]: 

[ ] ( ) [ ] ( )2 2ˆ ˆˆ ˆ,  .c E mc K c E mcχ ϕ ϕ ϕ χ⋅ = − = ⋅ = +p pσ σ        (24) 

In Equation (24), each of the three components of the vector operator σ  is a 
2 × 2 Pauli’s matrix [2] [6] [7] [14]. 2 0E mc+ >  when 0E > , thus when 

0E > , the second equation of Equation (24) can be rewritten in the following 
way: 

[ ]
( )

[ ]
( )2

ˆ ˆˆ ˆ
1v

c
mcE mc

χ ϕ ϕ
γ

⋅ ⋅
= =

++

p pσ σ
                (25) 

Substituting Equation (25) in the first equation of Equation (24) results in the 
following equation: 

[ ]
( ) ( )

2 2
2ˆˆ

.
1 1v v

K
m m
ϕ ϕ ϕ

γ γ
⋅

= − ∇ =
+ +



pσ
              (26) 

Therefore, when 0E > , each one of the two components of ϕ  exactly satis-
fies the same time-independent quasi-relativistic wave equation, which corres-
ponds to a free spin-0 particle with kinetic energy K . Consequently, when 

0E > , the three-dimensional version of Equation (10) is the time-dependent 
quasi-relativist wave equation corresponding to each component of ϕ  in Equa-
tion (26). 
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4. The Pauli-Like Quasi-Relativistic Wave Equation 

The Schrödinger-like Pauli equation given by Equation (3) can be obtained from 
the Dirac equation for an electron interacting with an external electromagnetic 
field [2]. Following the same procedure, a quasi-relativistic version of Equation 
(3) can be obtained. When an external electromagnetic field interact with the 
electron, Equation (24) should be modified in the following way [2]: 

( ) ( )2 2ˆ ˆˆ ˆ,  .o o
e ec E mc eA c E mc eA
c c

χ ϕ ϕ χ   ⋅ − = − − ⋅ − = + −      
p A p Aσ σ (27) 

In Equation (27), oeA−  is the electron electrostatic energy and the vector po-
tential A is associated to an external magnetic field [2] [8]. When  

( )2 0oE mc eA+ − > , the second equation of Equation (27) can be rewritten in 
the following way: 

( )2

ˆˆ
.

o

ec
c

E mc eA
χ ϕ

 ⋅ −  =
+ −

p Aσ
                     (28) 

The Schrödinger-like Pauli equation can be obtained doing 2E E mc′= +  
and assuming 2

oE eA mc′ −  . Therefore, the fraction ( )2 2oc E eA mc′ − +  in 
Equation (28) can be developed in powers of ( )oE eA′ −  and Equation (28) can 
be approximated by the following expression [2]: 

1 ˆˆ .
2

e
m c

χ ϕ ≈ ⋅ −  
p Aσ                     (29) 

Substituting Equation (29) in the first equation of Equation (27) allows ob-
taining the Schrödinger-like time-independent Pauli equation [2]: 

( )

2

ˆ
ˆ .

2 o B

e
c eA B E
m

µ ϕ ϕ

  −     ′+ − ⋅ = 
 
  



p A
σ             (30) 

For a free electron moving through a constant magnetic field, with magnitude 
Bext pointing in the z  direction, Equation (30) can be approximated as:  

( ) ( )
2

2 .
2 B ext zB

m
Eϕ µ σ ϕ ϕ− ∇ − = ′ r r                (31) 

Which is the time-independent Pauli-equation corresponding to Equation (3). 
However, if one assumed that 2

oeA E mc− + , then the fraction  

( )22oc eA E mc′− + +  in Equation (28) can be developed in powers of oeA−  
and Equation (28) can be approximated by the following expression: 

( )
1 ˆˆ .
1v

e
mc c

χ ϕ
γ

 ≈ ⋅ − +  
p Aσ                  (32) 

Substituting Equation (32) in the first equation of Equation (27) allows ob-
taining the following time-independent Pauli-like quasi-relativistic wave equa-
tion: 
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( ) ( ) ( )

2

ˆ
2 ˆ .

