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Abstract 
Diffraction in quasicrystals is in logarithmic order and icosahedral point 
group symmetry. Neither of these features are allowed in Bragg diffraction, so 
a special theory is required. The present work displays exact agreement be-
tween the analytic metric with a numeric description of diffraction in quasi-
crystals that is based on quasi-structure factors. So far, we treated the hierar-
chic structure as ideal; now, we detail the theory by including two significant 
features: firstly, the steady state wave function of the incident radiation de-
monstrates how harmonics, in metrical space and time, enable coherent inte-
raction between the periodic wave packet and hierarchic quasicrystal; se-
condly, mapping of the hierarchic structure for any influence of defects will 
allow estimation of possible error margins in the analysis. The hierarchic 
structure has the required logarithmic periodicity: superclusters, containing 
about 103 atoms, convincingly map phase contrast images; while higher or-
ders leave space for subsidiary speculation. The diffraction is completely ex-
plained for the first time. 
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1. Introducing Harmonics in Hierarchy 

“Metallic phase with long range order and no translational symmetry” [1], how 
come? The diffraction pattern is in geometric series, is irrational, aperiodic and 
anharmonic. This cannot happen by Bragg’s law; however, a metric results from 
a separable irrational part of the indices [2] [3]. This metric commensurates the 
periodic incident radiation with the irrational and geometric indexation that is 
due to the hierarchic geometry. We have previously shown how the diffraction 
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occurs with a lattice parameter a  that is measured, analyzed, verified, complete 
and fundamentally classical. This novel diffraction contrasts with Bragg’s law in 
crystals, where the order is integral, periodic, and harmonic. 

In Quasicrystals, the irrational diffraction is simulated by two independent 
routes: one numeric by Quasi-Structure Factors (QSFs) [4]; the second derived 
analytically from the irrational indexation. The two independent results match 
exactly. Illustrations of harmonization in quasi-Bloch waves, as below, explain 
the metrication and coherent scattering in geometric-series, i.e. scattering from 
the irrational quasi-lattice. Knowing the ideal model and understanding the dif-
fraction, we are now able to turn to atomic mapping, and to defects. 

As a consequence of thermodynamics, all crystals are defective. The hierarchic 
icosahedra (HI) constitute a special case for two reasons: firstly, as Pauling noted 
[5], icosahedra are known in crystalline systems with large unit cells, but they 
include central holes. These are problematic when the cells are of regular size. 
Nevertheless, they are now systematically analyzed and we can fairly understand 
the conformability of common defects to the ideal hierarchic structure. Second-
ly, quasicrystals (QCs) are often rapidly quenched, so that plural defects are eas-
ily frozen into the structure. We need to investigate how they are accommodated 
without causing the diffraction to become diffuse owing to disorder. 

The digitization and harmonization are found present in the scattered radia-
tion during its diffractive interaction with the geometric quasi-lattice. Qua-
si-Bloch waves, in the resonant response of the probe, commensurate and har-
monize in scattering. Their behavior resembles quantum transitions of the har-
monic wave functions used in time-independent atomic physics. Both processes 
are consequences of wave-particle duality that is the crowning result of 19th cen-
tury physics. The diffraction is mediated by the wave-packet, that will be briefly 
reviewed to illustrate harmonization. 

Notice that our main literature review is given in ref. [1]. The present work is 
unique in its derivation of complete diffraction, by conventional description, in 
4-dimensions, and with a systematic and extensible model that is perfectly hierar-
chic; perfectly icosahedral; and in perfect geometric series1, like the diffraction. 

