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Abstract 
Shortcomings of the Boltzmann physical kinetics are considered. Boltzmann 
equation is only plausible equation. The cosequences originated from this fact 
are considered in the different fields of theoretical physics from the point of 
view of nonlocal physics. Namely: main principles of nonlocal physics; ge- 
neralized hydrodynamic equations; magnetic field evolution in the super- 
conductor of the second type; Hubble expansion; special theory of relativity; 
the problem of the interaction of matter (M) with physical vacuum (PV) is 
considered including the PV—M energy exchange. Application nonlocal phy- 
sics to the problem of the dark matter existence—dark matter does not exist, 
analytical investigation. 
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1. Introduction 

By the end of the twentieth century it was found that 96% of matter and energy 
in the Universe is of unknown origin. The terminology “dark matter” and “dark” 
energy was introduced in the scientific language. But even this would not be 
such a depressing fact, if it were not for the belief that this dark matter and dark 
energy are not diagnosed, and only the indirect effects on space objects can 
judge the existence of dark matter and dark energy. We even had to face the 
opinion of religious-minded people who claimed that four percent is all that the 
Creator left for the study to man. In practice, science has faced the most serious 
challenge since the fundamental monograph of I. Newton “Mathematical prin-
ciples of natural philosophy” was published in 1687. On the Internet you can 
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find a reaction to the current situation, bordering on despair. I initially assumed 
that the nonlocal physics developed by me would lead to very significant changes 
in the description of natural phenomena. That is to say, 4% of new information 
compared to 96% of the classical theory, but not Vice versa! What effect as a re-
sult! It is impossible to believe that more than three hundred years after Newton, 
world science came to such a disappointing result. Then the question arises— 
where is the error? The answer to this question is given by nonlocal physics. In 
other words, the origin of all difficulties lies in the total oversimplification, 
which follows from the fundamental shortcomings of the local statistical theory 
of transport processes. 

In fact, the crisis has evolved over the years. The first heavy blow in this way 
the unresolved physical problems, was the suicide of the great physicist L. 
Boltzmann; according to the belief of many (including Acad. M. A. Leontovich) 
connected with unsolved problems and criticism of Boltzmann kinetic theory, 
the first of the following list of unsolved problems of fundamental physics (local 
physical kinetics of dissipative processes): 

1) Kinetic theory of entropy and the problem of “primary” fluctuation. 
2) A strict theory of turbulence. 
3) Quantum non-relativistic and relativistic hydrodynamics, the theory of 

charge separation in atomic structures and nuclei. High temperature supercon-
ductivity. 

4) The theory of ball lightning. 
5) The theory of dark matter. 
6) The theory of dark energy. Hubble expansion of the Universe. 
7) The destiny of antimatter after the Big Bang. 
8) Unified theory of dissipative structures, from atomic structure to cosmolo-

gy. 
These problems can not be solved within the framework of local physics, but 

find their natural solution as a special case of solving the problem 8—the crea-
tion of a unified theory of dissipative structures—from atomic structures to 
cosmology, [1]-[8]. 

I repeat—the origin of difficulties in theoretical physics consists in the total 
Oversimplification following from the principles of local physics and reflects the 
general shortcomings of the local kinetic transport theory based on the Boltzmann 
kinetic theory. 

2. Boltzmann Equation is Only a Plausible Equation 

The Boltzmann equation [1] works from the molecular to cosmological level, but 
has an amazing origin and equally obvious drawbacks. Regarding the origin, the 
equation is based on Newtonian mechanics, which contains in the equation the 
second derivative by time. But the Boltzmann kinetic equation has only the first 
temporal derivative. This fact leads to the irreversibility of the processes; hence 
the irreversible nature of the evolution of H-functions and the inevitable ques-
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tion: where does the initial fluctuation appear from, if Boltzmann kinetic theory 
does not contain fluctuations in principle? You do not even need (initially) to 
write equations. Indeed, Boltzmann physical kinetics is based on a reduced de-
scription of dissipative processes and the principle of local thermodynamic equi-
librium (LTE). 

It is assumed that the distribution function (DF) is not changed within a 
physically infinitely small volume (say, a PhSV1) that contains, however, enough 
particles for the introduction of macroscopic parameters (such as temperature 
and concentration), which are constant within PhSV. But PhSV is an open 
thermodynamic system that responds to the environment only after its interac-
tion with foreign particles, penetrated from a neighboring PhSV; in other words, 
after a time τ  of order of the average time between collisions. Then in the sim-
plest case of the gas objects nonlocal parameter τ  can be considered as a cor-
responding relaxation time. 

Transport processes in open dissipative systems are considered in physical ki-
netics. Therefore, the kinetic description is inevitably related to the system di-
agnostics. Such an element of diagnostics in the case of theoretical description in 
physical kinetics is the concept of the physically infinitely small volume (PhSV). 
The correlation between theoretical description and system diagnostics is 
well-known in physics. Suffice it to recall the part played by test charge in elec-
trostatics or by test circuit in the physics of magnetic phenomena. 

The traditional definition of PhSV contains the statement to the effect that the 
PhSV contains a sufficient number of particles for introducing a statistical de-
scription; however, at the same time, the PhSV is much smaller than the volume 
V of the physical system under consideration; in a first approximation, this leads 
to local approach in investigating the transport processes. 

It is assumed in classical hydrodynamics that local thermodynamic equili-
brium is first established within the PhSV, and only after that the transition oc-
curs to global thermodynamic equilibrium if it is at all possible for the system 
under study. Let us consider the hydrodynamic description in more detail from 
this point of view. Assume that we have two neighboring physically infinitely 
small volumes PhSV1 and PhSV2 in a non-equilibrium system. The one-particle 
distribution function (DF) ( ),1 1, ,smf tr v  corresponds to the volume PhSV1, and 
the function ( ),2 2 , ,smf tr v —to the volume PhSV2. It is assumed in a first ap-
proximation that ( ),1 1, ,smf tr v  does not vary within PhSV1, same as  

( ),2 2 , ,smf tr v  does not vary within the neighboring volume PhSV2. It is this as-
sumption of locality that is implicitly contained in the Boltzmann equation (BE) 
[2]-[8]. However, the assumption is too crude. Indeed, a particle on the boun-
dary between two volumes, which experienced the last collision in PhSV1 and 
moves toward PhSV2, introduces information about the ( ),1 1, ,smf tr v  into the 
neighboring volume PhSV2. Similarly, a particle on the boundary between two 
volumes, which experienced the last collision in PhSV2 and moves toward 
PhSV1, introduces information about the DF ( ),2 2 , ,smf tr v  into the neighbor-
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ing volume PhSV1. The relaxation over translational degrees of freedom of par-
ticles of like masses occurs during several collisions. As a result, “Knudsen lay-
ers” are formed on the boundary between neighboring physically infinitely small 
volumes, the characteristic dimension of which is of the order of path length. 
Therefore, a correction must be introduced into the DF in the PhSV, which is 
proportional to the mean time between collisions and to the substantive deriva-
tive of the DF. 

Let a particle of finite radius be characterized as before by the position r  at 
the instant of time t of its center of mass moving at velocity v . Then, the situa-
tion is possible where, at some instant of time t, the particle is located on the in-
terface between two volumes. In so doing, the lead effect is possible (say, for 
PhSV2), when the center of mass of particle moving to the neighboring volume 
PhSV2 is still in PhSV1. However, the delay effect takes place as well, when the 
center of mass of particle moving to the neighboring volume (say, PhSV2) is al-
ready located in PhSV2 but a part of the particle still belongs to PhSV1. 

Moreover, even the point-like particles (starting after the last collision near 
the boundary between two mentioned volumes) can change the distribution 
functions in the neighboring volume. The adjusting of the particles dynamic 
characteristics for translational degrees of freedom takes several collisions. As 
result, we have in the definite sense “the Knudsen layer” between these volumes. 
This fact unavoidably leads to fluctuations in mass and hence in other hydrody-
namic quantities. Existence of such “Knudsen layers” is not connected with the 
choice of space nets and fully defined by the reduced description for ensemble of 
particles of finite diameters in the conceptual frame of open physically small vo-
lumes, therefore with the chosen method of measurement. 

This entire complex of effects defines non-local effects in space and time. The 
corresponding situation is typical for the theoretical physics—we could remind 
about the role of probe charge in electrostatics or probe circuit in the physics of 
magnetic effects. 

The physically infinitely small volume (PhSV) is an open thermodynamic sys-
tem for any division of macroscopic system by a set of PhSVs. 

Let us give some explanations on the qualitative level of investigation. Suppose 
that the distribution function (DF) f  corresponds to PhSV1 and DF f f− ∆  
is connected with PhSV2 for Boltzmann particles. In the boundary area in the 
first approximation, fluctuations will be proportional to the mean free path (or, 
equivalently, to the mean time between the particle collisions). Then for PhSV 
the correction for DF should be introduced as 

af f Df Dtτ= −                       (2.1) 

in the left hand side of classical KE describing the translation of DF in phase 
space. As the result 

a BDf Dt J= ,                       (2.2) 

where BJ  is the Boltzmann local collision integral. Important to notice that it 
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is only qualitative explanation of the generalized BE derivation obtained earlier 
(see for example [2]-[8]) by different strict methods from the BBGKY chain of 
kinetic equations. The structure of the KE f  is generally as follows 

B nlDf J J
Dt

= + ,                       (2.3) 

where nlJ  is the non-local integral term incorporating in particular the time 
delay effect. The generalized Boltzmann physical kinetics, in essence, involves a 
local approximation 

nl D DfJ
Dt Dt

τ =  
 

                      (2.4) 

for the second collision integral, here τ  being proportional to the mean time 
between the particle collisions. All of the known methods of deriving kinetic eq-
uation relative to one-particle DF lead to approximation (2.4), including the 
method of many scales, the method of correlation functions, and the iteration 
method. We can draw here an analogy with the Bhatnagar-Gross-Krook (BGK) 
approximation for BJ , 

0B f f
J

τ
−

= ,                       (2.5) 

which popularity as a means to represent the Boltzmann collision integral is due 
to the huge simplifications it offers. In other words – the local Boltzmann colli-
sion integral admits approximation via the BGK algebraic expression, but more 
complicated non-local integral can be expressed as differential form (2.4). The 
ratio of the second to the first term on the right-hand side of Equation (2.3) is 
given to an order of magnitude as ( )2Knnl BJ J O≈  and at large Knudsen 
numbers (defining as ratio of mean free path of particles to the character hydro-
dynamic length) these terms become of the same order of magnitude. It would 
seem that at small Knudsen numbers answering to hydrodynamic description 
the contribution from the second term on the right-hand side of Equation (2.3) 
is negligible. 

This is not the case, however. When one goes over to the hydrodynamic ap-
proximation (by multiplying the kinetic equation by collision invariants and 
then integrating over velocities), the Boltzmann integral part vanishes, and the 
second term on the right-hand side of Equation (2.3) gives a single-order con-
tribution in the generalized Navier—Stokes description. Mathematically, we 
cannot neglect a term with a small parameter in front of the higher derivative. 
Physically, the appearing additional terms are due to viscosity and they corres-
pond to the small-scale Kolmogorov turbulence [2]-[8]. 

The integral term nlJ  turns out to be important both at small and large 
Knudsen numbers in the theory of transport processes. 

Thus, Df Dtτ  is the distribution function fluctuation, and writing Equation 
(2.2) without taking into account Equation (2.1) makes the BE non-closed. From 
viewpoint of the fluctuation theory, Boltzmann employed the simplest possible 
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closure procedure af f=  in (2.2). 
Then, the additional GBE terms (as compared to the BE) are significant for 

any Kn, and the order of magnitude of the difference between the BE and GBE 
solutions is impossible to tell beforehand. For GBE the generalized H-theorem is 
proven [2]-[8]. 

Boltzmann equation (BE) fully ignores non-local effects and contains only the 
local collision integral BJ . The foregoing nonlocal effects are insignificant only 
in equilibrium systems, where the kinetic approach changes to methods of statis-
tical mechanics. 

Results [2]-[8]: 
1) Kinetic theory must be non-local in principle. 
2) The effect is of the order of the Knudsen number; since nonlocal effects are 

proportional to the Knudsen number; then we have an opportunity of the de-
scription of nonlocal effects in the framework of the two scale approximation. 

3) The effect is due to reduced description and not associated with a specific 
division of a physical system by a net of PhSV. 

4) Accurate derivation of the kinetic equation (KE) relative to one-particle DF 
leads to corrections of the order of the Knudsen number even before the de-
coupling of the Bogolyubov hierarchy. 

5) This means that in the Boltzmann equation the terms of the order of the 
Knudsen number are lost; these terms of the order of the Knudsen number, im-
portant at large and at small Knudsen numbers. 

6) The Boltzmann equation does not belong even to the class of minimal 
models as being the only plausible equation. 

7) The Boltzmann equation in this sense is the wrong equation. 
It is clear that this is a revolution in the theory of dissipative processes, in par-

ticular in hydrodynamics. In the hydrodynamic Navier–Stokes equation, which 
is a direct consequence of the Boltzmann equation (BE), the terms of the order 
proportional to a viscosity are partly lost. It leads to the problem of turbulence 
and the problems of existence and uniqueness of solutions of the Navier–Stokes 
equations. 

The rigorous approach to derivation of kinetic equation relative to one-particle 
DF f  ( )1f

KE  is based on employing the hierarchy of Bogolyubov equations 
[2]-[8]. Generalized Boltzmann physical kinetics brings the strict approximation 
of non-local effects in space and time and after transfer to the local approxima-
tion leads to parameter τ . The appearance of the nonlocal τ  parameter is 
consistent with the Heisenberg uncertainty relation. In the general case, the pa-
rameter τ  is the non-locality parameter; in quantum hydrodynamics, its mag-
nitude is correlated with the “time-energy” uncertainty relation [4]. But in prin-
ciple generalized kinetic nonlocal equation (and therefore generalized hydrody-
namic equations (GHE)) needn’t in using of the “time-energy” uncertainty rela-
tion for estimation of the value of the non-locality parameter τ . Moreover the 
“time-energy” uncertainty relation does not produce the exact relations and 
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from position of non-local physics is only the simplest estimation of the non- 
local effects. 

