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Abstract 
When :ξ η→  is a linear differential operator, a “direct problem” is to 
find the generating compatibility conditions (CC) in the form of an operator 

1 :η ζ→  such that ξ η=  implies 1 0η = . When   is involutive, 
the procedure provides successive first order involutive operators 1, , n�   
when the ground manifold has dimension n, a result first found by M. Janet 
as early as in 1920, in a footnote. However, the link between this “Janet se-
quence” and the “Spencer sequence” first found by the author of this paper in 
1978 is still not acknowledged. Conversely, when 1  is given, a more diffi-
cult “inverse problem” is to look for an operator :ξ η→  having the ge-
nerating CC 1 0η = . If this is possible, that is when the differential module 
defined by 1  is torsion-free, one shall say that the operator 1  is para-
metrized by   and there is no relation in general between   and 2 . 
The parametrization is said to be “minimum” if the differential module de-
fined by   has a vanishing differential rank and is thus a torsion module. 
The solution of this problem, first found by the author of this paper in 1995, 
is still not acknowledged. As for the applications of the “differential double 
duality” theory to standard equations of physics (Cauchy and Maxwell equa-
tions can be parametrized while Einstein equations cannot), we do not know 
other references. When 1n =  as in control theory, the fact that controllabil-
ity is a “built in” property of a control system, amounting to the existence of a 
parametrization and thus not depending on the choice of inputs and outputs, 
even with variable coefficients, is still not acknowledged by engineers. The 
parametrization of the Cauchy stress operator in arbitrary dimension n has 
nevertheless attracted, “separately” and without any general “guiding line”, 
many famous scientists (G.B. Airy in 1863 for 2n = , J.C. Maxwell in 1863, 
G. Morera and E. Beltrami in 1892 for 3n = , A. Einstein in 1915 for 4n = ). 
The aim of this paper is to solve the minimum parametrization problem in 
arbitrary dimension and to apply it through effective methods that could even 
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be achieved by using computer algebra. Meanwhile, we prove that all these 
works are using the Einstein operator which is self-adjoint and not the Ricci 
operator, a fact showing that the Einstein operator, which cannot be parame-
trized, has already been exhibited by Beltrami more than 20 years before 
Einstein. As a byproduct, they are all based on the same confusion between 
the so-called div operator induced from the Bianchi operator 2  and the 
Cauchy operator which is the formal adjoint of the Killing operator   pa-
rametrizing the Riemann operator 1  for an arbitrary n. We prove that this 
purely mathematical result deeply questions the origin and existence of gra-
vitational waves. We also present the similar motivating situation met in the 
study of contact structures when 3n = . Like the Michelson and Morley ex-
periment, it is thus an open historical problem to know whether Einstein was 
aware of these previous works or not, but the comparison needs no comment. 
 

Keywords 
Differential Operator, Differential Sequence, Killing Operator, Riemann 
Operator, Bianchi Operator, Cauchy Operator, Electromagnetism, Elasticity, 
General Relativity, Gravitational Waves 

 

1. Introduction 

We start recalling the basic tools from the formal theory of systems of partial 
differential (PD) equations and differential modules needed in order to under-
stand and solve the parametrization problem presented in the abstract. As these 
new tools are difficult and not so well known, we advise the interested reader to 
follow them step by step on the explicit motivating examples illustrating this 
paper, in particular the example of the system of infinitesimal Lie equations de-
fining contact transformations when 3n = . The main difficulty for the reader 
not familiar with these new tools is that certain concepts are evident in one 
framework but not at all in the other and conversely. Considering the single in-
put/single output (SISO) classical control system 0y u− =�� �  with standard nota-
tions for ordinary differential (OD) equations, we notice that both y and u can 
be given arbitrarily separately but that the new quantity z y u= −�  cannot as it 
must satisfy the autonomous OD equation 0z =�  that, of course, cannot be 
controlled. This is the reason for which a controllable system cannot surely pro-
vide such elements called “torsion elements” in module theory. The fact that the 
controllability just amounts to the lack of any torsion element or, equivalently, 
to the possibility to parametrize the control system, is left to the reader as a 
tricky exercise leading to compare with the basic system 0y u− =�  which is 
controllable and can be simply parametrized by the only arbitrary potential y 
through the formula ,y u y y= =� . As we shall see, the surprising fact is that the 
lack of torsion elements (or the generating ones) can only be tested by the possi-
bility to parametrize the given equations (or to “measure” how it cannot be pa-