2. Scattering Radiation 

Digitization and harmony are discovered in the scattered wave, so we need to 
review generally the nature of radiant scatterers in the broader scope of physics. 
The Michelson-Morley experiment falsified the ether hypothesis. An attempt 
was made to salvage it with the Lorentz transformation, but this was not as suc-
cessful as Einstein’s foundational relativity. That “physical laws are invariant in 
all inertial reference systems”, has been verified in many ways. A consequence is 
the Pythagorean style equation for rest mass: 2 4 2 2 2

0m c E p c= − . After quantiza-
tion by Planck’s law for energy E, and the de Broglie hypothesis for momentum 
p, and with simplification of units   = c = 1 for the reduced Planck constant 

 

 

1Further descriptions can be found in recent listings in http://www.xraylithography.com. 
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  and the speed of light c, the rest mass reduces to: 

( )( )2 2 2
0m k k kω ω ω= − = + − .                  (1) 

The brackets symbolize in turn particulate conservation laws and response 
that is wave-like, resonant and harmonic. The former is real; the latter imagi-
nary. The particle-wave duality is thus formulated in respective real and imagi-
nary parts of the normal wave packet [6]: 

2

2exp
2
XA Xϕ
σ

 
= ⋅ + 

   
with imaginary: 

( )X i t kxω= −                          (2) 

where σ depends on initial conditions, and describes the coherence of the packet 
in space and time2; and A2 is a normalizing constant3. The angular frequencies ω 
and wave vectors k are in fact distributed, but they are represented in equation 1 
by mean values. The intensity φ*φ is a probability density function for a particle, 
or for a photon having zero mass, m0 = 0. Notice that the response is elastic be-
cause its absolute, measurable value is unity: (eX)*eX = 1, everywhere and at all 
time. 

Incidentally, a profound solution for Equation (1) has negative mass. This im-
plies, by the first order derivation 2E m c′=  with ( ) 1 22 2

0 1 gm m v c
−

′ = − , that ω 
< 0 and k < 0. These implications are supported by the facts that (ω < 0 ∪ k > 0) 
⊃ singularities in ω and k when 0m k= . The singularities are not observed (cf. 
[7]); whereas, by contrast, the phase velocity 0pv kω= >  and group velocity 

d d 0gv k m kω′= = >  are always positive [6] (cf. the Switching Principle [8] 
[9]). 

Meanwhile, Equation (2) represents the steady state for the incident radiation 
and, after a transition involving a change in vector k, it represents, likewise, the 
steady state of the diffracted wave. When the incident wave strikes the QC, it in-
teracts with the QC field to form quasi-Bloch waves. You can think of these as 
lattice images observed in thin foils in the two-beam condition. The waves, as 
they proceed through the QC, oscillate (by the pendellösung effect) between the 
two beams (in crystals: [10]; cf. in QCs: [11] [2]). In wedge specimens, this oscil-
lation produces images of ‘thickness fringes’. The process requires and ensures 
harmonic interaction, in both space and time, in the propagation direction as in 
the transverse. An example will be given in the next section, though the ‘qua-
si-lattice image’ will not be a true lattice image4 because of the metric. 

Notice that Equations (2) linearize the second order Equation (1) of special 
relativity, and so they perform a similar function for the free particle as Dirac’s 

 

 

2Typically, the coherence has transverse components, σy, σz as well, but these are only implied here 
for simplicity. 
3Typically, ( )2* 2 2

0 exp dA A Xm σ τ= ∫ . 
4Because of the metrical displacement (except at geometric intercepts) of the quasi-Bloch wave from 
the quasi-lattice. This will be illustrated below. 
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equation does for the bound electronic states in an atom. Moreover, the equa-
tions 2 separate the propagation direction from the transverse direction, and this 
has many consequences including: solutions for negative mass [12]5, phase ve-
locity [6], uncertainty, Newton’s second law, electron spin, magnetic radius and 
fine structure constant [13]6, reduction of the wave packet [14] etc. The equa-
tions apply in harmonious diffraction by quasicrystals and crystals, as they do in 
the Schrödinger equation that operates on steady-state, harmonic bases. The dif-
fraction orders and quantum numbers respectively describe interaction re-
quirements that are quantized by necessary constructive interference over space 
and time. Equation (2) describes the fundamental radiant packet that gives re-
quired information about the structure of quasicrystals. The formalism enables 
our understanding of the fundamental interaction required in the coherent dif-
fraction. 