Really, let us consider two neighboring physically infinitely small volumes 
PhSV1 and PhSV2 in a non-equilibrium system. Obviously the time τ  should 
tends to diminish with increasing of the velocities u of particles invading in the 
nearest neighboring physically infinitely small volume (PhSV1 or PhSV2): 

nH uττ = .                        (2.6) 

But the value τ  cannot depend on the velocity direction and naturally to tie 
τ  with the particle kinetic energy, then 

2H muττ = ,                       (2.7) 

where Hτ  is a coefficient of proportionality, which reflects the state of physical 
system. In the simplest case Hτ  is equal to Plank constant   and relation 
(2.7) became compatible with the Heisenberg relation. The non-locality para-
meter τ  plays the same role as the transport coefficients in local hydrodynam-
ics. The different models can be introduced for the τ  definition, but the cor-
responding results not much different like in local kinetic theory for different 
models of the particles interaction. 

It is known that Ehrenfest adiabatic theorem is one of the most important and 
widely studied theorems in Schrödinger quantum mechanics. It states that if we 
have a slowly changing Hamiltonian that depends on time, and the system is 
prepared in one of the instantaneous eigenstates of the Hamiltonian then the 
state of the system at any time is given by an the instantaneous eigenfunction of 
the Hamiltonian up to multiplicative phase factors. The adiabatic theory can be 
naturally incorporated in generalized quantum hydrodynamics based on local 
approximations of non-local terms. The adiabatic theorem and consequences of 
this theory deliver the general quantization conditions for non-local quantum 
hydrodynamics, [4]. 

3. Shortcomings of the Schrödinger Quantum Mechanics 

We now turn to the logic of the development of the non-local theory: 
A) In 1926 Madelung published a brilliant article [9] in which he transformed 

the quantum postulate (Schrödinger equation) in hydrodynamics. In other 
words, the evolution of a single bound electron was possible to interpret as some 
effective flow. 

B) In 1964 John Stewart Bell [10] found that local statistical theory of dissipa-
tive processes is incorrect in principle. 

C) In 2007 I found that the Schrödinger equation and hydrodynamic Made-
lung’s form are a deep particular case of nonlocal kinetic equations (see for ex-
ample [11] [12]) as a result of the transition to the local limit of non-local equa-
tions. 

This means that generalized physical kinetics (as created earlier by me) has 
been extended to quantum physics in the form of quantum hydrodynamics. I 
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would even say such emotional words—the biggest secret of the Schrödinger 
equation (SE) is a strange thing—why, in fact, it generally works? Honestly, it 
starts to work when we go beyond the postulate that it is. Here just note again 
that: 

1) SE is not able to give a self-consistent description of the nucleus - electron 
shell. 

2) SE does not lead to an independent analogue of the hydrodynamic energy 
equation. 

3) SE is not a dissipative equation and therefore cannot be applied to the de-
scription of dissipative processes in nanotechnology. 

Generalized hydrodynamic equations (GHE) should contain Schrödinger eq-
uation (SE) as a deep special case. This affirmation was proved in articles [11] 
[12]. In other words, we formulated in explicit form all assumptions (all steps) 
that should be implemented to obtain SE from GHE. 

So, we can state that SE is a deep special case of generalized hydrodynamic 
equations. This means that a new quantum mechanics of dissipative processes 
has been created. 

The Boltzmann equation essentially “does not work” at the distances of the 
order of the radius of interaction of particles and, therefore, can not be effective-
ly used in the theoretical study of nanotechnology even in the framework of 
“plausible” models. 

It is established that the theory of transport processes (including quantum me-
chanics) can be presented within the framework of the universal theory (unified 
theory of dissipative systems) based on nonlocal physical description. It is shown, 
in particular, that the equations of nonlocal physics lead to the appearance of soli-
tons, which supports the Schrödinger opinion, who interpreted quantum mechan-
ics from the point of view of the existence of waves of matter. The Schrödinger 
equation is not dissipative. Therefore, the generalized quantum hydrodynamics is 
a tool for solving problems in the theory of dissipative nano-systems. 

4. Modification of Maxwell Equations 

Notice that the application of the above principles also leads to the modification 
of the system of Maxwell equations. While the traditional formulation of this 
system does not involve the continuity equation, its derivation explicitly employs 
the equation 

0
a

a

t
ρ∂ ∂

+ ⋅ =
∂ ∂

j
r

,                      (4.1) 

where aρ  is the charge per unit volume, and aj  a the current density, both 
calculated without accounting for the fluctuations. As a result, the system of 
Maxwell equations written in the standard notation, namely 

0∂
⋅ =

∂
B

r
, aρ∂

⋅ =
∂

D
r

, 
t

∂ ∂
× = −

∂ ∂
BE

r
, a

t
∂ ∂
× = +

∂ ∂
DH j

r
     (4.2) 

contains 
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a flρ ρ ρ= − , a fl= −j j j .                   (4.3) 

The flρ  and flj  fluctuations calculated using the GBE are given, for exam-
ple, in Ref. [7], see also [4]. In rarefied media both effects lead to Johnson’s 
flicker noise observed in 1925 for the first time by J.B. Johnson by the measure-
ment of current fluctuations of thermo-electron emission. 

As an example of applying of the generalized Maxwell equations we consider 
the distribution of the magnetic field in a superconductor Type II from position 
of nonlocal physics. Usually superconductors are categorized as Type-I or 
Type-II. Type-I superconductors support only Meissner and normal states, while 
Type-II superconductors form magnetic vortices in sufficiently strong applied 
magnetic fields. When the Type I superconductor is placed in the magnetic field, 
it suddenly or easily looses its superconductivity at critical magnetic field Hc. 
After Hc, the Type I superconductor will become conductor. Example of Type I 
superconductors: Aluminum (Hc = 0.0105 Tesla), Zinc (Hc = 0.0054 Tesla). 

Type II superconductors are those superconductors which loose their super-
conductivity gradually but not easily or abruptly when placed in the external 
magnetic field. Type II superconductors start to loose their superconductivity at 
lower critical magnetic field Hc1 and completely loose their superconductivity at 
upper critical magnetic field Hc2. The state between the lower critical magnetic 
field Hc1 and upper critical magnetic field Hc2 is known as vortex state or inter-
mediate state. After magnetic field Hc2, the Type II superconductor will become 
conductor. Except for the elements vanadium, technetium and niobium, the 
Type II category of superconductors is comprised of metallic compounds and 
alloys. This new category of superconductors was identified by L.V. Shubnikov 
[13] at the Kharkov Institute of Science and Technology in the Ukraine in 1936 
when he found two distinct critical magnetic fields (known now as Hc1 and Hc2) 
in PbTl2. Since a Type II will allow some penetration by an external magnetic 
field into its surface, this creates some rather novel mesoscopic phenomena like 
superconducting filaments, stripes or flux-lattice vortices. 

The superconducting current flows in a layer with a thickness equal to the 
penetration depth, which makes it pointless to make large-diameter wires from a 
superconductor. Actually used for passing through a current-carrying super-
conducting cable consists of many thin superconducting filaments in a matrix. 
This design makes it possible to use the superconductor cross-section as effi-
ciently as possible, provides sufficiently high mechanical properties, and pro-
vides shunting of superconductor sections in case of loss superconducting prop-
erties (for example, when the critical field is accidentally exceeded). The typical 
superconducting “hair” of such a cable has a diameter of several microns. 

The Abrikosov vortex is a vortex of superconducting current (supercurrent) 
that circulates around a normal (non-superconducting) core (the vortex fila-
ment), inducing a magnetic field with a magnetic flux equivalent to the magnetic 
flux quantum. It was discovered by the physicist A. A. Abrikosov in 1957. In his 
work “On the magnetic properties of superconductors of the second group” [14], 
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it was theoretically shown that the penetration of a magnetic field into a Type II 
superconductor occurs in the form of quantized vortex filaments. Each such 
thread (vortex) has a normal (non-superconducting) core with a radius of the 
order of the superconductor coherence length. 

From position of the BCS theory around this normal cylinder, in a region with 
a radius of the order of the depth of penetration of the magnetic field, a vortical 
undamped current of Cooper pairs (supercurrent) flows, oriented so that the 
magnetic field (created by it) is directed along the normal core; that is, coincides 
with the direction of the external magnetic field. In this case, each vortex carries 
one quantum of the magnetic flow and 

( ) /~ e rB r
r

λλ − ,                      (4.4) 

where λ  is the London depth. But the Abrikosov solution [14] is, strictly 
speaking, incorrect. In the ideal case, which is considered in his work, there may 
be a state different from the predicted one. In order to honestly describe the Ab-
rikosov state, we need to take into account fluctuations and consider a super-
conductor with finite dimensions. This is quite a difficult task which needs ap-
plying of the nonlocal physics methods. Abrikosov considered the ideal case and 
neglected fluctuations. The solution turned out to be correct in the sense that a 
vortex state is actually observed in real superconductors (see also [15]-[21]). 

Let us consider the magnetic field distribution in the “hair’ from the position 
of non-local physics. The filament is considered as the long cylinder which ra-
dius is r0. Let us use equation (see Equation (10.22) in [22]) written in the form 

2
2 2

2

11 2
r r r

v v
t t t t tt φ φ

τ τ
τ τ τ

  ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂  + + = ∆ − × ×    ∂ ∂ ∂ ∂ ∂ ∂ ∂∂    

B B B B
r r

,   (4.5) 

where rτ  is relaxation time, vφ  is phase velocity. Let us transform (4.5) 
2

2 2
2

11 2
r r r

v v
t t t t tt φ φ

τ τ
τ τ τ

  ∂ ∂ ∂ ∂ ∂ ∂
+ + = ∆ + ∆  ∂ ∂ ∂ ∂ ∂∂ 

B B B B         (4.6) 

or 
2

2
2

11 2 1
r r r

v
t t t tt φ

τ τ
τ τ τ

   ∂ ∂ ∂ ∂ ∂
+ + = + ∆   ∂ ∂ ∂ ∂∂   

B B B           (4.7) 

Let us introduce the scales 

rt τ↔ , 0 rr r vφτ↔ = , 0B B↔                 (4.8) 

Then 
2

2
3 2 3

1 11 2 1
r rr r

v
t t t tt φ

τ τ
τ ττ τ

   ∂ ∂ ∂ ∂ ∂
+ + = + ∆   ∂ ∂ ∂ ∂∂   

 



  

B B B          (4.9) 

or 
2

2 3
21 2 1 r

r r

v
t t t tt φ

τ τ τ
τ τ

   ∂ ∂ ∂ ∂ ∂
+ + = + ∆   ∂ ∂ ∂ ∂∂   

 



  

B B B          (4.10) 

or 
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2

21 2 1 r
r rt t t tt
τ τ τ
τ τ

   ∂ ∂ ∂ ∂ ∂
+ + = + ∆   ∂ ∂ ∂ ∂∂   

 

 

  

B B B           (4.11) 

or 
2

21 2 1
r rt t t tt
τ τ
τ τ

   ∂ ∂ ∂ ∂ ∂
+ + = + ∆   ∂ ∂ ∂ ∂∂   

 

 

   

B B B            (4.12) 

We use spherical coordinate system. It is naturally supposing that in super-
conducting regime ( )r=B B . Then after integration (4.12) on time we obtain 

( )
2

21 2 1
r r

B B B f r
tt

τ τ
τ τ

   ∂ ∂
+ + = + ∆ +   ∂∂   

 


 





,            (4.13) 

where ( )f r   is a function of r . The specific type of this function is deter-
mined by the task conditions. If rτ τ  we have 

( )
2

2

B B B f r
tt

∂ ∂
+ = ∆ +
∂∂

 


 





.                   (4.14) 

For the stationary case 

( ) 0B f r∆ + =
 

                       (4.15) 

or in the mentioned spherical coordinate system we reach in the case of the radi-
al symmetry 

( )
2

2

2 0B B f r
r rr

∂ ∂
+ + =

∂∂

 





 

.                  (4.16) 

Let us choose the arbitrary function ( )f r   in the form (4.17). Obviously this 
form corresponds to the magnetic field distribution around a rectilinear infinite 
conductor with current ( )C const=  

( ) ( ) 1f r C B r
r

 = −  




 



                    (4.17) 

we have 
2

2

2 1 0B B C B
r r rr

∂ ∂  + + − = ∂∂  

 



  

                 (4.18) 

or 
2

2 2 0B Br CrB C
rr

∂ ∂
+ + − =

∂∂

 



 



.                 (4.19) 

Equation (4.19) has analytical solution. For example for the case C = 1 we 
have equation 

2

2 2 1 0B Br rB
rr

∂ ∂
+ + − =

∂∂

 



 



                  (4.20) 

and its solution in the complex form 

( ) 1 2e e 1
2

ir irC iCB r
r r r

−

= − +
 





  

.                 (4.21) 

The real part of the solution (4.21) is written as 
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( ) 2
1

1 cos sin 1
2real

CB r C r r
r
 = + + 
 



  



.             (4.22) 

This statement can be verified by directly substituting the solution (4.21) and 
(4.22) into the equation (4.20). Extremes can be found from 

( ) 2
1

1 cos sin 1
2real

CB r C r r
r
 = + + 
 



  



.             (4.23) 

Really from the equation 

2 2
1 12

1 1cos sin 1 sin cos
2 2

C CB C r r C r r
r rr

∂    = − + + + − +   ∂    



   

 

     (4.24) 

we find 

2 2
1 1

1 cos sin 1 sin cos 0.
2 2

C CC r r C r r
r
   + + + − =   
   

   



        (4.25) 

If r →∞  we have for the long-range order (for the case 1C = ) 

2

1

tan
2
Cr
C

= ,                       (4.26) 

or 

2

1

arctan , 0,1, 2,
2
Cr n n
C

 
= + = π

 



              (4.27) 

It is known that short-range order is the order in the mutual arrangement of 
atoms or molecules in a substance, which (in contrast to the long-range order) 
is repeated only at distances commensurate with the distances between atoms, 
that is, the short—range order is the presence of a pattern in the arrangement 
of neighboring atoms or molecules. As you see Figures 1-7 demonstrate the  

 

 

Figure 1. The dependence ( )B r  , 1C = . 
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Figure 2. The dependence ( )B r  , 1C = ; lim = 1815.2900. 