https://doi.org/10.4236/jmp.2021.124032


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.124032 455 Journal of Modern Physics 
 

rametrized) and no other classical method can work. 
In Section 2, once we shall have found the possibility to parametrize the sys-

tem or the corresponding operator, that is to say once we know that the corres-
ponding differential module is torsion-free, we shall discover that many possible 
parametrizations may exist. The idea will then be to modify the formal test in 
order to compute the minimum number of potentials needed and to find a con-
structive way to obtain at least one such minimum parametrization. 

In Section 3, we shall study with more details the parametrization problems 
that are existing in continuum mechanics for an arbitrary dimension n of the 
ground manifold, the case 2n =  allowing to understand why the Airy operator 
is just the formal adjoint of the Riemann operator, the case 3n =  allowing to 
compare the results respectively obtained by Beltrami, Maxwell and Morera, the 
case 4n =  allowing to understand why such a parametrization problem is 
leading to the self-adjoint Einstein operator and why the so-called “gravitational 
waves” operator is nothing else than the formal adjoint of the Ricci operator 
without any reference to Einstein equations. 

In Section 4, we shall finally add a few unexpected results coming from the use 
of the symbol sequences existing for certain generic covectors. 

1.1. System Theory 

If X is a manifold of dimension n with local coordinates ( ) ( )1, , nx x x= � , we 
denote as usual by ( )T T X=  the tangent bundle of X, by ( )* *T T X=  the 
cotangent bundle, by *r T∧  the bundle of r-forms and by *

qS T  the bundle of 
q-symmetric tensors. More generally, let E be a vector bundle over X with local 
coordinates ( ),i kx y  for 1, ,i n= �  and 1, ,k m= �  simply denoted by 
( ),x y , projection ( ) ( ): : ,E X x y xπ → →  and changes of local coordinate 

( ) ( ),x x y A x yϕ= = . We shall denote by *E  the vector bundle obtained by 
inverting the matrix A of the changes of coordinates, exactly like *T  is obtained 
from T. We denote by ( ) ( )( ): : ,f X E x x y f x→ → =  a global section of E, 
that is a map such that Xf idπ =�  but local sections over an open set U X⊂  
may also be considered when needed. Under a change of coordinates, a section 
transforms like ( )( ) ( ) ( )f x A x f xϕ =  and the changes of the derivatives can al-
so be obtained with more work. We shall denote by ( )qJ E  the q-jet bundle of E 
with local coordinates ( ) ( ), , , , ,i k k k

i ij qx y y y x y=�  called jet coordinates and sec-
tions ( ) ( ) ( ) ( )( ) ( )( ): , , , , ,k k k

q i ij qf x x f x f x f x x f x→ =�  transforming like the 
sections ( ) ( ) ( ) ( ) ( )( ) ( )( )( ): , , , , ,k k k

q i ij qj f x x f x f x f x x j f x→ ∂ ∂ =�  where 
both qf  and ( )qj f  are over the section f of E. For any 0q ≥ , ( )qJ E  is a 
vector bundle over X with projection qπ  while ( )q rJ E+  is a vector bundle 
over ( )qJ E  with projection , 0q r

q rπ + ∀ ≥ . 
DEFINITION 1.1.1: A linear system of order q on E is a vector sub-bundle 

( )q qR J E⊂  and a solution of qR  is a section f of E such that ( )qj f  is a sec-
tion of qR . With a slight abuse of language, the set of local solutions will be de-
noted by EΘ ⊂ . 
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Let ( )1, , nµ µ µ= �  be a multi-index with length 1 nµ µ µ= + +� , class i if 

1 1 0, 0i iµ µ µ−= = = ≠�  and ( )1 1 11 , , , 1, , ,i i i i nµ µ µ µ µ µ− ++ = +� � . We set  