3. Properties of Hierarchic Icosahedra 

The quasicrystal responds to incident radiation with sharp, icosahedral diffrac-
tion that is in irrational and geometric order. The diffraction must be long range 
because sharp. The principal axes are indexed in 3-dimensions (Figure 1) and so 
is the diffraction pattern [4]. However, phase-contrast imaging contradicts the 
classic order because it is anharmonic owing to multiple, aperiodic, interplanar 
spacings. It emerges that the quasicrystal is hierarchically ordered and uniquely 
icosahedral, with dense unit cells that are bound within icosahedral clusters. The 
hierarchy is infinitely extensible. There is translational symmetry: it is in the ra-
diant quasi-Bloch-waves that are excited by the quasi-Bragg condition so as to 
commensurate with the aperiodic ordering. In doing so, the waves harmonize 
and digitize the hierarchic quasi-lattice. These functions are numerically and 
analytically derived, so that the quasi-lattice is measured and consistently veri-
fied. Harmony is essential to the digitized interaction as it is in quantum basis 
state solutions to Schrödinger’s equation. 

It will become clear how the structure is hierarchic and therefore geometric. 
The scattering radiation is periodic (Equation (2)), but is excited by the geome-
tric quasi-lattice, to form hierarchically commensurate quasi-Bloch-waves. Cor-
responding periodic excitations are routinely analyzed in crystals [10], but are 
now adapted for QCs [15] [11]. In Figure 2(b) a crystalline Bloch wave (blue) is 
compared with a corresponding quasi-Bloch-wave (red wave) that metrically 
stretches the blue wave by the inverse coherence factor 1/cs. This is calculated 
both numerically and analytically [2]. Whereas the crystalline Bloch wave is not 
commensurate with the geometric, irrational and logarithmically-periodic quasi- 
lattice; the quasi-Bloch-wave is commensurate with the geometric and hierarchic  

 

 

5To avoid unphysical singularities when k = −m0 in the antiparticle, the switching principle is 
switched back [6]. 
6Dirac used a rank 8 matrix [Pais A, in Paul Dirac, the man and his work, ed. Goddard, P., Cam-
bridge (1998) ISBN 0521583829] to calculate the fine structure constant; the approximate answer by 
dispersion dynamics is the same but given in rank 2 [13]. 
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Figure 1. Stereogram of the principal axes for the icosahedral structure. Normal to them 
are the principal diffraction planes. They are all 3-dimensional with indices τm where the 

golden section ( )1 5 2τ = + . After William of Ockham, “Dimensions should not be 

multiplied without necessity.” All of the beam intensities in the original data [1] have 
been indexed and calculated [16]. 

 
structure, and is invariant about all translations maτ . This translational sym-
metry opposes Shechtman’s claim [1]. The harmonization is obtained through 
the Fibonacci series digitization of periodic cycles between geometric intercepts 
(Equation (3) below). The harmonization is both long-range and local around 
each intercept. 

So long as we understand how the diffraction occurs, there is no need to de-
cide whether ‘hierarchic symmetry’ should be called ‘translational’. Principal 
features of the complex structure and diffraction of hierarchic icosahedra justify 
the following summary: 

Summary: 
• The point group symmetry is icosahedral, in the diffraction pattern, consis-

tent with the structure [1]. 
• The pattern is sharp [1]. 
• The orders are in geometric series [4] [16] [17]. 
• The series are irrational. They do not therefore obey Bragg’s law for crystal 

diffraction [4] [16] [17]. 
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Figure 2. (a) Incident, time-dependent, beam probe (Equation (2)), rank ℜ4, inclined at quasi-Bragg angle from normal: 

( ) ( )1 2 2 2sin 2q sh k l acθ λ−= + + . (b) Crystalline Bloch waves (blue) are commensurate with their corresponding periodic crystal 

lattice at the Bragg condition. When this wave is stretched horizontally by the inverse coherence factor 1/cs, the quasi-Bloch-wave 
(QBW in red) commensurates with the irrational, geometric and hierarchic, quasi-lattice. Its geometric order is represented by the 
intercepts on the horizontal line above it [17] [16]. The digitized number of periodic cycles between successive intercepts is in 
Fibonacci sequence (denominator in Equation (3)), and the diffraction is logarithmically periodic. The natural and irrational parts 
of the indices are separable: the irrational part is expressed by the metric stretch; the natural part scatters with sharp, coherent 
diffraction. (c) Diffracted beams emitted beneath foil, including indices. (d) In a transmission electron microscope, beams can be 
magnetically refocused to produce a quasi-lattice image of the probe at the base of the specimen foil. The lattice image is the inter-
ference due to the superposition. 
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• The stereogram and planar indexations are 3-dimensional (Figure 1 [18]). 
“Dimensions should not be multiplied without necessity”. 
But, inclusion of time for harmony is necessary: the rank is  ℜ4. 