 

 

Figure 3. The dependence ( )B r  , 2C = . 

 
appearance of short- and long-range order. 

Obviously we can use the simple Maple program  
dsolve[interactive]({r*diff(B(r),r$2)+2*diff(B(r),r)+C*r*B(r)-C = 0, B(0) = 0, 

D(B)(0) = 0.5*C}); 
We find results reflected on Figure 1 (C = 1) - Figure 7 (C = 100). 
Figure 2 reveals the finite domain of the ( )B r   evolution. It should be no-

ticed that the Maple plotter hides the details of the picture at large values r . 
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Figure 4. The dependence ( )B r  , 2C = ; lim = 1130.6910. 

 

 

Figure 5. The dependence ( )B r  , 3C = . 

 
From Figures 1-7 follow: 
1) The magnetic field distribution in a superconductor Type II has the cha-

racter of damping waves. 
2) There are modes when vibrational beats appear in a system of damped 

waves, Figures 3-5. 
3) The solutions exist in the limit domain (in contrast to Abrikosov’s theory). 
4) As we see we reveal the quantization picture of the magnetic field. 
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Figure 6. The dependence ( )B r  , 3C = ; lim = 854.9057. 

 

 

Figure 7. The dependence ( )B r  , 100C = ; lim = 84.5444. 

5. Generalized Hydrodynamic Equations 

The generalized hydrodynamic equations (GHE) can be obtained from the nonlocal 
kinetic equation in the frame of the Enskog procedure, [2] [3] [4]. Generally 
speaking to GHE should be added the system of generalized Maxwell equations 
(for example in the form of the generalized Poisson equation for electric poten-
tial) and gravitational equations (for example in the form of the generalized 
Poisson equation for gravitational potential). For example 
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( )1
04 N t

ργ ρ τ ρ∂  ∂ ∂  ⋅ = − − + ⋅  ∂ ∂ ∂ 
π


F v

r r
.            (5.1) 

(Continuity equation for species α ) 

( ) ( )

( ) ( )

0 0 0

1
0 0 0I .

t t t

p q
R

m

α
α α α α α α

α α
α α α α α

α

ρ
ρ τ ρ ρ τ ρ

ρ ρ ρ

 ∂ ∂ ∂ ∂  ∂  − + ⋅ + ⋅ −    ∂ ∂ ∂ ∂ ∂   
∂∂ + ⋅ + ⋅ − − × =∂ ∂ 



v v v
r r

v v F v B
r r

     (5.2) 

(Continuity equation for mixture) 

( ) ( )

( ) ( )

0 0 0

1
0 0 0I 0.

t t t

p q
m

α
α α α α

α α

α α
α α α α

α

ρ
ρ τ ρ ρ τ ρ

ρ ρ ρ

 ∂ ∂ ∂ ∂  ∂  − + ⋅ + ⋅ −    ∂ ∂ ∂ ∂ ∂   
∂∂ + ⋅ + ⋅ − − × =∂ ∂ 

∑ ∑



v v v
r r

v v F v B
r r

    (5.3) 

(Momentum equation for species α ) 

( ) ( )

( ) ( )

( ) ( )

(

1
0 0 0 0

1
0 0

1
0 0 0 0

0 0 0 0 0I

p
t t
q
m t
q p
m t
q

p
m t

α
α α α α α α

α α
α α α α α

α

α α
α α α α α α

α

α
α α α α α

α

ρ τ ρ ρ ρ

ρ
ρ ρ τ ρ

ρ τ ρ ρ ρ

ρ ρ τ ρ

∂∂  ∂ ∂− + ⋅ + − ∂ ∂ ∂ ∂
  ∂ ∂ − × − − + ⋅   ∂ ∂   

∂ ∂ ∂− − + ⋅ + − ∂ ∂ ∂
 ∂ ∂ − × × + ⋅ + − ∂ ∂



v v v v F
r r

v B F v
r

v v v v F
r r

v B B v v v v
r




 

) ( ) ( ) ( )
( ) ( ) [ ] [ ]

0 0 0 0 0

1 1
0 0 0 0 0 0

, ,

I 2I I

d d .st el st inel

p p p

q q
m m

m J m J

α α α α

α α
α α α α α α

α α

α α α α α α α α

ρ

ρ ρ ρ ρ

∂ ∂ ∂ + + ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 
− − − × − × 


= +∫ ∫

  

v v v v v
r r r

F v v F v B v v v B

v v v v

   (5.4) 

(Momentum equation for mixture) 

( ) ( )

( ) ( )

( ) ( )

1
0 0 0 0

1
0 0

1
0 0 0 0

0 0 0 0I

p
t t

q
m t

q p
m t

q
p

m t

α
α α α α α

α

α α
α α α α α

αα

α α
α α α α α α

α α

α
α α α

αα

ρ τ ρ ρ ρ

ρ
ρ ρ τ ρ

ρ τ ρ ρ ρ

ρ ρ τ ρ

∂∂  ∂ ∂− + ⋅ + − ∂ ∂ ∂ ∂
  ∂ ∂ − × − − + ⋅   ∂ ∂   

∂ ∂ ∂− − + ⋅ + − ∂ ∂ ∂
 ∂ ∂− × × + ⋅ + − ∂ ∂

∑

∑

∑

∑


v v v v F
r r

v B F v
r

v v v v F
r r

v B B v v v
r

(

) ( ) ( ) ( )
( ) ( ) [ ] [ ]

0

0 0 0 0 0

1 1
0 0 0 0 0 0

I 2I I

0.

p p p

q q
m m

α α α α

α α
α α α α α α

α α

ρ

ρ ρ ρ ρ

 
 

∂ ∂ ∂ + + ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 
− − − × − × =


  

v

v v v v v
r r r

F v v F v B v v v B

   (5.5) 
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(Energy equation for α  species) 

( )

2 2
0 0

12
0 0 0 0 0

2 2
0 0 0 0 0 0

2
0 0 0 0 0 0 0

3 3
2 2 2 2

1 5
2 2

1 5 1
2 2 2

5 1 7
2 2 2

v v
p n p n

t t

v p n

v p n v
t

p n v p

α α
α α α α α α α

α α α α α α

α α α α α α

α α α α α

ρ ρ
ε τ ε

ρ ε ρ

ρ ε τ ρ

ε ρ

   ∂ ∂ + + − + +  
∂ ∂   

∂  + ⋅ + + − ⋅   ∂   
∂  ∂ + ⋅ + + − ∂ ∂ 

∂+ + + ⋅ + + ∂

v v v F v
r

v v v v
r

v v v v v v
r

( )

2
0

2
1(1)

0 0 0 0

1
2

5
2

p v

p p
n p

m

α

α α
α α α α α α α

α α

ε ε ρ
ρ

 Ι



+ Ι + + Ι − ⋅ − ⋅ Ι





  

v v F v v F
 

( ) ( ) [ ] [ ]

[ ] ( ) ( ) ( ) ( )

( ) [ ]

2
1 12 0

0 0 0

1 1 1
0 0 0

1
0 0 0

2 2
, ,

1 3 5
2 2 2 2

d
2 2

st el st

v q q
v p p

m m

q
n n

m t

p q n

m v m v
J J

α α α
α α α α α

α α

α
α α α α α α α α α α

α

α α α α α α

α α α α
α α α α α

ρ
ρ

ε ε ρ τ ρ

ρ ρ

ε ε

− − − × − ×

   ∂ − × − − ⋅ − ⋅   ∂ 
∂ ∂ + ⋅ + ⋅ Ι − − × ∂ ∂ 

   
= + + +   

   
∫



F F v B v B

v B F F v F v

v v F v B
r r

v d .inel
α∫ v

  (5.6) 

(Energy equation for mixture) 

( )

2 2
0 0

12
0 0 0 0 0

2 2
0 0 0 0 0 0

2
0 0 0 0 0

3 3
2 2 2 2

1 5
2 2

1 5 1
2 2 2

5 1 7
2 2 2

v v
p n p n

t t

v p n

v p n v
t

p n v p

α
α α α α α α

α α

α α α α α α

α α α α
α α

α α α α α

ρ ρ
ε τ ε

ρ ε ρ

ρ ε τ ρ

ε ρ

   ∂ ∂ + + − + +  
∂ ∂   

∂  + ⋅ + + − ⋅   ∂   
∂  ∂ + ⋅ + + − ∂ ∂ 

∂+ + + ⋅ + ∂

∑ ∑

∑ ∑

v v v F v
r

v v v v
r

v v v v v
r

2
0 0 0

1
2

p vα
 + Ι




v
 

( ) ( )

( ) ( ) [ ] [ ]

[ ] ( ) ( ) ( ) ( )

( ) [ ]

2
1 1

0 0 0 0

2
1 12 0

0 0 0

1 1 1
0 0 0

1
0 0 0

5
2

1 3 5
2 2 2 2

p p
n p

m

v q q
v p p

m m

q
n n

m t

p q n

α α
α α α α α α α

α α

α α α
α α α α α

α α

α
α α α α α α α α α α

α αα

α α α α α α

ε ε ρ
ρ

ρ
ρ

ε ε ρ τ ρ

ρ ρ


+ Ι + + Ι − ⋅ − ⋅ Ι



− − − × − ×

   ∂ − × − − ⋅ − ⋅   ∂ 

∂ ∂ + ⋅ + ⋅ Ι − − ×
∂ ∂ 

∑ ∑

  



v v F v v F

F F v B v B

v B F v F F v

v v F v B
r r

0.

=



 (5.7) 

Here ( )1
αF  are the forces of the non-magnetic origin, B —magnetic induc-

tion, I


—unit tensor, qα —charge of the α -component particle, pα —static 
pressure for α -component, αε —internal energy for the particles of α -com- 
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ponent, 0v —hydrodynamic velocity for mixture, ατ —non-local parameter. 
GHE are extremely important for astrophysics special cases when density 

0ρ →  (the initial stage of evolution of the Universe, the Big Bang; transport 
processes in physical vacuum) and when density ρ →∞  (evolution of the 
black hole). Both limiting cases have no physical or mathematical meaning in 
“classical” hydrodynamics. Thus, we have a unified statistical theory of dissipa-
tive structures, which has a hydrodynamic shape defined by the genesis of GHE. 
Then we obliged to deliver come comments concerning application of special 
(SRT) and general (GRT) relativistic theory in theoretical astrophysics. 

6. Nonlocal Physics and Special and General Theory  
of Relativity 

Let us investigate the possible connection between nonlocal physics and special 
theory of relativity (SRT). The underlying SRT experiment belongs to Albert A. 
Michelson and Edward W. Morley. The Michelson–Morley experiment was 
performed and published in November, 1887 (which has tremendous variants in 
the following years) [23]. They compared the speed of light in perpendicular di-
rections, in an attempt to detect the relative motion of matter through some sta-
tionary medium called aether. 

The result was negative, in that the expected difference between the speed of 
light in the direction of movement through the presumed aether, and the speed 
at right angles, was found not to exist. Michelson–Morley type experiments have 
been repeated many times with steadily increasing sensitivity. The result is con-
sidered as the evidence against the aether theory, and initiated a line of research 
that eventually led to special relativity, which rules out a stationary aether. Fig-
ure 8 shows the Michelson, Morley device. Calculate the time for which the light 
will pass the distance to the mirror in the horizontal direction. In one second 
light travels c meters, and the aether wind blows it in v meters back. Therefore, 
the actual speed will be equal ( )c v− . It means that light will reach  

the mirror over 
L

t
c v

⇒=
−

. 

Obviously the way back will take time 
L

t
c v

⇒=
+

. Total time spent: 

 

 
Figure 8. The principal scheme of Michelson - Morley experiment. 
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1 2 2

2L L L c
t

c v c v c v
⇒ ⇒ ⇒= + =
+ − −

.                  (6.1) 

Calculate the elapsed time for moving in the vertical direction. In one second 
the aether wind will shift the light on the v meters to the left. 

In other words the stationary observer should see the real velocity of the ver-
tical movement as 2 2 2u v c+ = , or 2 2cosu с c vφ= = − . Then the real rate of 
convergence of the light with mirror (reflected on Figure 8 as the upper mirror) 
is 2 2u c v= − . Moving in the opposite direction leads to the symmetrical situ-
ation. Thus, 

2 2 2

2L
t

с v
⇑=
−

.                       (6.2) 

The time difference is 
2 2

1 2 2 2 2 22 2

2

2 2 2

22 2

2 1 .

LL c с с vt t L L
cc v с vс v

с vL L
с v c

⇒ ⇑
⇒ ⇑

⇒ ⇑

 −
− = − = − 

− −  −  
 

= − − 
−   

       (6.3) 

Some conclusions: 
1) The mentioned above configuration known as Michelson-Morley experi-

ment (1887) would have detected the earth’s motion through the supposed lu-
miniferous aether that most physicists at the time believed was the medium in 
which light waves propagated. From the first glance the null result of that expe-
riment leads to the condition (see (6.3)) 

1 2 0t t− = .                         (6.4) 

2) But relation (6.4) obtained for the closed thermodynamic system without 
taking into account the direct influence of physical vacuum PV (or in old ter-
minology) luminiferous aether. 

3) In principal we consider the open thermodynamic system interacting with 
physical vacuum (PV). But the relation (6.1)-(6.3) obtained for classic dynamic 
system without taking into account the direct influence of PV on the mentioned 
system. 

4) Nevertheless we intend to construct simplified theory excluding the direct 
PV influence. This fact leads to kinematic relation 

2

21 vL L
c⇒ ⇑= − .                      (6.5) 

Let us consider this situation in detail from the position of the nonlocal phys-
ics. The Michelson installation can be considered as a device delivering particles 
moving with the velocities v  in the open probe contour filled by PV. The cor-
responding nonlocal parameter is (see also (2.7)) 

2
D

D
H
v

τ = .                         (6.6) 
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For photons we have ( fυ  is frequency) 

ph fh hτ υ = ,                        (6.7) 

or 

1
ph

f

τ
υ

= .                         (6.8) 

Now we can rewrite the relation (6.3) in the form 

2

1 2 2 2 2 2 2

22 1 1D D

D D D

с Hс vt t L L L L
с v c с H c

τ
τ τ⇒ ⇒⇑ ⇑

   
− = − − = − −   

− −     
.  (6.9) 

Michelson’s experiment assumes that the length of the instrument’s shoulders 
does not change when rotated to a right angle. 