1 1
B

o
v V

e
c

m
EeA µ ϕ ϕ

γ γ

  −     + − ⋅ = + + 
 

′



p A
Bσ              (33) 

For a free electron moving through a constant magnetic field, with magnitude 

extB  pointing in the z  direction, Equation (33) can be approximated as: 

( ) ( ) ( ) ( )
2

2 2 .
1 1

B
ext z

v v

B E
m

µϕ σ ϕ ϕ
γ γ

∇ − =
+

−
+

′ r r             (34) 

Equation (34) is the quasi-relativistic version of Equation (31). When the 
electron moves slowly, 1vγ  , thus Equation (34) coincides with Equation (31). 
Equation (34) includes two corrections to Equation (3). First, includes the cor-
rect relativistic relation between K and p. Second, as shown in Figure 1, the 
energy difference corresponding to the two components of ϕ  is not indepen-
dent of K, as suggested by Equation (31), but decreases by a factor of twice 
( )2 1vγ +  at quasi-relativistic energies. This relevant result could be easily 

tested experimentally. 

5. Relativistic Corrections to the Energies of the Bounded  
States in Hydrogen-Like Atoms  

For Hydrogen-like atoms, we can assume the vector potential in Equation (27) is 
null, and: 

( )
2

.
4o C

o

e ZeA U r
rπε

= = −                    (35) 

In Equation (35), CU  is the Coulombic electrostatic energy, Z  is the 
atomic number, and oε  is the electric permittivity of vacuum [2] [4] [13] [15]. 
The exact Dirac’s energies of the bound states of the electron in Hydrogen-like 
atoms are given by the following equation [2]: 

1
2 2

2 2

2 21 .
1 1
2 2

ZE
n j j Z

c c
α

µαµ

−
  
  
  ′ +       − + + + −         

= −



       (36) 

 

 
Figure 1. Plot oftwice ( )v2 1γ +  as a function of K  in 2mc  units. 
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In Equation (36), 1,2,n =  ; ( )0,1, , 1l n= − ; 1 2j l= ± ,  
( ) ( )2

o1 4 c 1 137eα πε= × ≈  is the fine structure constant,  
( ) ( )e n e nm m m mµ = +  is the reduced mass of the electron in a Hydrogen-like 

atom with a nucleus of mass nm , and em  is the electron mass [2]. Often the 
following approximation to Equation (36), which is valid when 2E mc′

 , is 
obtained using a perturbative approach based in the Schrödinger equation [2] 
[12]: 

( ), , ,1 .Sch K Sch D Sch SO SchE E E E E′ = + ∆ + ∆ + ∆              (37) 

In Equation (37), SchE  gives the values, of the bounded energies of the elec-
tron in Hydrogen-like atoms, obtained using the Schrödinger equation [1] [2] [3] 
[4] [5] [14]: 

22 2 2 2 2

2 2 2 .
4 42Sch

o

e Z c ZE
n n

µ µ α
πε

  
 = − = − 
   

             (38) 

,K SchE∆  is the relativistic correction to the kinetic energy, which is given by 
the following expression [2] [11] [12] [13] [14]: 

2

2

2

,
3 .14

2

K Sch Sch
nE E

n
Z

l

α
 
 

∆ = − − 
 +
 

                (39) 

,D SchE∆  is the so-called the Darwin correction, which is only not null when 
0l =  [2] [12]: 

2

2 2

, .D Sch Sch
ZE E

n
α

∆ = −                      (40) 

Finally, ,SO SchE∆  is the so-called spin-orbit correction, which is only not null 
when 0l ≠  [2] [12]: 

( ) ( )

( )

2 2

,
1 1 3 4

12 1
2

.D Sch Sch
j j l l

E E
n l l

Z

l

α + − + +
∆ = −

 + + 
 

           (41) 

From Equations (38) to (41) follows the relativistic corrections are much 
smaller that SchE  when ( )2 1Z nα  . One should expect the energies calcu-
lated using Equation (37) sensibly differ from the exact Dirac’s energies for the 
lowest energy states (smallest n-values) of heavy Hydrogen-like atoms. At this 
point, however, no one should be surprised by the fact that following a similar 
procedure than the used for obtaining Equation (37), but using a perturbative 
approach based in the quasi-relativistic wave equation (details shown in the 
Appendix), one can find a much better approximation to Equation (36), which 
is valid until quasi-relativistic energies: 

( ), ,1 .QR D QR SO QRE E E E′ = + ∆ + ∆                   (42) 

In Equation (42), QRE  gives the energies of the bounded states obtained us-
ing the quasi-relativistic wave equation for Hydrogen-like atoms [15]: 
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( )
2