• All structure factors under Bragg’s law are zero. The Quasi-Structure-Factor 
contains a numerical metric cs that is peculiar to the icosahedral hierarchy, 
and that is calculated iteratively over successive orders of cluster and super 
cluster7: the formulaic function of the metric is a virtual breathing strain [4] 
[16] [17], cohering with hierarchy. 

• Quasi-structure-factors map intensities in experimental diffraction patterns 
[4] [16] [17]. 

• Indices ( ) ( ) ( ) ( )1,11, 0,1 0,1m
m m mmF F Fτ τ τ+= = ∂ + +  where the Fibonacci 

sequences Fm (0, 1) are of natural numbers on bases 0, 1 [2]. The metric is 
analyzed by separating the irrational parts of the indices [2] [3]. 

• The metric function is given by the irrational residue in the formula [2]: 

4

1

21 11
0.894

m
m

s m

F
c F

τ +

+

−
= + =                    (3) 

• Diffraction, on the irrational indices, metricates, digitizes and harmonizes the 
geometric series (Figure 2) [2]. 

• These features are necessities for radiation scattering by coherent diffraction 
[2]. 

• The quasi-lattice-parameter a  is measured, analyzed, harmonized, verified 
and complete [2J 

• The dense unit cell is consistent with the fact that diatomic QCs occur only 
with the atomic diameter ratio: 2

solute solvent 1 1d d τ= + −  [4] [16] [17] 
• Phase contrast optimum defocus images in thin specimens [19] display clear 

hierarchies (containing ~103 atoms), with dimensions that match corres-
ponding hierarchic structures that are simulated. The hierarchic structure is 
infinitely extensible [4] [16] [17] (present work). 

4. Mapping Simulations of Phase Contrast Images 

Figure 3 illustrates the extremely dense unit cell. At its center is the small Mn 
atom with its comparatively large atomic scattering factor, surrounded by 12 
tightly packed Al atoms. The ratio of atomic diameters is 2

Mn Al 1 1d d t= + − . 
Notice the 5-fold axis that is normal to two circles of 5 Al atoms. This structure 
will prove significant in images and maps: when two planes are imaged together, 
they adopt the appearance of 10-fold rotational symmetry; but when imaged 
alone in sufficiently thin specimens, the plane appears 5-fold. 

 

 

7The QSF F p for a supercluster order p, with Miller indices h, k, l, is equal to the QSF order p-1 mul-
tiplied by the function for the phase due to the stretching factor τ2p, where h is the corresponding 
normal vector for the (hkl) plane; cs the metric; and r the vector representing the position of either 
an atomic site in the unit cell, or the center in a subcluster [2]: 

( )( )
all atoms

1

2 1cos 2 p
s hkl c

p p
hkl hkl

i
cc h rF Fτ −

=

π ⋅ ⋅ ⋅= ∑  
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The unit cell is edge sharing, not face sharing as in crystals. The stoichiometry 
is therefore Al6Mn. 

In Figure 4 the unit cells are hierarchically arranged within clusters. Notice 
that the unit edge width of the icosahedral unit cell stretches to τ2 in the icosa-
hedral cluster. The hierarchy extends infinitely to superconductors order p with 
stretching factors τ2p compared to the cluster. 

The atoms illustrated in Figure 3 and Figure 4 were localized on Cartesian 
axes as was first done to calculate structure factors [4] [16]. The 5-fold [1 τ0] axis 
was identified and the position (x0,y0,z0) of each atom in a quasicrystal of selected 
size (superclusters orders 1 and 2 in figure 5a). These atoms were all projected 
onto the (1 τ0) plane at points (x2,y2,z2) using rotation formulae the about z axis: 

( ) ( )
( ) ( )

2
2 0 0

2 2
2 0 0 2 0

1 ,

1 ,and  

y y x t t

x x t y t t z z

= − +

= − + =
                (4) 

 

 
Figure 3. Extremely dense icosahedral unit cell. At its center is the small Mn atom with its 
comparatively large atomic scattering factor, surrounded by twelve tightly packed Al atoms. 