In this case from the position of nonlocal physics 

1 2 0t t− =                         (6.10) 

only if 
0DH →                          (6.11) 

or if the PV viscosity tends to zero. As we see this affirmation contradicts the 
Heisenberg’s uncertainty principle. 

Moreover, it could be said that the uncertainty principle reflects the existence 
of Physical Vacuum. 

From the physical point of view it means that for the realizations (6.10) we 
should exclude the influence of PV in the explicit form. Then (if 0DH → ) 

1 2
2 0t t L L
с ⇒ ⇑− →  −  =  .                 (6.12) 

H.A. Lorentz was aware in the aether existence. In his lectures on theoretical 
physics delivered at the University of Leiden he wrote [24], (Chapter 1, Para-
graph 8: “Reduction in the direction of movement”) he wrote: 

“The negative result of Michelson’s experiment can be explained by assuming 
that the length of the instrument’s shoulders changes when rotated to a right an-
gle....This size dependence on the orientation relative to the Earth’s motion is 
not as surprising as it might seem at first. Indeed, the size is determined by mo-
lecular forces, and since the latter are transmitted over the aether, on the con-
trary it would be strange if the state of motion of the latter does not affect the 
size of bodies. The nature of molecular forces unknown to us; however, if we as-
sume that they are transmitted through the aether in the same way as the elec-
trical forces, then we can build a theory of this reduction, which gives the value 
of the latter, exactly corresponding to the value necessary to explain the zero ef-
fect of the Michelson’s experiment. The size of this reduction will be 6.5 cm for 
the diameter of the Earth and 1/200 microns for the rod length of 1 m.” 

No difficulties to reproduce the Lorentz’ estimation; for example for the rod 

reduction 
2

8
10

9 10 11 1 10 ,m
29 10rrL L −×  = − = − × ×  

 we have ( 30 km searthv = , 
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53 10 km sc = × . 

The origin of contradiction consists in situation when the open thermody-
namic system is considered as a closed one. 

In other words the mirrors should not be considered as fixed objects. 
Then special theory of relativity is kinematic theory which allows avoiding PV 

effects in the explicit form from consideration. 
This affirmation is valid for the situation when the ratio of the object velocity 

to the light velocity in an inertial coordinate system is not small. 
Criticism of general relativity (GR) is well known topic in theoretical physics 

(see for example [25]). No reason to discuss here the shortcomings of GRT. 
Nevertheless we should notice: 

1) GRT does not contain the conservation laws, in other words GRT can’t 
serve as a basement for investigation of transport processes in physical systems. 

2) GRT is a phenomenological generalization of the Poisson equation with the 
aim to organize the transfer to the Newtonian gravitation. Not surprisingly, this 
equation has wave solutions. It was meant to be, not the other way around. 

3) Poisson equation has no interpretation even in Madelung-Schrödinger 
quantum mechanics (QM). Then we have no chance to obtain the unified 
GRT-QM theory. 

4) GRT postulates that the rate of transmission of gravitational interactions is 
equal to the speed of light. Laplace and Poincaré [26] [27] believed that the rate 
of transmission of gravitational interactions is several orders of magnitude high-
er than the speed of light; extremely important problem since the time of Laplace 
and Poincaré. 

5) Formally speaking the Newtonian gravity propagates with the infinite 
speed. This conclusion is connected only with the description in the frame of lo-
cal physics. Usual affirmation - general relativity (GR) reduces to Newtonian 
gravity in the weak-field, low-velocity limit. In literature you can find criticism 
of this affirmation because the conservation of angular momentum is implicit in 
the assumptions on which GR rests. Finite propagation speeds and conservation 
of angular momentum are incompatible in GR. Therefore, phenomenological 
GR was forced to claim that gravity is not a force that propagates in any classical 
sense. 

6) In many cases, the result of the calculations is simply adjusted to the de-
sired one using a small number of experimental data (including the situation 
with the Λ-term and Soldner problem discussed in [6]). 

7) GTR has no reasonable asymptotic behavior at a density tending to infinity 
(a black hole) and at a density tending to zero (a physical vacuum). The appear-
ance of singularity can not be considered as a reasonable solution. 

Then black hole formation is not a robust prediction of the general theory of 
relativity. The idea of a black hole was known for a hundred years before Eins-
tein. 

The following effects of the principal significance exist as a direct consequence 
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of nonlocal physics (see monographs [6] [28]): 
1) The birth of the Universe is convoying of appearance of the repulsion 

forces. In the existing terminology we discover the “negative pressure” and “dark 
energy” in all cases. This fundamental result does not depend on the mechanism 
of external perturbations. In other words, the anti-gravity in the physical va-
cuum exists, if there is dissipation of energy or in the absence of dissipation at 
all. 

2) Physical Vacuum (PV) is not a speculative object; it is a reality as “matter” 
and “fields”. In other words, the physical vacuum is “the third” physical reality 
along with matter and fields. 

3) The fundamental statistical theory on the dissipative non-equilibrium 
theory should be reconsidered. 

4) The theoretical basement of the advanced technologies of the 21st century is 
nonlocal physics. 

7. Hubble Effect and Nonlocal Physics 

A special place in astrophysics is the effect of Hubble—expanding groups of ga-
laxies, accompanied by a proportional increase in the rate of expansion groups 
based on the distance from the main center of gravity. The proportionality factor 
is the Hubble constant (Hu, for Universe Hu = 2.3 × 10−18 s−1), which as it turns 
out, is not a constant value, Hu v r= . We introduce the Hubble parameter no-
tation using the first two letters of the surname (as in similarity theory) in order 
to avoid confusion with the Boltzmann H-function. 

The main origin of the Hubble effect (including the matter expansion with 
acceleration) is self—catching of expanding matter by the self-consistent gravita-
tional field in conditions of the weak influence of the central massive bodies, [4] 
[6]. 

It would seem that we are dealing with the well studied problem in classical 
gas dynamics of point explosion. Not at all, the classical dynamics of a point ex-
plosion has no a Hubble mode. 

Let us consider now the results of so called inflation theory and Hubble ob-
servations from the position of nonlocal physics. It was shown by B.V. Alexeev 
that the following inequality takes place (so called the generalized Boltzmann— 
Alexeev theorem) [3] [4] [7] [8]. One obtains 

d d 0
d d

HH
t t

τ − ≤ 
 

.                     (7.1) 

We introduce the aH - function in accordance with the definition 
d
d

a HH H
t

τ= − .                      (7.2) 

Then the inequality is valid that makes up the conclusion of the generalized 
H-theorem, 

d 0
d

aH
t

≤ .                         (7.3) 
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If we suppose that τ  is constant not depending on time, inequality (7.3) can 
be considered as combination of two principles—Boltzmann’s principle 

d 0
d
H
t
≤                           (7.4) 

and Prigogine’s principle [3] [4] [29] [30] 
2

2

d 0
d

H
t

≥ .                         (7.5) 

The reference level for the energy function can be chosen arbitrarily, in this 
case we use 

d 0
d
HH
t

τ− = .                       (7.6) 

or 

d ln 1
d

H
t τ

=                          (7.7) 

or if nonlocal parameter constτ =  we have 

0e
t

H H τ= .                         (7.8) 

But the Boltzmann H – function is proportional to the velocity 0rv , then 

2
0 0

ˆ e
t

rv H τ=                          (7.9) 

or 

2
0 0

ˆ e
t

rv H τ=                        (7.10) 

and 

0
0 0

1ˆ2 e
t

r
r

v
v H

t
τ

τ
∂

=
∂

,                    (7.11) 

or 

20
0 0

12 r
r r

v
v v

t τ
∂

=
∂

,                     (7.12) 

or 

0 0
1d d
2r rv v t
τ

=                       (7.13) 

or 

0
1d d
2rv r
τ

=                        (7.14) 

or for the constτ =  

0 Hu rv r= ,                        (7.15) 

where the Hubble coefficient Hu is introduced 
1Hu
2τ

= .                        (7.16) 
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Let us comment now so called the inflationary theory of the Universe expan-
sion in the early stages of the evolution of the Universe. It is assumed in the 
mentioned theory that in the period from 10−42 sec to 10−36 sec the Universe was 
in the inflationary stage of its development. Its main feature is the maximum 
strong negative pressure of the substance, leading to an exponential increase in 
the kinetic energy of the Universe and its volume by many orders of magnitude 
[31]. The inflationary model involves replacing the power law of expansion 
~ t  with an exponential law ( )~ exp Hut  where Hu as before is the Hubble 
constant of the inflationary stage, in a general way, depending on time. The val-
ue of the Hubble constant at the inflation stage is taken as 10−42 sec−1 - 10−36 sec−1, 
that is, it gigantic exceeds its current value. Such a law of expansion can be pro-
vided by the states of physical fields (“inflation field”) corresponding to the equ-
ation of state, that is, negative pressure; this stage is called inflationary (from lat. 
inflatio—inflation). 

The model of cosmic inflation has opponents, including Roger Penrose [32]. 
The arguments of the opponents are that the solutions offered by the inflatio-
nary model are only “sweeping the litter under the carpet”. The Rodger Penrose 
consideration contains the inflation theory criticism from the position of local 
physics. 

We should remark: 
1) The basic relation of the inflation theory concerning the exponential growth 

of the early Universe and the Hubble relation are the simplest consequence of 
the nonlocal physics. 

2) The inflation theory has no chance to solve so called “initial value prob-
lems” concerning the Planck time and the problems of the relic gravitational. 

3) The negative pressure does not exist. 
4) The general relativistic theory is not applicable to the early Universe when 

the density 0ρ →  and Big Bang corresponds to the explosion of the Physical 
Vacuum (PV). 

5) The early evolution of the PV can not be considered in the frame of local 
physics in principal. 

6) The proportionality coefficient in the Hubble dependence is commonly re-
ferred to as the Hubble (Hu) constant. The value of the Hubble constant contin-
ues to be refined, and now the most accurate value is close to 70 km/s per 1 me-
gaparsec (1 MPC is about 3 million light years). For example, if a galaxy is lo-
cated at a distance of 100 MPC from us, we can expect that it is moving away 
from our Galaxy at a speed of about 70 × 100 = 7000 km/s. The Hu value is de-
termined from observations of galaxies whose distances are measured without 
red shift (primarily from the brightest stars or Cepheids). The independent es-
timates of Hu give this parameter a value of 66 - 78 km/s per mega parsec. This 
means that galaxies located at a distance of 100 mega parsecs are moving away 
from us at a speed of 6600 - 7800 km/s. At present (2019), the values obtained by 
calculating the distances to galaxies from the luminosity of the Cepheids ob-
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served in them on the Hubble space telescope give an estimate of 74.03 ± 1.42 
(km/s)/mega parsec, and the values obtained by measuring the parameters of 
relic radiation at the Planck space Observatory showed a value of 67.4 ± 0.5 
(km/s)/mega parsec as of 2018. 

7) The problem of estimating Hu is complicated by the fact that, in addition to 
the cosmological speeds due to the expansion of the Universe, galaxies still have 
their own (circular) speeds, which can be several hundred km/s (for members of 
massive clusters of galaxies—more than 1000 km/s). This leads to the fact that 
Hubble’s law is poorly fulfilled or not fulfilled at all for objects located at a dis-
tance closer than 10 - 15 million LY, that is, just for those galaxies whose dis-
tances are most reliably determined without redshift. As we see the cause of the 
discrepancy is much more complicated, because local physics is not applicable to 
this situation in principal. For this reason, if galaxies are relatively close to 
us—say, a few mega parsecs away—the speed of random motion makes the usual 
Hubble’s law inapplicable; such galaxies can either move away or approach us. 
Hubble’s law is fairly accurate only for distant galaxies, and then within certain 
limits—at very large distances of billions of light years (thousands of mega par-
secs), the Hubble constant differs from the one accepted for closer galaxies. 

8) However, Hubble’s law is currently used as the simplest and most reliable 
way to determine the distances to galaxies and their clusters. This is the most 
important parameter describing the current rate of expansion of the Universe. 

9) Extremely important to underline that the Hubble problem has two aspects 
matter evolution in space and the PV evolution in space. 

8. The Problem of Dark Matter: Dark Matter does not Exist. 
Analytical Investigation 

The problem of dark matter was considered by me before in the frame of the 
nonlocal description (see for example monographs [4] [6]). But here I intend to 
show that fundamental results of the observation astronomy can be obtained in 
the analytical form. 

About forty years after Zwicky’s initial observations Vera Rubin [33] [34] [35] 
[36], astronomer at the Department of Terrestrial Magnetism at the Carnegie 
Institution of Washington presented findings based on a new sensitive spectro-
graph that could measure the velocity curve of edge-on spiral galaxies to a great-
er degree of accuracy than had ever before been achieved. Together with Kent 
Ford, Rubin announced at a 1975 meeting of the American Astronomical Society 
the astonishing discovery that most stars in spiral galaxies orbit at roughly the 
same speed reflected schematically on Figure 9. 

For example, the rotation curve of the type B corresponds to the galaxy 
NGC3198. The following extensive radio observations determined the detailed 
rotation curve of spiral disk galaxies to be flat (as the curve B), much beyond as 
seen in the optical band. Obviously the trivial balance between the gravitational 
and centrifugal forces leads to relation between orbital speed V and galactocen-
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tric distance r as 2
NV M rγ=  beyond the physical extent of the galaxy of mass 

M (the curve A). The obvious contradiction with the velocity curve B having a 
‘flat’ appearance out to a large radius, was explained by introduction of a new 
physical essence—dark matter because for spherically symmetric case the hypo-
thetical density distribution ( ) 2~ 1r rρ  leads to V const= . The result of this 
activity is known undetectable dark matter which does not emit radiation, in-
ferred solely from its gravitational effects. But it means that upwards of 50% of 
the mass of galaxies was contained in the dark galactic halo. 