{ }|1 ,0k
qy y k m qµ µ= ≤ ≤ ≤ ≤  with k ky yµ =  when 0µ = . If E is a vector 

bundle over X and ( )qJ E  is the q-jet bundle of E, then both sections 
( )q qf J E∈  and ( ) ( )q qj f J E∈  are over the section f E∈ . There is a natu-

ral way to distinguish them by introducing the Spencer operator  
( ) ( )*

1: q qd J E T J E+ → ⊗  with components ( ) ( ) ( ) ( )1 1, i

k k k
q ii

df x f x f xµ µµ+ += ∂ − . 
The kernel of d consists of sections such that  

( ) ( ) ( )1 1 2 1 1q q q qf j f j f j f+ − += = = =� . Finally, if ( )q qR J E⊂  is a system of 
order q on E locally defined by linear equations ( ) ( ), 0k

q kx y a x yτ τµ
µΦ ≡ =  and 

local coordinates ( ),x z  for the parametric jets up to order q, the r-prolongation 
( ) ( ) ( ) ( )( )q r r q r q q r r qR R J R J E J J Eρ+ += = ⊂∩  is locally defined when 1r =  

by the linear equations ( ), 0qx yτΦ = ,  
( ) ( ) ( )1 1, 0k k

i q k i ki
d x y a x y a x yτ τµ τµ

µ µ+ +Φ ≡ + ∂ =  and has symbol  
( )*

q r q r q r q rg R S T E J E+ + + += ⊗ ⊂∩  if one looks at the top order terms. If 

1 1q qf R+ +∈  is over q qf R∈ , differentiating the identity ( ) ( ) 0k
ka x f xτµ

µ ≡  with 
respect to ix  and subtracting the identity ( ) ( ) ( ) ( )1 0

i

k k
k i ka x f x a x f xτµ τµ

µ µ+ + ∂ ≡ , 
we obtain the identity ( ) ( ) ( )( )1 0

i

k k
k ia x f x f xτµ

µ µ+∂ − ≡  and thus the restriction 
*

1: q qd R T R+ → ⊗ . More generally, we have the restriction: 

( )( )
( ) ( )( )( )

* 1 *
1 ,

, 1 ,

: :

i

s s k I
q q I

k k i I
i I I

d T R T R f x dx

f x f x dx dx

µ

µ µ

+
+

+

∧ ⊗ → ∧ ⊗

→ ∂ − ∧
            (1) 

using standard multi-index notation for exterior forms, namely { }1 2 rI i i i= < < <� , 
1 *ri iI rdx dx dx T= ∧ ∧ ∈∧�  for a finite basis, and one can easily check that 

0d d =� . The restriction of d−  to the symbol is called the Spencer map 
* 1 *

1: s s
q qT g T gδ +
+∧ ⊗ → ∧ ⊗  and 0δ δ =�  similarly, leading to the algebraic 

δ -cohomology ( )s
q r qH g+  [1]-[7]. 

DEFINITION 1.1.2: A system qR  is said to be formally integrable when all 
the equations of order q r+  are obtained by r prolongations only, 0r∀ ≥  or, 
equivalently, when the projections :q r s

q r q r sR Rq rπ + +
+ + + → +  are epimorphisms 

, 0r s∀ ≥ . 
Finding an intrinsic test has been achieved by D.C. Spencer in 1970 [7] along 

coordinate dependent lines sketched by M. Janet in 1920 [8]. The next procedure 
providing a Pommaret basis and where one may have to change linearly the in-
dependent variables if necessary, is intrinsic even though it must be checked in a 
particular coordinate system called δ -regular [1] [4] [9]. 
• Equations of class n: Solve the maximum number n

qβ  of equations with re-
spect to the jets of order q and class n. Then call ( )1, , nx x�  multiplicative 
variables. 

• Equations of class 1i ≥ : Solve the maximum number i
qβ  of remaining eq-

uations with respect to the jets of order q and class i. Then call ( )1, , ix x�  
multiplicative variables and ( )1, ,i nx x+ �  non-multiplicative variables. 

• Remaining equations of order 1q≤ − : Call ( )1, , nx x�  non-multiplicative 
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variables. 
In actual practice, we shall use a Janet tabular where the multiplicative “va-

riables” are in upper left position while the non-multiplicative variables are 
represented by dots in lower right position. 