 

 
Figure 4. Hierarchy of icosahedral unit cells in the icosahedral cluster. The stretching 
factor is τ2. The structure is infinitely extensible. The triad of golden rectangles can 
represent any member of the hierarchic series. 
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(a) 

 
(b) 

Figure 5. (a) At left is a map of Mn atoms in a semi-supercluster (cluster in Figure 4 scaled up by τ2), simulating phase-contrast 
images from foils ~2 nm thick owing to the large atomic scattering factor of Mn. Two planes of unit cells (Figure 3 & Figure 4) 
map as a circle of 10 unit cells within a single circle of 5 clusters. These structures are experimentally evident in Figure 6 [19]. At 
right, the semi-supercluster order 2 (scaled up by τ4) would be ~5 nm thick. The full supercluster map would appear to have 
10-fold symmetry, though individual second order superclusters are not distinguishable in imaging, because they overlap neigh-
boring superclusters. (b) Map of all atoms, both Mn and Al, in the same semi-supercluster as shown on the left inset in figure 5a. 
The difference represents the Al atoms. Notice that when the two outermost cluster layers (representing Al and Mn) 
merge—owing to limited phase-contrast microscope resolution—the clusters touch tangentially as in the experimental Figure 6 
below. Figures 5a and 5b together simulate figure 6 with convincing accuracy. Mapping scales are given in units of the measured 
quasi-lattice-parameter a  [2]. 
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Figure 6. Hierarchic structure (red circles) on phase-contrast, optimum-defocus, transmission electron microscope image of 
Al6Mn [19] [16] (p. 66), observed parallel to the 5-fold axis. The image shows hierarchic arrangement of Mn atoms (smallest circle) 
and (with increasing diameter) a unit cell (13 atoms), cluster (~122 atoms) and supercluster (~123 atoms). The centers of the clus-
ters are located at the apices of the white pentagon. The structure is mapped in Figure 5b. 
 

Their hypotenuse on (x2,y2) gives a radius that was plotted against z0 in figures 5. 
Moreover, after calculating the heights of the projections, atoms within a given 
foil thickness were selected for display. 

The simulated map of Mn atoms in one half of a supercluster, that is con-
tained in a thin film about 2 nm thick, is shown in Figure 5a at left. The map-
ping calculation employs the same structure as is used for quasi structure factors 
[2] [4], except that Al atoms are ignored. The image shows the two ‘circles’ of Mn 
(Figure 4) that appear in 10-fold circles in the cluster; but only one 5-fold circle 
of clusters in the supercluster. By contrast, in the hierarchic semi-supercluster 
order 2, with a thickness of ~5 nm, the clusters appear to be 10-fold owing to the 
twin ‘circles’. These features explain many characteristic structures in the phase 
contrast images [19]. 

Moreover, in transmission electron microscopy, optimum-phase-contrast sa-
crifices realism in image location because images change with defocus. Since the 
atomic scattering power of Mn is comparatively large, fMn

2 ≈ 4 × fAl
2 [10], the 

skeleton Mn projections in the inset in Figure 5a should move toward 5b in a 
through focal series. Then, with typical loss of resolution, the skeleton will 
transform to the observed image in Figure 6. Here clusters touch tangentially as 
in a defocused projection of Figure 5b.  

The mapping simulations match—both as patterns and by lateral measure-
ments—the electron microscope image in Figure 6. They confirm the hierarchic 
concept8, so that we can now proceed to discuss the most common defect structures. 