Strict consideration leads to the system of the generalized hydrodynamic equ-
ations (GHE) (5.1)-(5.7) [2]-[7]. Regime B (Figure 9) cannot be obtained in the 
frame of local statistical physics in principal and authors of many papers intro-
duce different approximations for additional “dark matter density” (as usual in 
Poisson equation) trying to find coincidence with data of observations. From the 
wrong position of local theories Poisson Equation (5.1) contains “dark matter 
density”, continuity Equations (5.2) and (5.3) contain the “flux of dark matter 
density”, motion Equations (5.4) and (5.5) include “dark energy”, the energy 
Equations (5.6) and (5.7) has “the flux of dark energy” and so on to the “senior 
dark velocity moments”. This entire situation is similar to the turbulent theories 
based on local statistical physics and empirical corrections for velocity moments. 

The character features reflected on Figure 9 can be explained in the frame of 
Newtonian gravitation law and the non-local kinetic description [2]-[7]. Let us 
discuss mathematical and physical models involved into the mentioned consid-
eration: 

1) The typical galaxy contains the tremendous quantity of stars. As a result the 
hydrodynamic application for the investigation of the universe objects is typical 
in astrophysics. For example our home galaxy Milky Way contains over 200 bil-
lion stars including our Sun. The Milky Way has a diameter of 100,000 light 
years and belongs to the type of a barred spiral galaxy. The Milky Way has three 
main parts: a disk, in which the Solar System resides, a bulge at the core, and an 
all encompassing halo. This situation allows to apply the methods of statistical 
physics for the system description. 

2) Peculiar features of the halo movement can be explained without new con-
cepts like “dark matter”. It is shown (see for example [6]) that the transformation  

 

 
Figure 9. Rotation curve of a typical spiral galaxy: predicted (A) and observed (B). 
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of the Kepler’s regime into the flat rotation curves depends on the similarity pa-
rameter 

2 2
0 0 0N N x uγ γ ρ= ,                      (8.1) 

where Nγ  is gravitational constant, 0x  and 0u  are the character length and 
the soliton velocity correspondingly. Parameter NG γ=   plays the role of simi-
larity criteria in traditional hydrodynamics. Important conclusions: 

3) The obtained results demonstrate evolution the rotation curves from the 
Kepler regime (in the case of small G , like curve A on Figure 9) to observed 
orbital curves with the shelf (large G , like curve B on Figure 9) for typical spir-
al galaxies. Then parameter G  defines the transfer from the Kepler’s to Rubin 
scenario. 

4) The stars with planets (like Sun) correspond to gravitational soliton with 
small G  and therefore originate the Kepler rotation regime. 

5) Important to underline that the shown transformation of the Kepler’s re-
gime into the flat rotation curves for different solitons explains the “mysterious” 
fact of the dark matter absence in the Sun vicinity. 

I don’t intend to repeat the corresponding calculations (see [6]). I intend to 
explain the obtained results in the frame of analytical investigation. We use the 
spherical coordinate system with the independent variables , ,r θ ϕ  (radial dis-
tance r, polar angle θ and azimuth angle ϕ ): 

Let us write down GHE (5.1)-(5.7) in spherical coordinate system for the one 
species system. We use continuity equation and motion equation written to-
gether for the physical system with radial symmetry 

( )

( )

2
0

2

2 2
02 2

02 2 2

1

1 1 1 0

r

r
r r

r v

t t rr

r v pr v g r
r r r rr r r

ρρρ τ

ρ
ρ τ ρ τ

  ∂∂ ∂  − + 
∂ ∂ ∂    

   ∂∂ ∂ ∂     + − − − =     ∂ ∂ ∂ ∂     

  (8.2) 
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ϕ ϕ
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ρ
ρ τ ρ

ρ
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τ

  ∂∂ ∂  − + 
∂ ∂ ∂    

   ∂∂    + − −   ∂ ∂    
 ∂∂  − =
 ∂ ∂ 

       (8.3) 

where 0v ϕ  is an orbital velocity. Two differential equations (8.2) and (8.3) are 
compatible even in the non-stationary case if 

0v constϕ =                         (8.4) 

for the arbitrary τ . 
Let us prolong the investigation of stationary case comparing the nonlocal 
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continuity Equation (8.2) written in the form after integration 

( )2 2
0

0 0 0 0 02

1 0r
r r

r v pv v v g v v
r rrϕ ϕ ϕ ϕ

ρ
ρ τ ρ

 ∂ ∂ − − + =
 ∂ ∂
 

        (8.5) 

and the motion equation onto ϕe -direction (8.3) we find 

( ) 02
0 0r

v
v p

r
ϕρ

∂
+ =

∂
                     (8.6) 

or for satisfying (8.6) we should admit that 0 0
v
r
ϕ∂
=

∂
 or 

0v constϕ = .                        (8.7) 

for all r. Extremely important that the relation (8.7) includes the Newton gravi-
tation regime. Really, from the mathematical point of view the Newton’s law has 
an asymptotic character if 0→r  or r →∞  

2

1~F
r

                          (8.8) 

or 

10 2,
1~Nv

rϕ .                        (8.9) 

After substitution (8.9) into (8.6) we have 

( )2
0 3 2

1 0rv p
r

ρ + →                     (8.10) 

if r →∞ ; total energy also tends to zero if r →∞ , ( )2
0 0rv pρ + → . 

Let us investigate the Poisson Equation (5.1), which can be written in dimen-
sionless form as ( G  is the dimensionless Newton gravitational constant Nγ ) 

04 G
t
ρρ τ ρ∂  ∂ ∂  ⋅ = − − + ⋅ π  ∂ ∂ ∂  





   

 

g v
r r

.            (8.11) 

We suppose for the simplicity the stationary case with the radial symmetry. 
Then 

( ) ( )2
02 2 r

r

r v
r g G r

r r

ρ
ρ τ
 ∂∂  = − −

∂ ∂  

 



   
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             (8.12) 

or after integration 

( )2
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d d
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r
r

r v
r g G r r G r

r

ρ
ρ τ

 ∂
  = − +  ∂  

∫ ∫
 

 

 

     



.          (8.13) 

Let us suppose that nonlocal dimensionless parameter τ  does not depend on 
r . In this case we find 

2 2 2
0

0

d
r

r rr g G r r G r vρ τ ρ = − + ∫


 

                       (8.14) 

or 
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2 2
0r rr g GM G r vτ ρ= − + 

     ,                  (8.15) 

where M  is the dimensionless mass of the central body. As a result we obtain 
non-local gravitation law 

02r r
Mg G G v
r

τ ρ= − +


 

  



                   (8.16) 

and only in the local case we reach the classical Newton law 

2r
Mg G
r

= −








.                       (8.17) 

In the nonlocal case gravitational acceleration 

02r r
Mg G v
r

τρ
 

= − − 
 




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

                   (8.18) 

turns into zero in a point crr  if 

02 r
cr

M v
r

τρ=

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

,                       (8.19) 

where 

0
cr

r

Mr
vτρ

=




 

.                      (8.20) 

if 0 , 0r crv > . Then the well known relation should be modified 

02r r
Mmg Gm v
r

τρ
 

= − − 
 





  



                  (8.21) 

or the orbital velocity is equal 

0orb r
MV G v r
r

τρ
 

= − 
 





  



.                  (8.22) 

The energy flux density can be negative 0 0rvρ <   that is, can be  

,orb orb NewtonV V> . This equality may mean the introduction of additional mass 
which in local physics as an “additional dark matter” is considered. 

Then 

2
01 r

orb
v rMV G

r M
τρ 

= − 
 



  







.                 (8.23) 

For the bounded system 0 0rvρ <  ; we have formally the additional (if you 
want “dark” mass) 

( ) 2
0dark rM r v rτρ=     .                   (8.24) 

It means also that in the well known Soldner formulae the additional mass 
( )darkM r  should be inserted which leads to increasing effective mass M. For 

example (see [6]) 

( )( )2

2 N
N Sun dark

Sun

M M r
R c
γ

δ = +  .               (8.25) 

From the nonlocal Newton-Kepler relation (8.25) follows that anti-lensing ef-
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fect can take place. If the parameter τ  is not dependent on r  the effective 
gravitational acceleration  

02r r
Mg G v
r

τρ
 

= − − 
 





  



                   (8.26) 

can be positive, negative, or zero and only in the local case we reach the classical 
Newton law. 

Let us compare (8.26) with the correction (8.27) following from the general 
relativity (GR)  

2

2 2 3

4 ...
 

= − − + 
 

r
M GMg G
r c r

.                   (8.27) 

As we see the corrections (8.26) and (8.27) have the same structure. Comparing 
formulas (8.26) and (8.27) allow defining the nonlocal parameter from the GR 
point of view. 

Conclusions: 
1) The kind of the halo rotation (8.7) corresponds to the Vera Rubin effect. In 

other words the orbital speed is constant for different radius. 
2) This kind of the halo rotation corresponds to the Vera Rubin effect even in 

the presence of the mass transfer in the r direction. 
3) This analytical result does not depend on the τ  choice. 
4) The theory can be applied to the investigation of the ring rotation around 

the cosmic objects like Saturn. For example it means that the rotation inside of 
each Saturn rings corresponds to the Vera Rubin model. This effect can be veri-
fied by the direct observation or with the help of robotic spacecrafts. 

5) The Newton law of gravitation for the statistical physical system should be 
modified. 

Dark matter is artifact of local physics. Dark matter does not exist. 

9. Transport Processes in Physical Vacuum.  
Preliminary Remarks 

GHE have extremely important for astrophysics special cases when density 
0ρ →  (the initial stage of evolution of the Universe, the Big Bang) and when 

density ρ →∞  (evolution of the black hole). Both limiting cases have no phys-
ical or mathematical meaning in “classical” hydrodynamics. Thus, we have a 
unified statistical theory of dissipative structures, which has a hydrodynamic 
shape. We will, as already mentioned, refer to the corresponding system of equa-
tions as the fundamental equations of the unified theory (UT) 

If the matter is absent, non-local evolution equations have nevertheless non- tri-
vial solutions corresponding evolution of PV which description in time and 3D 
space on the level of quantum hydrodynamics demands only quantum pressure p, 
the self-consistent force R  (acting on unit of the space volume) and velocity 0v . 
The system of non local equations is written for the case when the usual matter is 
absent ( 0ρ = ); also radiation, gravitation (as well as other mass forces) and elec-
tromagnetic fields are absent. No reason to speak about special or general relativity 
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in this situation, because these theories don’t work in the described conditions. 
We intend to consider from the position of the nonlocal physics the interac-

tion of Physical Vacuum with matter. 
We intend to consider the problem of the fundamental significance—is it 

possible to transfer the PV energy to matter? All results are obtained from the 
first principles of physics. 

Another great problem of theoretical physics consists in asymmetry of matter 
and antimatter in the visible Universe. 

What is the root of the problems from the theoretical point of view? The origin of 
difficulties consists in total Oversimplification following from principles of local 
physics and reflects the general shortcomings of the local kinetic transport theory 
based on the Boltzmann kinetic theory. Let us realize this program of investigation. 

The process by which the inequality between matter and antimatter particles 
developed is called barogenesis. In modern physics, antimatter is defined as matter 
which is composed of the antiparticles of the corresponding particles of “ordinary” 
matter. Minuscule numbers of antiparticles can be found in natural processes like 
cosmic ray collisions and some types of radioactive decay. Only a tiny fraction of 
these have successfully been bound together in experiments to form anti-atoms. 
We consider this problem from the position of nonlocal physics. 

With this aim we write down the GHE system of Equations (5.1)-(5.7) for the 
two component mixture of charged particles (without taking into account the 
component’s internal energy) in the dimensionless form, where dimensionless 
symbols are marked by tildes. Summary of wave matter equations with the PV 
influence (subscripts “i” and “e” correspond to the positively and negatively 
charged components, subscript “υ ” corresponds to PV). 

We use the system of dimensional transport equations defining the interaction 
Matter—Physical Vacuum: 

- Poisson equation 

( ) ( )
2

2 4 i e
i i i e e e

n n
e n n u n n u

t x t xx
ψ τ τ

  ∂   ∂ ∂ ∂ ∂    = − − + − − +       ∂ ∂ ∂ ∂∂       
π

 
,  (9.1) 

- continuity equation for positive ion component 

( )

( ) ( )2
, 0,

i
i i i

i
i i i i i i eff

u
t t x

p
u u u F

x t x x

ρ
ρ τ ρ

ρ τ ρ ρ ρ

 ∂ ∂ ∂ − +  ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ + − + + − =  ∂ ∂ ∂ ∂  

      (9.2) 

- continuity equation for electron component 

( )

( ) ( )2
, 0,

e
e e e

e
e e e e e e eff

u
t t x

p
u u u F

x t x x

ρ
ρ τ ρ

ρ τ ρ ρ ρ

 ∂ ∂ ∂ − +  ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ + − + + − =  ∂ ∂ ∂ ∂  

      (9.3) 

- momentum equation 
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( ) ( ) ( ) ( )2 2
, ,i i i i i i eff e e e e e e effu u p u F u p u F

t t x t x
ρ τ ρ ρ ρ τ ρ ρ ρ∂  ∂ ∂ ∂ ∂    − + + − − + + −    ∂ ∂ ∂ ∂ ∂    

 

( ) ( )

( ) ( )

( ) ( )

, , , ,

2 2 3
,

2 3
,

3 2

3 2 0;

i e
i i eff e e eff i eff i i e eff e e

i i i i i i i eff

e e e e e e e eff

F F F u F u
t x t x

u p u p u p u uF
x t x

u p u p u uF
t x

ρ ρ
ρ ρ τ ρ τ ρ

ρ τ ρ ρ ρ

τ ρ ρ ρ

∂ ∂∂ ∂   − − + + + +   ∂ ∂ ∂ ∂   
∂  ∂ ∂ + + − + + + −  ∂ ∂ ∂ 

∂ ∂  − + + + − = ∂ ∂ 

            (9.4) 

- energy equation for positive ion component 

( ) ( )

( )

( )

( ) ( )

2 2 3
,

3 3

2
4 2 2

,

2
, , ,

3 3 5 2

5 5

8 5 3 5

2 2

i i i i i i i i i eff

i i i i i

i
i i i eff i i

i

i i eff i i eff i i i i i eff

u p u p u p u F u
t t x

u p u u p u
x t

p
u p u F u p

x

u F F u u p F
t x

ρ τ ρ ρ ρ

ρ τ ρ

ρ ρ
ρ

ρ τ ρ ρ ρ

∂  ∂ ∂  + − + + + −  ∂ ∂ ∂  
∂  ∂+ + − + ∂ ∂

 ∂ + + + − +   
∂   

∂ ∂ − + + + − ∂ ∂ 
,i e

ei

p p
τ
−

= −

  (9.5) 

- energy equation for electron component 

( ) ( )

( )

( )

( ) ( )

2 2 3
,

3 3

2
4 2 2

,

2
, , ,

3 3 5 2

5 5

8 5 3 5

2 2

e e e e e e e e e eff

e e e e e

e
e e e eff e e

e

e e eff e e eff e e e e e eff

u p u p u p u F u
t t x

u p u u p u
x t

p
u p u F u p

x

u F F u u p F
t x

ρ τ ρ ρ ρ

ρ τ ρ

ρ ρ
ρ

ρ τ ρ ρ ρ

∂  ∂ ∂  + − + + + −  ∂ ∂ ∂  
∂  ∂+ + − + ∂ ∂

 ∂ + + + − +   
∂   

∂ ∂ − + + + − ∂ ∂ 
,e i

ei

p p
τ
−

= −

 (9.6) 

where u is translational velocity of the quantum object, ψ —scalar potential, in  
and en  are the number density of the charged species, ,i effF  and ,e effF  are the 
forces acting on the unit mass of ion and electron with taking into account the 
PV influence. 