2 .QR
cE nµ  = − Ξ − + ∆ Ξ Ξ

                  (43) 

In Equation (43), ( ),l Z∆ = ∆ and Ξ  are given by the following equations 
[15]: 

2 2 2 2.4 4 4n Z nαΞ = + + ∆ + ∆                    (44) 

And: 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 2 2

2 2 4 4
2 2 2

3

, 1 1 2 4 2 1 ,

2 21 2 4 1 2 .
1 2 1 2

l Z l Z l

Z Zl Z l
l l

α

α αα

 ∆ = + + − − +  

+ − ≈ + − −
+ +

          (45) 

In some cases, for heavy Hydrogen-like atoms with 1Z  , the term inside 
the square root in Equation (45) could be negative; in these cases, the approxi-
mation to the square root included in Equation (45) should be used. As should 
be expected, ( ),1QR Sch K SchE E E≈ + ∆  when 2E mc′

  [15]. It is worth noting 
that QRE  is identical to the positive energies calculated for the Hydrogen atom 
using the Klein-Gordon equation [19]. ,D QRE∆  is the new Darwin correction, 
which also is only not null when 0l = : 

( )
2 2

1
, ,  .1

n
n

D QR D QR D vE k E k
n
Z γα

+∆ = − = +              (46) 

,SO QDE∆  is the new spin-orbit correction, which also is only not null when 
0l ≠ : 

( ) ( )

( )

( )5/21

,

2 2
31 1 14

12 21
2

,  .
n l

V
D Sch SO QR SO

j j l l
E k E k

n l l l

Zα γ − − ++ − + + + ∆ = − =     + + 
 

 (47) 

The energies of the ground state ( 1n = , 0l = , 1 2j = ) of the Hydrogen atom 
( 1Z = ) calculated using Equations (36), (37), (38), (42), and (43) are E′  = 
−13.6022, −13.6022, −13.6020, −13.6019, and −13.6029 eV, respectively. All 
these values are within a 0.005% error respect to the exact Dirac’s energy. This is 
because 2E mc′

  when 1Z = . A comparison between the calculated values of 
the energy difference between two emission lines ( LE∆ ) of the Hydrogen atom 
are shown in Table 1. LE∆  was calculated using the following equation: 

2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

1 1, , , ,
2 2

1 1, , , , .
2 2

L E n l j l E n l j l

E n l j l E n l

E

j l

    ′ ′= + − = +        
    ′ ′− = − − = +

∆

        

=
          (48) 

E′  was evaluated using Equations (36), (37), and (42). For the α-Lyman 
doublet, we used 2 2n = , 2 1l =  and 1 1n = , 1 0l =  [2] [12]. For the α-Balmer 
doublet, we used 2 3n = , 2 1l =  and 1 2n = , 1 0l =  [2] [12]. The last column 
of Table 1 corresponds to 2 3n = , 2 2l =  and 1 2n = , 1 1l = . It was chosen as 
an instance where both 2l  and 1l  are not zero. In all instances in Table 1, 
there is an excellent correspondence between the calculated values. Again, this is 
because 2E mc′

  when 1Z = .  
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Table 1. Calculated values of ΔEL (in meV) for the Hydrogen atom obtained using Equa-
tions (36), (37), and (42) for (a) α-Lyman doublet, (b) α-Balmer doublet, and (c) corres-
ponding to the energy difference between two others emission lines. 

ΔEL (meV) α-Lyman α-Balmer Other 

Equation (36) 0.0452718 0.0134139 0.00447118 

Equation (37) 0.0452703 0.0134134 0.00447114 

Equation (42) 0.0452715 0.0134138 0.00447119 

 

 

Figure 2. Dependence on Z of ΔEL (in meV) calculated using (red, continuous) 
Equation (36), (black, dot-dashed,) Equation (37), and (blue, dashed) Equation 
(42) for (a) α-Lyman doublet, (b) α-Balmer doublet, (c) another example cor-
responding to the last column of Table 1.  

 
More importantly, Equation (42) provides a better approximation than Equa-

tion (37) to the values of LE∆  calculated using Equation (36). This is con-
firmed by the plots shown in Figure 2 showing the dependence on Z of LE∆ . 
Clearly, as expected, at quasi-relativistic energies ( 1Z  ), Equation (42) 
(dashed blue curve) provides a much better approximation than Equation (37) 
(dot-dashed black curve) to the values of LE∆  calculated using the exact Di-
rac’s energies (continuous red curve). 