 

 

8The maps dispel the common misconception that the structure is decagonal. 
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5. Elementary Defects 

We begin by dividing the defects into 1) vacancies; or into 2) perfect interstitials 
without deformity; or 3) other defects, typically deformed. The second of these is 
significant because of the high density of the unit cell, that makes it the likely 
cause both for the driving force for the ideal icosahedral hierarchy, and for filling of 
intrinsic defects. There is evidence for this dominance of the unit cell in dynamic 
studies of QC growth [20] [21]. There, systematic realignment of atoms can be ob-
served in unit cells and clusters that coalesce into superclusters and, presumably, 
into higher orders. It is obvious in the rearrangements, that the fundamental icosa-
hedral orientation is maintained during the rearrangements. This must be the case 
where each cell shares two or more edges with its neighbors. The rigid orientation 
would occur to a greater or lesser extent if there were, during solidification, mul-
tiple nucleation sites, possibly of different sizes—atom, cell, cluster, etc. The coales-
cence is evident in growth and is surely significant in rapid cooling. 

Because the structure is edge sharing, it gives the impression of being porous. 
Compared with typical crystals, the QC is slightly soft and viscous [22]. The unit 
cell is extremely dense, but higher orders contain “holes” (see Pauling’s observa-
tion in [5]) especially at cluster and supercluster centers, but also on each side of 
shared edges. In higher orders, these spaces require filling. Guiding the study must 
be a concern for consistency in the icosahedral point group symmetry that recipro-
cates in the diffraction pattern. We will first consider vacancies and interstitials in 
the smallest structure, the unit cell (Figure 3), and proceed to clusters, and to super-
clusters in ascending hierarchic order (Figure 4). To ease comprehension, represent 
3-dimensional icosahedra by corresponding 2-dimensional cross-sections: for the 
unit cell, that is the golden rectangle τ × 1 in Figure 7. 

 

 
Figure 7. The cross-section above, that is taken from the unit cell shown in Figure 3 is 
identical to the golden rectangles in Figure 4. The quasi-lattice-parameter a  is meas-
ured as the edge width [2J. It is equal to the diameter of closely packed Al, Ala d= . No-
tice that the diameter of the solute atom in this dense diatomic structure is given by 

( )2
Mn 1 1d t a= + − . The ratio dsolvent/dsolute is universal in diatomic quasicrystals. Each 

unit cell has 15 identical sections at various orientations. The sections that will appear 
again in Figure 8 are scaled versions of the section here. 
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This figure illustrates the dominating cross-section of the dense atomic model 
in Figure 3, including the unit cell and quasi-lattice parameter. The unit cell 
contains 15 identical cross-sections at different orientations. This orientational 
consistency can be thought of as roughly approximating cylindrical symmetry, 
with Euclidean axes. Because of edge sharing, various subsidiary spaces fill gaps 
on either side of the edges that join the dense unit cells. We simplify our under-
standing of the subsidiary cells by thinking of the 3-dimensional HI by its dominant 
2-dimensional cross-section. 

We can then consider in turn vacancies, perfect interstitials, and strained in-
terstitials. These features can be made consistent with the sharp diffraction pattern 
by preserving icosahedral symmetry in all defects, or most of them. So in Figure 8,  

 

 
Figure 8. Hierarchic cross-section of a supercluster containing at its corners 4 cross-sec- 
tions of clusters, each containing 4 rectangular cross-sections of blue unit cells (Figure 7). 
Blue circles represent Al atoms at corners of selected unit cells. The most elementary de-
fects are considered: 1. Vacancies occur at sites that are closer spaced than the atomic 
diameters. The two ‘mobile sites’ (blue ellipses) may then be shared by one atom like an 
extended edge site, e.g. separated by 1/τ at the top right corner cluster. 2. Perfect intersti-
tials: e.g. the dark blue unit Mn atom (center top) between four clusters, occupying 
space—left open by the edge sharing clusters—without distortion. 3. Off-plane regular 
(hierarchic) structures (off white and dark grey) 4. Other distorted interstitials such as 
octagonal structures, not represented in the diagram. All of the critical dimensions in the 
figure belong to the geometric series τm, e.g. 1 for the diameter of the Al atom; τ × 1 for 
the rectangular unit cell (as in Figure 7, with units of a); τ3 × τ2 for the cluster; τ5 × τ4 for 
the supercluster; 1 × τ−1 for the cluster hole; τ2 × τ for the supercluster hole H; etc. 
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icosahedra are represented by their 2-dimensional cross-sections: the unit cell, by 
the blue golden rectangle τ × 1; the cluster, by four unit cells τ3 × τ2; the super-
cluster, by four clusters τ5 × τ4, etc. 