For the iτ  and eτ  approximations, the relations are used in the forms 

2i
im u

τ =
 , 2e

em u
τ =

 .                    (9.7) 

We begin with introduction the scales for velocity 

[ ] 0u u=                           (9.8) 

and for coordinate x 0
0e

x
m u

=
 , for 0ψ ψ→ , for 0n n→ . 

Generalized Poisson Equation (9.1) now is written as 

( ) ( )
2

2 4 i e
i i i e e e

n n
e n n u n n u

t x t xx
ψ τ τ

  ∂   ∂ ∂ ∂ ∂    = − − + − − +       ∂ ∂ ∂ ∂∂       
π

 
,   (9.9) 
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or 

( )

( )

2
2 0

0 0 02
0

0

0

1 14

1 1 .

i
i i i

i i

e
e e e

e e

u
e x u

m m t x xx

u
u

m m t x x

ρψψ ρ ρ τ ρ

ρ
ρ τ ρ

  ∂∂ ∂= − − +   ∂ ∂∂ 
π

  
  ∂ ∂ − − +  ∂ ∂    




  





 



     (9.10) 

If the potential scale 0ψ  and the density scale 0ρ  are chosen as 

2
0 0

em
u

e
ψ = ,                       (9.11) 

4
4

0 02 24
em

u
e

ρ
π

=


.                      (9.12) 

we find 

( )

( )

32
2 2 0
0 02 2

0

0

0

1 14
4

1 1 .

e i
i i i

i i

e
e e e

e e

m u
x u u

m m t x xx

u
u

m m t x x

ρψ ρ τ ρ

ρ
ρ τ ρ

  ∂∂ ∂= − − +   ∂ ∂∂   
π


  ∂ ∂ − − +  ∂ ∂  

π






  






  



     (9.13) 

Let us introduce the wave variable for the plane flow 

x Ctξ = − ,                        (9.14) 

using the scales 

0
0e

x
m u

=
 ,                        (9.15) 

0
0

x
t

C
=                          (9.16) 

we reach the dimensionless form of the independent variable (9.14) 

x tξ = −



 .                        (9.17) 

Using (9.7) and (9.15) one obtains 

( )

( )

2
0

2 2 2
0 0

0
2 2

0 0

1

1

i
e i i

i i

e
e e

e e

uCm u
m x xx u m

uC u
m x xu m

ρψ ρ ρ
ξ ξ

ρ
ρ ρ

ξ ξ

  ∂∂ ∂= − − − +   
∂ ∂ ∂   

  ∂ ∂ − − − +  
∂ ∂    






  

 







  

 

       (9.18) 

Let be 

0C u= .                         (9.19) 

We have finally from (9.15)-(9.18) 

( )

( )

2

22

2

1

1 .

e e i
i i

i i

e
e e

m m
u

m mu

u
u

ρψ ρ ρ
ξ ξ ξ

ρ
ρ ρ

ξ ξ

   ∂∂ ∂= − − − +   ∂ ∂ ∂   
  ∂ ∂ − − − +   ∂ ∂   




  

  





  

 



          (9.20) 
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We transform now the continuity equations for i and e components. One ob-
tains for the positive charged i species 

( )

( ) ( )2
, 0.

i
i i i

i
i i i i i i eff

u
t t x

p
u u u F

x t x x

ρ
ρ τ ρ

ρ τ ρ ρ ρ

 ∂ ∂ ∂ − +  ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ + − + + − =  ∂ ∂ ∂ ∂  

      (9.21) 

In the moving coordinate system all dependent hydrodynamic values are 
functions of ( ), tξ . We investigate the possibility of the quantum object forma-
tion of the soliton type. For this solution there is no explicit dependence on time 
for coordinate system moving with the phase velocity 0u . Then using the scale 
relation 

0

0 0

1 u
t x
=                          (9.22) 

and (9.7) we have 

( ) ( )

( ) ( )

0
2

0

20 0 0
,2 2 2

0 0 0 0

0

i i
i i

i

i
i i i i eff

i

u
u u

x m u
u p p x

u u F
x m u u u

ρ ρ
ρ ρ

ξ ξ ξ ξ ξ

ρ ρ ρ
ρξ ξ ξ ξ

  ∂ ∂∂ ∂ ∂ − + + − +  ∂ ∂ ∂ ∂ ∂   
  ∂∂ ∂ ∂ − − + + − =  ∂ ∂ ∂ ∂   

 



  

    





   

   

   (9.23) 

Let us introduce the scale 
2
0

0
0

u
F

x
→ ,                        (9.24) 

the scale 
2

0 0 0p p uρ→ = .                      (9.25) 

and transform (9.23) 

( ) ( )

( ) ( )

2

2
,2

1

1 0.

i e i
i i

i

e i
i i i i eff

i

m
u u

m u
m p

u u F
m u

ρ ρ
ρ ρ

ξ ξ ξ ξ ξ

ρ ρ ρ
ξ ξ ξ ξ

  ∂ ∂∂ ∂ ∂ − − − +  ∂ ∂ ∂ ∂ ∂   
  ∂∂ ∂ ∂ + − + + − =  ∂ ∂ ∂ ∂   

 

  

    







   

   



     (9.26) 

The forces of the electric origin have the form 
2
0

0
0

e
i i i

i

u m
F

x m
ψρ ρ ρ
ξ

∂
= −

∂






,                  (9.27) 

2
0

0
0

e e e
u

F
x

ψρ ρ ρ
ξ

∂
=

∂






,                    (9.28) 

but we should add the volume forces of the PV origin. We find 

( )

( )2
2

1 12 0,
1

i
i

e
i i i i i i

e ii

i e

u

m p
p u u F

mm u
m

υ

ρ
ρ

ξ ξ

ρ ρ ρ ρ
ρξ ξ ξ
ρ

∂ ∂
−

∂ ∂
  
  ∂∂ ∂  + + + − − − = 

∂ ∂ ∂  +    



 

 





     

  






 (9.29) 
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where 

e
i

i

m
F

m
ψ
ξ

∂
= −

∂






.                      (9.30) 

Let us realize transformation of the continuity equation for e-species to the 
dimensionless form 

( ) ( )

( ) ( )2
, 0,

e e
e e e

e
e e e e e eff

u u
t x t t x

p
u u F

x t x x

ρ ρ
ρ τ ρ

τ ρ ρ ρ

∂  ∂ ∂ ∂ ∂ + − +  ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ − + + − =  ∂ ∂ ∂ ∂  

       (9.31) 

Using the relations 0

0 0

1 u
t x
=  and 2e

em u
τ =

  one obtains 

( ) ( )

( ) ( )

0
2

0

20 0 0
,2 2 2

0 0 0 0

0

e e
e e

e

e
e e e e eff

e

u
u u

x m u

u p p x
u u F

x m u u u

ρ ρ
ρ ρ

ξ ξ ξ ξ ξ

ρ ρ ρ
ρξ ξ ξ ξ

  ∂ ∂∂ ∂ ∂ − + + − +  ∂ ∂ ∂ ∂ ∂   
  ∂∂ ∂ ∂ − − + + − =  ∂ ∂ ∂ ∂   

 



  

    





   

   

   (9.32) 

Let us introduce the scale 
2
0

0
0

u
F

x
→  and the scale 2

0 0 0p p uρ→ = ; I remind 

that qu
e

h
m

υ =  is introduced by me quantum kinematic viscosity and  

0
0 02

qu

e

x
m u u

υ
π

= =


. We have 

( ) ( )

( )

2

2
2

1

1 12 0,
1

e e
e e

e e e e e e
i e

e i

u u
u

p
p u u F

mu
m

υ

ρ ρ
ρ ρ

ξ ξ ξ ξ ξ

ρ ρ ρ ρ
ρξ ξ ξ
ρ

  ∂ ∂∂ ∂ ∂ − − − +  ∂ ∂ ∂ ∂ ∂   
  
  ∂∂ ∂  + + + − − − = 

∂ ∂ ∂  +    

 

  

    







     

  






   (9.33) 

where 

e e eF ψρ ρ
ξ

∂
=
∂




 



.                      (9.34) 

We transform now the motion equation; 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2
,

2
,

, , , ,

2 2 3
,3 2

i i i i i i eff

e e e e e e eff

i e
i i eff e e eff i eff i i e eff e e

i i i i i i i eff

u u p u F
t t x

u p u F
t x

F F F u F u
t x t x

u p u p u p u uF
x t x

ρ τ ρ ρ ρ

τ ρ ρ ρ

ρ ρ
ρ ρ τ ρ τ ρ

ρ τ ρ ρ ρ

∂  ∂ ∂ − + + −  ∂ ∂ ∂ 
∂ ∂  − + + −  ∂ ∂ 

∂ ∂∂ ∂   − − + + + +   ∂ ∂ ∂ ∂   
∂ ∂ ∂+ + − + + + −
∂ ∂ ∂

( ) ( )2 3
,3 2 0;e e e e e e e effu p u p u uF

t x
τ ρ ρ ρ

 
   
∂ ∂  − + + + − = ∂ ∂ 

  (9.35) 

https://doi.org/10.4236/jmp.2021.127066


B. V. Alexeev 
 

 

DOI: 10.4236/jmp.2021.127066 1083 Journal of Modern Physics 
 

We find 

( ) ( )

( ) ( )

( ) ( )

20 0
, 2

0 0

20 0
, 2

0 0

0
, , ,2

00

,
0

1

1

i i i i i i eff

e e e e e e eff

i
i i eff e e eff i eff i i

e eff e

u x
u u p u F

x u

u x
u p u F

x u
x

F F F u
uu

F
u

ρ τ ρ ρ ρ
ξ ξ ξ

τ ρ ρ ρ
ξ ξ

ρ
ρ ρ τ ρ

ξ ξ

τ

  ∂ ∂ ∂− − − + + −  ∂ ∂ ∂  
 ∂ ∂ − − + + −  ∂ ∂  

 ∂ ∂
− + + − + ∂ ∂ 

∂
+ −

      

  

    

 



   

 

( )

( ) ( )

( ) ( )

2 2 30 0
, 2

0 0

2 30 0
, 2

0 0

3 2

3 2 0;

e
e

i i i i i i i eff

e e e e e e e eff

u

u x
u p p u u p u u F

x u

u x
p u u p u u F

x u

ρ
ρ

ξ ξ

ρ τ ρ ρ ρ
ξ ξ ξ

τ ρ ρ ρ
ξ ξ

 ∂
+ ∂ ∂ 

  ∂ ∂ ∂+ + − − + + + −  ∂ ∂ ∂  
 ∂ ∂ − − + + + − = ∂ ∂  



 




          

  

       

 

 (9.36) 

Using the relations 2i
im u

τ =
 , 2i

im u
τ =

 , 0
0e

x
m u

=
  and 

2
0

0
0

u
F

x
=  we 

have 

( ) ( )

( ) ( )

( ) ( )

2
,2

2
,2

2
0

, , , 2
0 0

2
0

,
0

1

1

1

e
i i i i i eff

i

e e e e e eff

i
i i eff e e eff i eff i

i

e eff
e

m
u u p u F

mu

u p u F
u

u
F F F u

x um u
u

F
x m

ρ ρ ρ ρ
ξ ξ ξ

ρ ρ ρ
ξ ξ

ρ
ρ ρ ρ

ξ ξ

  ∂ ∂ ∂− − − + + −  ∂ ∂ ∂  
 ∂ ∂ − − + + −  ∂ ∂  

 ∂ ∂
− + + − + ∂ ∂ 

+



      

  





    

 







  

   

 



 ( )

( ) ( )

( ) ( )

2
0

2 2 3
,2

2 3
,2

1

1 3 2

1 3 2 0;

e
e

e
i i i i i i eff

i

e e e e e e eff

u
uu

m
u p p u u p u u F

mu

p u u p u u F
u

ρ
ρ

ξ ξ

ρ ρ ρ ρ
ξ ξ ξ

ρ ρ ρ
ξ ξ

 ∂ ∂
− + ∂ ∂ 

  ∂ ∂ ∂+ + − − + + + −  ∂ ∂ ∂  
 ∂ ∂ − − + + + − = ∂ ∂  



 






          

  





       

 



  (9.37) 

or 

( ) ( ) ( ){ }

( )

( )

2

2 3
2

2 3
2

1 12 2 3
1

1 2 2 3

i e i e i e

e
i i i i i i i

e ii

i e

e
e e e e e e e

e
e i

i

u p p u

m p
p u u u p u F
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m

p
p u u u p u F
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m

υ

υ

ρ ρ ρ ρ
ξ

ρ ρ ρ ρ
ρξ ξ ξ
ρ

ρ
ρ ρ ρ ρ

ξ ξρ ρ

∂
+ + + − +

∂
  
  ∂∂ ∂  + + − − − − −

∂ ∂ ∂  +   


∂∂
+ + − − − − −

∂ ∂+


      







        

  






 



        

 



 

( ) i e
i i e e

i e
i e e i

e i

p p
F F

m m
m m

υ υρ ρ
ρ ρ

ξ ξρ ρ ρ ρ


  

 
 

∂ ∂
− + − −

∂ ∂+ +

  

 

 

 

   
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( )

( )

2

2

1 1 1

1 1 1

1 12 2

e
i i

i i
i e

e

e e
e

e i
i

e e e
e e e e

e i
e i

i

p m
F u

m mu
m

p
F u

m u
m

p m
F F

mu m u
m

υ

υ

υ

ρ
ξ ξρ ρ

ρ
ξ ξρ ρ

ρ ρ
ρ ρ

ξ ξ ξρ ρ

 
 ∂ ∂ + + −   ∂ ∂+ 
 
 
 ∂ ∂ + + −   ∂ ∂+ 
 

  
  ∂∂ ∂  + + + + 

∂ ∂ ∂  +    





 

 









 

 



 

 

 

 

  

 

  

0;
e

e i
i

p
m
m

υ

ξρ ρ

  
  ∂   =
 ∂ +    







 (9.38) 

where 

eF ψ
ξ

∂
=
∂






, e
i

i

m
F

m
ψ
ξ

∂
= −

∂






.                  (9.39) 

Let us derivate the dimensionless energy equation for positive ion component. 