6. Conclusion 

It was shown that the time dependent Equations (1) and (18), and the time-in- 
dependent Equation (20) are very useful equations which are directly related to 
the Klein-Gordon equation, thus allowing a quantum description of a constant 
number of spin-0 particles moving at quasi-relativistic energies. It was presented 
and discussed, for the first time, a Pauli-like quasi-relativistic wave equation 
which is directly related to the Dirac equation, thus allowing for a quantum de-
scription of a constant number of spin-1/2 particles moving at quasi-relativistic 
energies and interacting with an external electromagnetic field. Finally, using a 
perturbative approach based on the quasi-relativistic wave equations discussed 
in this work, it was found and validated, also for the first time, an equation giv-
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ing the energies of the bounded states in Hydrogen-like atoms. The authors hope 
we have been able to motivate the curiosity of the readers. Undoubtedly, the eq-
uations and methods discussed here enrich the accumulated physics knowledge, 
and open new ways to tackle quantum problems involving a constant number of 
particles at quasi-relativistic energies. This also provides interesting pedagogical 
opportunities for a fresh approach to the introduction of relativistic effect in in-
troductory quantum mechanics courses. 
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Appendix 

Equations (37) and (42) can both be obtained from Equation (27) with a null 
vectorial potential (A) and oeA  given by Equation (35). For obtaining Equation 
(37), Equation (28) should be approximated in the following way [2]: 

[ ]2
1 ˆˆ1 .

2 2
CU

mc mc
Eχ ϕ− ≈ − ⋅ 



′


pσ                   (A1) 

Then, substituting Equation (A1) in the first equation of Equation (27) results 
[2]: 

[ ] [ ] ( )2
1 ˆ ˆˆ ˆ1 .

2 2
C

C
E U U r

m mc
Eϕ ϕ− ⋅ − ⋅ = −

′
    

′p pσ σ           (A2) 

Or:  

( ) [ ] ( ) [ ]
2

2
2

1 ˆ ˆˆ ˆ ' .
2 2 2

C
C

U r
U r E

m m mc
E

ϕ ϕ ϕ ϕ
 −    − ∇ + − ⋅ ⋅ =   
     

′



 p pσ σ    (A3) 

The time-independent Schrödinger equation for Hydrogen-like atoms is equal 
to Equation (A3) after excluding the term between curls in the left size of Equa-
tion (A3) [1] [2] [3] [4] [5]; therefore, the relativistic corrections to the energies 
calculated using the Schrödinger equation are contained in this term [2]. How-
ever, if Equation (28) is approximated in the following way: 

( ) ( ) [ ]2
1 ˆˆ1 .
1 1

C

v v

U
mc mc

χ ϕ
γ γ

 
≈ + ⋅  + + 

pσ               (A4) 

Then, substituting Equation (A4) in the first equation of Equation (27) results: 

( ) [ ] ( ) [ ] ( )2
1 ˆ ˆˆ ˆ1 .
1 1

C
C

v v

U U r
m

E
mc

ϕ ϕ
γ γ

 
⋅ + ⋅ −     + +

′


p pσ σ       (A5) 

Or: 

( ) ( ) ( ) [ ] ( )
( ) [ ]

2
2

2
1 ˆ ˆˆ ˆ .

1 1 1
C

C
v v v

U r
U r

m m mc
Eϕ ϕ ϕ ϕ

γ γ γ

     − ∇ + + ⋅ ⋅ =    + + +        
′



 p pσ σ  

(A6) 

The time-independent quasi-relativistic wave equation for Hydrogen-like 
atoms is equal to Equation (A6) after excluding the term between curls in the left 
size of Equation (A6) [12]; therefore, the relativistic corrections to the energies 
calculated using the quasi-relativistic wave equation are contained in this term. 
In Equation (A3), the term between curls produces three relativistic corrections 
to the energy, which are given by Equations (39) to (41) [2]. It can be shown, 
following the same procedure [2], but using the wavefunctions satisfying the qu-
asi-relativistic wave equation for Hydrogen-like atoms [14] [16], that the term 
between curls in Equation (A6) produces two relativistic corrections to the 
energy, which are given by Equations (46) and (47). 
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