In isolation, or in the melt before solidification, the unit cell is dense. Howev-
er, when it is integrated into an hierarchic cluster, some sites are vacated because 
of insufficient space. We suppose that mobile Al atoms share neighboring sites 
that are closer together (separated by 1/τ) than the unit diameter of the atom. 
These mobile atoms are represented by elliptical wave functions on the Al atoms 
at corners of adjacent golden rectangles in the (top right) cluster in Figure 8. By 
contrast, typical the Al atoms are circular with unit (icosahedral) diameter. The 
vacancy is common at the cluster level in the hierarchy. For example, the central 
“hole” is icosahedral and may be represented, in cross-section, by the golden 
rectangle 1 × 1/τ. It is so small that there is room for only three Al atoms on 
twelve ideal corner sites. These have been simulated [[4] p.54] in agreement with 
phase-contrast images. 

The largest individual volume, at any tier of hierarchy, is the central “hole”. In 
the supercluster it is marked with the letter H in Figure 8. This hole has the 
cross-section τ2 × τ. Its center is surrounded, in front and behind, by off-white 
cluster cross-sections, and closer in by Al atoms in dark grey. The “hole” is larg-
er than the unit cell so there is more than one way in which the space can be 
filled. It could also be filled by an octahedral structure which may not show in 
diffraction because the octahedron is a subgroup of the icosahedral group. 

An estimate can easily be calculated for the contribution to scattering caused 
by interstitial filling in the “hole”. The supercluster has cross-section τ5 × τ 4; so 
that the volume of the “hole” is τ−6 ~ 5.6% less voluminous. The same defect ra-
tio holds for in-fill ratios at higher orders. This is why they can be neglected in 
first calculations but might be revealed in further detail by concerted research. 
Meanwhile, we have, for the most part, been able to leave the defect holes empty 
in QSF calculations, since the effects of their tentative, possible inclusions were 
small. In this paper, primacy is given to logarithmic periodicity, hierarchic 
structure and resonant response; details of the structural “jig-saw puzzle”—what 
we here call defects—are relegated, because their effects are comparatively small 
and insignificant. 

6. Conclusions 

Whatever may be the structural details of quasicrystals, whether systematic or 
accidental; the ideal hierarchic model has provided complete understanding of 
diffraction in geometric series with irrational indices. Quasicrystals have dem-
onstrated that quantum physics and Bragg diffraction are not beautiful mathe-
matics but empirical physics: the proof of the numeric metric by analytic separa-
tion of the irrational residue is a benefit of observation over speculative expecta-
tion. The coherent scattering, that is here described, depends on constructive in-
terference—in time and space—of the incident radiation. We have shown how 
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logarithmically-periodic solids digitize and harmonize incident periodic waves. 
The radiation responds to the hierarchic QC fields by forming quasi-Bloch 
waves on a special metric. This formation commensurates the periodic, incident 
radiation with the varied and irrationally-spaced, hierarchic quasicrystal. Qua-
si-structure factors show that the resulting translational periodicity about maτ , 
scatters the radiation coherently into geometric reciprocal space. There is long 
range order and this is evident in the diffraction. However, the corresponding 
translational symmetry occurs by resonant response of the scattering radiation. 
Without harmonics, the scattering would be random owing to destructive inter-
ference within the wave packet. Spectacularly, this doesn’t happen. 

Moreover, in this work, we have united time-dependent wave optics in 4-di- 
mensions (Section 2) with more typical 3-dimensional optics that is adapted 
from Bragg optics. The time dependence is necessary to show how the quantum 
effects—evident in both atomic states and in diffraction—occur by harmonies, 
in the physical domain, and are commonly glossed in purely mathematical de-
scriptions. The harmonics are furthermore associated with QC defects that are 
represented, for easy comprehension, by 2-dimensional cross-sections. These are 
scaled for the various hierarchies. Based, as they are, on the exact description of 
the diffraction, the present physical description of harmonic quanta, has wider 
application in general physics. 
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