( ) ( )

( )

( )

( ) ( )

2 2 3
,

3 3

2
4 2 2

,

2
, , ,

3 3 5 2

5 5

8 5 3 5

2 2

i i i i i i i i i eff

i i i i i

i
i i i eff i i

i

i i eff i i eff i i i i i eff

u p u p u p u F u
t t x

u p u u p u
x t

p
u p u F u p

x

u F F u u p F
t x

ρ τ ρ ρ ρ

ρ τ ρ

ρ ρ
ρ

ρ τ ρ ρ ρ

∂  ∂ ∂  + − + + + −  ∂ ∂ ∂  
∂  ∂+ + − + ∂ ∂

 ∂ + + + − +   
∂   

∂ ∂ − + + + − ∂ ∂ 
,i e

ei

p p
τ
−

= −

  (9.40) 

or 

( ) ( )

( )

( )

2 2 30
,

0

3 30

0

2
4 2 2

,

3 3 5 2

5 5

8 5 3 5

i i i i i i i i i eff

i i i i i

i
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i

u
u p u p u p u F u

x

u
u p u u p u

x

p
u p u F u p

ρ τ ρ ρ ρ
ξ ξ ξ

ρ τ ρ
ξ ξ

ρ ρ
ρξ

  ∂ ∂ ∂ − + − − + + + −  ∂ ∂ ∂   
 ∂ ∂+ + − − + ∂ ∂ 

 ∂ + + + − +   
∂   



          

  

      

 





     





( ) ( )20
, , , 0

0

2 2 .i e
i i eff i i eff i i i i i eff

ei

u p p
u F F u u p F t

x
ρ τ ρ ρ ρ

τξ ξ



  −∂ ∂
− + − + + − = − ∂ ∂ 

 

  

      

 

 (9.41) 

Using the relations 2i
im u

τ =
 , 0

0e

x
m u

=
  we find 

( ) ( )
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2 2 3
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3 3
2

13 3 5 2
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e
i i i i i i i i eff

i

e
i i i i

i

m
u p u p u p u F u

mu

m
u p u u p u

mu

ρ ρ ρ ρ
ξ ξ ξ

ρ ρ
ξ ξ

  ∂ ∂ ∂ − + − − + + + −  ∂ ∂ ∂   
 ∂ ∂+ + − − + ∂ ∂ 



          

  



      

 


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( ) ( )
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8 5 3 5

12 2 ,
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e i e
i i eff i eff i i i i i eff

i ei
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u p u F u p

m p p
u F F u u p F t
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ρ ρ
ρξ

ρ ρ ρ ρ
τξ ξ

 ∂ + + + − +   
∂   

  −∂ ∂
− + − + + − = − ∂ ∂ 





     





 

  

      

 



 (9.42) 

After introduction the eiτ  nonlocal parameter ( )2
e i eiu m m τ+ =   and  

0
0e

x
m u

=
 , we have 
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ρξ

 ∂ ∂ ∂+ − − + − + ∂ ∂ ∂ 

  ∂ ∂ ∂ + + − + +  ∂ ∂ ∂   

 ∂
− + + + + 
∂   

        

  





        

  







     




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



 ∂ ∂
− + − + + − ∂ ∂ 

 
= − − + 

 

  

      

 



  

    (9.43) 

and finally 
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∂
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∂

   ∂ ∂ + + − − − − −   
∂ ∂     

  
  ∂∂     + + + −   ∂ ∂ +   
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




   
   ∂ ∂   − + + +
   ∂ ∂+ +   
   

  
  ∂∂  × + − − +
  ∂ ∂+  

  

 
= − − + 

 

 

 



 



 





    

 



  

   (9.44) 

Let’s transform of the energy equation for electron component to the dimen-
sionless form: 
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  (9.45) 

or 
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  (9.46) 

or after using 2e
em u

τ =
 , 0

0e

x
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=
  we reach the equation 
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 (9.47) 

As before we use ( )2
e i eiu m m τ+ =   and 0
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x
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=
 , then 
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Writing in the explicit form we use for example 
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                 (9.49) 

then 
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If , 0x
p

R
x
υ
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− =
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, then motion equation for the PV evolution is written as 

follows 
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or to the equation which has the wave solutions 

,
, 4 0x
x

vp p
v p υυ υ
υ υξ ξ ξ

∂∂ ∂
− − =

∂ ∂ ∂



 

 

   

.                (9.52) 

Let us demonstrate derivation of the wave PV energy equation for the case 
0υτ ≠ . From Equation (5.7) follows in the PV limit ( 0ρ → ) 
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        (9.53) 
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   (9.54) 

Write down the energy PV Equation (9.54) for the case constυτ =  in the 
dimensionless form, we find 
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  (9.55) 

The following figures reflect some results of calculations realized according to 
the system of of eight ordinary non-linear Equations (9.20), (9.29), (9.33), (9.38), 
(9.44),(9.50), (9.52) and (9.55) with the help of Maple. 

Some comments to the system of Equations (9.20), (9.29), (9.33), (9.38), 
(9.44), (9.50), (9.52) and (9.55): 

1) The problem belongs to the class of Cauchy problems. 
2) In comparison with the Schrödinger theory connected with behavior of the 

wave function, no special conditions are applied for dependent variables includ-
ing the domain of the solution existing. This domain is defined automatically in 
the process of the numerical solution of the concrete variant of calculations. 

3) From the introduced scales 
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only two parameters are independent – the phase velocity 0u  of the quantum 
object, and external parameter H, which is proportional to Plank constant   

and in general case should be inserted in the scale relation as 0
0 0e e

H nx
m u m u

= =
 . 

It leads to exchange in all scales H↔ . 
The following notations on figures are used: r-density iρ , s-density eρ , 

u-velocity u , h-PV velocity, p-pressure ip , q-pressure ep , w-PV pressure 
pυ  and v-self consistent potential ψ . Other notations: Lem → , Tim → ,  

D
ξ
∂

→
∂ 

, independent variable t responds to ξ . Explanations placed under all 

following figures, Maple program contains Maple’s notations for example the 

expression ( )( )0 0D u =  means in the usual notations ( )0 0u
ξ
∂

=
∂




. 

Let’s compare the two configurations—taking into account the influence of 
the physical vacuum and disregarding this influence. Cauchy conditions placed 
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under all following figures. 
Figure 10 reflects results without the PV influence. 
Figure 11 reflects results with taking into account the PV influence (but the 

PV nonlocal parameter 0υτ = ). 
 

 
Figure 10. p-pressure ip  (solid line), q-pressure ep  (dashed line), r-density iρ  
(dotted line), s-density eρ  (dashdot line), Cauchy conditions: A) v(0) = 1, r(0) = 1, s(0) 
= 1, u(0) = 1, p(0) = 1, q(0) = 0.95, D(v)(0) = 0, D(r)(0) = 0, D(s)(0) = 0, D(u)(0) = 0, 
D(p)(0) = 0, D(q)(0) = 0. 

 

 
Figure 11. p-pressure ip  (solid line), q-pressure ep  (dashed line), r-density iρ  (dot-
ted line), s-density eρ  (dashdot line), Cauchy conditions: v(0) = 1, r(0) = 1, s(0) = 1, 
u(0) = 1, p(0) = 1, q(0) = 0.95, D(v)(0) = 0, D(r)(0) = 0, D(s)(0) = 0, D(u)(0) = 0, D(p)(0) 
= 0, D(q)(0) = 0, w(0) = 1, D(w)(0) = 0, h(0) = 0, D(h)(0) = 1. 
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For the Cauchy conditions A) the PV influence leads to the destruction of the 
atom structure (like hydrogen) and appearance the object with the positive 
charged shell and the character size, which is smaller in hundreds times than 
previous object (like neutron). 

Figure 12 reflects results without the PV influence, but for other Cauchy con-
ditions type B: B) v(0) = 1, r(0) = 1, s(0) = 1, u(0) = 1, p(0) = 0.95, q(0) = 1, 
D(v)(0) = 0, D(r)(0) = 0, D(s)(0) = 0, D(u)(0) = 0, D(p)(0) = 0, D(q)(0) = 0. 

For the Cauchy conditions B) the PV influence leads to the destruction of the 
structure with the positive shell (like neutron) and to appearance of the object 
with the negative charged shell and the character size, which is smaller in hun-
dreds times than classical hydrogen atom. 

Figure 13 reflects the results with the PV influence ( 0υτ =  or D = 0). 
In other words the anti-hydrogen has the very small cross section (in compar-

ison with the hydrogen atoms), leaves the birth area and is now on the periphery 
of the Universe (see also [4] [6]). 

But it is not the full scenario of events. We prolong our investigation. Let be 
now 0υτ ≠ . In this case we should use the PV energy equation in the form: 

( )

( )

2
2

2
2

3 3 5 3

5 3 5 5 7

5 0,s

p v p
p p v

t t x x

v p p v
p v p v v p

x x x t x x

pp v
x x x x

υ υ υ
υ υ υ υ

υ υ υ υ
υ υ υ υ υ υ

υ υ υ

τ

τ

τ τ
ρ

 ∂ ∂ ∂ ∂  − + +  ∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂∂ ∂ + + − + +  ∂ ∂ ∂ ∂ ∂ ∂   
 ∂ ∂ ∂ ∂ − − =  ∂ ∂ ∂ ∂   

   (9.56) 

 

 
Figure 12. p-pressure ip  (solid line), q-pressure ep  (dashed line), r-density iρ  
(dotted line), s-density eρ  (dashdot line), Cauchy conditions: B) v(0) = 1, r(0) = 1, s(0) 
= 1, u(0) = 1, p(0) = 0.95, q(0) = 1, D(v)(0) = 0, D(r)(0) = 0, D(s)(0) = 0, D(u)(0) = 0, 
D(p)(0) = 0, D(q)(0) = 0. 
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Figure 13. p-pressure ip  (solid line), q-pressure ep  (dashed line), r-density iρ  
(dotted line), s-density eρ  (dashdot line), Cauchy conditions: v(0) = 1, r(0) = 1, s(0) = 
1, u(0) = 1, p(0) = 0.95, q(0) = 1, D(v)(0) = 0, D(r)(0) = 0, D(s)(0) = 0, D(u)(0) = 0, 
D(p)(0) = 0, D(q)(0) = 0, w(0) = 1, D(w)(0) = 0, h(0) = 0, D(h)(0) = 1. 

 
As we see from Equation (9.56) the nonlocal PV parameter is in reality a func-

tion of coordinates and time. Interesting to notice, that PV loses the interaction 
with Matter if τ → ∞ . If 0 υτ< < ∞  we should use the additional dimension-
less PV energy equation in the form (9.55) supposing constυτ = . 

Let be 1υτ =  (D = 1), we find 
 

 
Figure 14. p-pressure ip  (solid line), q-pressure ep  (dashed line), s-density eρ  (dash-
dot line), Cauchy conditions: v(0) = 1, r(0) = 1, s(0) = 1, u(0) = 1, p(0) = 0.95, q(0) = 1, 
D(v)(0) = 0, D(r)(0) = 0, D(s)(0) = 0, D(u)(0) = 0, D(p)(0) = 0, D(q)(0) = 0. 
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Let us compare now the results of two calculations realized in the same condi-
tions but for the different nonlocal PV parameters (D = 0 and D = 1). 

For Figure 15 and Figure 16: p-pressure ip  (solid line), q-pressure ep   
 

 
Figure 15. p -pressure ip  (solid line), q -pressure  ep  (dashed line), r-density (dot-
ted line), s-density  ep  (dashdot line). Cauchy conditions: v(0)=1, r(0)=1, s(0)=1, u(0) = 
1, p(0) = 0.95, q(0) = 1, D(v)(0) = 0, D(r)(0) = 0, D(s)(0) = 0, D(u)(0) = 0, D(p)(0) = 0, 
D(q)(0) = 0, w(0) = 1, D(w)(0) = 0, h(0) = 0, D(h)(0) = 1. 

 

 
Figure 16. r-density ip  (dotted line) 
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(dashed line), r-density iρ  (dotted line), s-density eρ  (dashdot line), Cauchy 
conditions: v(0) = 1, r(0) = 1, s(0) = 1, u(0) = 1, p(0) = 0.95, q(0) = 1, D(v)(0) = 
0, D(r)(0) = 0, D(s)(0) = 0, D(u)(0) = 0, D(p)(0) = 0, D(q)(0) = 0, w(0) = 1, 
D(w)(0) = 0, h(0) = 0, D(h)(0) = 1. 

Take a look at Figure 15 (with 0υτ = , or D = 0, left here) and Figure 16 
(with 1υτ =  or D = 1), right here). These configurations have the extremely 
important feature (for the chosen Cauchy conditions, compare with Figure 10). 
In the first case (D = 0) this object has the negative charged shell (like hydro-
gen), but in the second case (D = 1) we reveal the object with the positive 
charged shell with the larger cross section. 

This situation can be explained be the following way. At an early stage in the 
development of the universe the value of the PV parameter is closer to zero. As a 
result the antimatter (as I wrote before) having the small cross section, leaves the 
central part of domain. As the universe ages, the non-locality parameter υτ  in-
creases, which leads to the situation responding configuration 16, right. 

Figure 17 and Figure 18 reflect some other calculations. 
Figures 11-18 display quantum objects placed in bounded region of 1D space, 

all parts of this objects are moving with practically the same velocity. Important 
to underline that no special boundary conditions were used for all cases. Then 
this soliton is product of the self-organization of ionized matter. 

 
 

 
Figure 17. u-velocity v  (dashed line), v-electric potential ψ  (dotted line), w-PV 
pressure pυ  (dashdot line). v(0) = 1, r(0) = 1, s(0) = 1, u(0) = 1, p(0) = 0.95, q(0) = 1, 
D(v)(0) = 0, D(r)(0) = 0, D(s)(0) = 0, D(u)(0) = 0, D(p)(0) = 0, D(q)(0) = 0, w(0) = 1, 
D(w)(0) = 0, h(0) = 0, D(h)(0) = 1. 
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Figure 18. h-velocity υv  (solid line), v(0) = 1, r(0) = 1, s(0) = 1, u(0) = 1, p(0) = 0.95, 
q(0) = 1, D(v)(0) = 0, D(r)(0) = 0, D(s)(0) = 0, D(u)(0) = 0, D(p)(0) = 0, D(q)(0) = 0, w(0) 
= 1, D(w)(0) = 0, h(0) = 0, D(h)(0) = 1. 

10. About the Energy Echange between Ordinary  
Matter and Physical Vacuum 

Let us consider the spherical 1D stationary flow and its interaction with the sur-
rounding physical vacuum. It means that we should introduce into consideration 
two kinds of nonlocal paramaters for matter sτ  and for physical vacuum (PV) 

υτ . The generalized nonlocal hydrodynamic equations can be written as follows 
(see also the system of Equations (5.1) - (5.7)): 
continuity equation 

( )2 2
02 2

02 2 2

1 1 1 0r
r s r s

r v pr v R r
r r r rr r r

ρ
ρ τ τ

   ∂∂ ∂ ∂     − − − =    ∂ ∂ ∂ ∂        

.  (10.1) 

This equation can be immediately integrated 

( )2 2
0

0 2

1 0r
r s r

r v pv R
r rr

ρ
ρ τ

 ∂ ∂ − + − =
∂ ∂  

,            (10.2) 

where rR  is the external force acting in the radial direction on the volume unit. 
Motion equation for matter for the stationary case is written as 

( ) ( )

( ) ( )

2 2 3
0 02 2

0 02 2 2

2
0 02

2 2

1 1 1 2

12 0,

r r
r s r r s r r

r rs
s

r v r vp R F r v R v
r r r rr r r

r pv pv
r

r r r rr r

ρ ρ
τ ρ τ

τ
τ

   ∂ ∂∂ ∂    − + + − −  
∂ ∂ ∂ ∂      

 ∂  ∂∂ ∂ − − =   ∂ ∂ ∂ ∂  

 (10.3) 
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where rF  is the external force acting in the radial direction on the mass unit, 

r rR Fρ= .                        (10.4) 

Equation (10.3) can be written in the form ( s constτ = ) 

( ) ( ) ( )

( ) ( ) ( )

2 2 2 3
0 02 2 2

0 2

2
0 02 2 2

0 2

12 2 0.

r r
r s r r s

r r
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r v r vpr R F r v
r r r r

r pv pv
r R v r r

r r r r rr

ρ ρ
τ ρ τ

τ τ τ

∂ ∂∂ ∂ − + + − ∂ ∂ ∂ ∂ 
 ∂  ∂∂ ∂ ∂ + − − =   ∂ ∂ ∂ ∂ ∂  

  (10.5) 

Energy equation for the matter for the stationary case has the form 

( ){ } ( )( )
( ) ( )

( )

2
2 2 2 2 2

0 0 0 02

2 2 2 2 2 2
0 0 0

2
2 2 2 2

0

5 7

3 5 2 2

2 5 0,
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ρ τ ρ

τ τ ρ

τ τ τ
ρ

∂ ∂
+ − +

∂ ∂
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+ + − +
∂ ∂

  ∂ ∂ ∂ ∂ ∂   + − − − =       ∂ ∂ ∂ ∂ ∂      

  (10.6) 

We should add to the previous Equations (10.2), (10.3) and (10.6) the self- 
consistent equations describing the PV motion. The nonlocal parameter υτ  for 
PV should be introduced. Then for the matter and PV description we find 

( )2 2

2

1 0s s s
s s s

r v p p
v

r r rr
υ

ρ
ρ τ

 ∂ ∂ ∂ − + − =
∂ ∂ ∂  

,           (10.7) 
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       (10.8) 
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     (10.9) 

For the PV description we use 

p
R

r
υ

υ
∂

=
∂

,                       (10.10) 

4 23 0
v p p v
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υ υ υ υ υ υ
∂ ∂ ∂ ∂∂    + + − − =   ∂ ∂ ∂ ∂ ∂   

,    (10.11) 
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 (10.12) 

We use the system of equation written in the dimensionless form using the 
scales 

[ ]0r , [ ]0u , [ ]0p , [ ] 0

0

p
F

r
= , [ ] 0

0
0

r
t

u
= , 0 0 0r u t= . 

In particular 

p
R

r
υ

υ
∂

=
∂






,                       (10.13) 
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v p p v
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r r r r r r r

υ υ υ υ
υ υ υ υ υ υ
∂ ∂ ∂ ∂∂    + + − − =   ∂ ∂ ∂ ∂ ∂   

   

     

      

,    (10.14) 

In this case system of Equations (10.7)-(10.12) written in the dimensionless 
form contains the dimensionless parameter, T τ↔   and need ten Cauchy con-
ditions. These conditions we write down for the external surface of the spherical 
object. Then we investigate the evolution of the surface perturbation on the fol-
lowing scenario of the PV + Matter behavior. 

We take into account the possible variations of the PV nonlocal parameter 

υτ . In this case we should introduce two nonlocal parameters for Matter sτ  
and PV υτ . I underline again that nonlocal parameters in nonlocal physics play 
the same role as kinetic coefficients in usual local Boltzmann kinetic theory. 

The Maple program was used in calculations ( 0υτ ≠ ) including the energy 
income. In this case we need the values without taking into account the influ-
ence of PV. The Maple notations were used: 

usv → —matter velocity with PV, v—matter velocity without PV; 
psp → —matter pressure with PV, w—matter pressure without PV; 
rsρ → —matter density with PV, m—matter density without PV. 

For the surrounding PV motion we use: 
svυ → —PV velocity, qpυ → —PV pressure, tr → , nonlocal parameter for 

Matter Tsτ → , nonlocal parameter for PV Aυτ → . Let us introduce the 
energy income from PV to Matter defined as 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2a t w t m t v t p t r t u t= + ∗ − + ∗ .       (10.15) 

In the calculations we should use parameters T, A and of course Cauchy con-
ditions which could be found in the program text. 

w(1) = 1, v(1) = 1, m(1) = 1, D(w)(1) = 1, D(v)(1) = 1, D(m)(1) = 1, a(1) = 0, 
p(1) = 1, D(p)(1) = 1, q(1) = 1, D(q)(1) = 1, r(1) = 1, D(r)(1) = 0, u(1) = 1, 

D(u)(1) = 0, s(1) = 1, D(s)(1) = 1. 
The Figures 19-34 reflects the corresponding calculations including the rate 

of income a
r
∂
∂




. Figures contain the boundary of the solution existing. 
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Figure 19. Energy income ( )a r  , the rate of the energy income 
a
r
∂
∂




, T A 1= = . 

 

 

Figure 20. Evolution of matter velocity ( )sv r   (u(t) - with taking into account PV, v(t)) 

- without PV influence), 1τ = , A 1= . 
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Figure 21. Evolution of matter pressure ( )sp r   (p(t) with PV influence, w(t) without 

PV influence), 1τ = , A 1= . 
 
 

 

Figure 22. Evolution of matter density ( )s rρ   (r(t) - with PV influence, m(t)) without 

PV influence), 1τ = , A 1= . 
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Figure 23. Energy income ( )a r  , the rate of the energy income 
a
r
∂
∂




, T A 0.1= = . 

 
 

 

Figure 24. Evolution of matter velocity ( )sv r   (u(t) with PV influence, v(t) without PV 

influence), 0.1τ = , A 0.1= . 
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Figure 25. Evolution of matter pressure ( )sp r   (p(t) - with PV influence, w(t) - without 

PV influence, 0.1τ = , A 0.1= . 
 
 

 

Figure 26. Evolution of matter density ( )s rρ   (r(t) with PV influence, m(t)) without PV 

influence), 0.1τ = , A 0.1= . 
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Figure 27. Energy income ( )a r  , the rate of the energy income 
a
r
∂
∂




, T 0.1= , A 0.01= . 

 
 

 

Figure 28. Evolution of matter velocity ( )sv r   (u(t) - with PV influence, v(t) - without 

PV influence), 0.1τ = , A 0.01= . 
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Figure 29. Evolution of matter pressure ( )sp r   (p(t)) - with PV influence, w(t) - with-

out PV influence), 0.1τ = , A 0.01= . 
 
 

 

Figure 30. Evolution of matter density ( )s rρ   (r(t) - with PV influence, m(t) - without 

PV influence), 0.1τ = , A 0.1= . 
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Figure 31. Energy income ( )a r  , the rate of the energy income 
a
r
∂
∂




, T 0.1= ,  

A 0.001= . 
 

 

Figure 32. Evolution of matter velocity ( )sv r   (u(t) with PV influence, v(t) without PV 

influence), 0.1τ = , A 0.001= . 
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Figure 33. Evolution of matter pressure ( )sp r   (p(t) with PV influence, w(t) without 

PV influence), 0.1τ = , A 0.001= . 
 
 

 

Figure 34. Evolution of matter density ( )s rρ   (r(t) with PV influence, m(t) without PV 

influence, 0.1τ = , A 0.001= . 
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Conclusion to Item 10: 
1) In many cases mentioned calculations lead to so to speak “volume quanti-

zation”—the solutions exist only in the finite domain of space, (see for example 
Figures 19-34). 

2) The left boundary of the solution existing can be smaller than the sphere 
boundary 1r = . 

3) The linear size of these domains demonstrate the weak dependence on 
nonlocal parameters sτ  and υτ . From the other side the parameters of the 
energy income show the strong dependence on nonlocal parameters. The non-
local theory can show the explosion of object which size is significantly less than 
the size of the visible Universe. 

4) Extremely important that the direct calculations demonstrate the possibility 
of the energy income from PV to Matter. 

11. Final Remarks: The Destiny of Anti-Matter  
after Big Bang (BB) and Conclusion 

The problem antimatter evolution is considered from positions of the Newto-
nian theory of gravitation and non-local kinetic theory. It is found that disap-
pearing of antimatter after Big Bang can be explained as a result of antimatter 
interaction with physical vacuum. This interaction leads to appearance of the 
antimatter particles which cross-sections are significantly less than the cross- 
sections of the ordinary matter. As a result the main part of antimatter is con-
centrated now on the out part of the visible Universe. 

Application nonlocal physics to the problem of the dark matter existence leads 
to affirmation – dark matter does not exist. 

Physical Vacuum (PV) is not a speculative object; it is a reality as “matter” and 
“fields”. In other words, the physical vacuum is “the third” physical reality along 
with matter and fields. At an early stage in the development of the universe the 
value of the PV parameter is closer to zero. As a result the antimatter particles 
having the small cross sections, leaves the central part of the BB domain. An-
ti-matter particles after the Big Bang are placed now mainly on the periphery of 
the Universe. We observe now the effects of the matter antimatter annihilations 
on the periphery of our Universe. 

The birth of the universe is convoying of appearance of the repulsion forces. 
In the existing terminology we discover the “negative pressure” and “dark ener-
gy” in all cases. This fundamental result does not depend on the mechanism of 
external perturbations. In other words, the anti-gravity in the physical vacuum 
exists, if there is dissipation of energy or in the absence of dissipation at all. 

We find the solutions of the transport equations defining the evolution the 
physical vacuum (PV). 

It means: 
1) If the matter is absent, non-local evolution equations have nevertheless 

non-trivial solutions corresponding evolution of PV which description in time 
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and 3D space on the level of quantum hydrodynamics demands only quantum 
pressure p, the self-consistent force F  (acting on unit of the space volume) and 
velocity 0v . The system of non local equations is written for the case when the 
usual matter is absent ( 0ρ = ), also radiation, gravitation (as well as other mass 
forces) and electromagnetic fields are absent. 

2) In all other cases we consider from the position of the nonlocal physics the 
interaction of Physical Vacuum with the external electromagnetic and gravita-
tional fields taking into account the possible technical applications like EM-en- 
gine. 

3) The general relativity (GR) and the special relativity (SR) are not applicable 
for the description of processes in Physical Vacuum. 

4) An image of the entire universe consists mostly of colossal collections of 
galaxies interspersed with vast empty spaces, known as voids. The appearance of 
void is usually associated with Big Bang and appearance of the Cold Spot. Cor-
relation between CMB fluctuations, voids and clusters (Kovács et al. 2017) was 
found including Cold Spot related to Eridanus Supervoid (Szapudi et al, 2015). 
But there many observed voids. Cosmic voids are vast spaces which contain very 
few or no galaxies. Voids typically have a diameter of 10 to more than 100 me-
gaparsecs. The existence of limited spherical formations in the Universe filled 
with interacting matter and physical vacuum is the justification for the existence 
of voids and parallel universes. 

5) It means that we should wait for the tremendous discoveries in the nonlocal 
theory of voids. In particular, some voids may have been formed by their own 
local PV explosions (like Big Bang). But the result of such local PV explosions 
could lead to the appearance of so-called “parallel universes”. These post-explo- 
sion universes may have had a different set of fundamental physical constants 
and therefore a different flow of time. Then we should search the voids with ab-
normal transport processes (from the point of view of the Earth science). 

6) Direct calculations demonstrate the possibility of the energy income from 
PV to Matter. 
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