DEFINITION 1.1.3: A system of PD equations is said to be involutive if its 
first prolongation can be obtained by prolonging its equations only with respect 
to the corresponding multiplicative variables. In that case, we may introduce the  

characters 
( )
( ) ( )

1 !
1 ! !

i i
q q

q n i
m

q n i
α β

+ − −
= −

− −
 for 1, ,i n= �  with 1 0n

q qα α≥ ≥ ≥�  

and we have ( ) 1 n
q q qdim g α α= + +�  while ( ) 1

1
n

q q qdim g nα α+ = + +� . 

REMARK 1.1.4: As long as the Prolongation/Projection (PP) procedure has 
not been achieved in order to get an involutive system, nothing can be said about 
the CC (fine examples can be found in [6] and the recent [10]). A proof that the 
second order system defined by Einstein equations is involutive has been given 
by J. Gasqui in 1982 but this paper cannot be applied to the minimum parame-
trizations that need specific δ -regular coordinates as we shall see [11]. 

When qR  is involutive, the linear differential operator  
( ) ( ) 0:

qj

q q qE J E J E R F
Φ

→ → =  of order q is said to be involutive. Introducing 
the Janet bundles: 

( ) ( )( )* * 1 * *
1

r r r
r q q qF T J E T R T S T Eδ −

+= ∧ ⊗ ∧ ⊗ + ∧ ⊗ ⊗           (2) 

we obtain the canonical linear Janet sequence (introduced in [1], p 185 + p 391): 
1 2

0 10 0
n

nE F F F→Θ→ → → → → →�
 

               (3) 

where each other operator, induced by the Spencer operator, is first order invo-
lutive and generates the compatibility conditions (CC) of the preceding one. Si-
milarly, introducing the Spencer bundles: 

( )* 1 *
1/r r

r q qC T R T gδ −
+= ∧ ⊗ ∧ ⊗                 (4) 

we obtain the canonical linear Spencer sequence also induced by the Spencer 
operator: 

1 2

0 10 0
q nj DD D

nC C C→Θ→ → → → →�                  (5) 

1.2. Module Theory 

Let K be a differential field with n commuting derivations ( )1, , n∂ ∂�  and con-
sider the ring [ ] [ ]1, , nD K d d K d= =�  of differential operators with coeffi-
cients in K with n commuting formal derivatives satisfying i i id a ad a= + ∂  in 
the operator sense. If [ ]P a d D K dµ

µ= ∈ = , the highest value of µ  with 
0aµ ≠  is called the order of the operator P and the ring D with multiplication 

( ),P Q P Q PQ→ =�  is filtred by the order q of the operators. We have the fil-
tration 0 10 qK D D D D D∞⊂ = ⊂ ⊂ ⊂ ⊂ ⊂ =� � . As an algebra, D is gener-
ated by 0K D=  and 1 0T D D=  with 1D K T= ⊕  if we identify an element 

i
id Tξ ξ= ∈  with the vector field ( )i

ixξ ξ= ∂  of differential geometry, but 
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with i Kξ ∈  now. It follows that D DD D=  is a bimodule over itself, being at 
the same time a left D-module by the composition P QP→  and a right D 
-module by the composition P PQ→ . We define the adjoint functor 

( ) ( ): : 1opad D D P a d ad P d aµµ µ
µ µ→ = → = −  and we have ( )( )ad ad P P=  

both with ( ) ( ) ( ) , ,ad PQ ad Q ad P P Q D= ∀ ∈ . Such a definition can be ex-
tended to any matrix of operators by using the transposed matrix of adjoint op-
erators (see [5] [9] [12] [13] [14] [15] [16] for more details and applications to 
control theory or mathematical physics). 

Accordingly, if ( )1, , my y y= �  are differential indeterminates, then D acts 
on ky  by setting k k k k

i id y y d y yµ µ= → =  with 1i

k k
id y yµ µ+=  and 0

k ky y= . 
We may therefore use the jet coordinates in a formal way as in the previous sec-
tion. Therefore, if a system of OD/PD equations is written in the form 

0k
ka yτ τµ

µΦ ≡ =  with coefficients a K∈ , we may introduce the free differential 
module 1 m mDy Dy Dy D= + +�   and consider the differential module of 
equations I D Dy= Φ ⊂ , both with the residual differential module  
M Dy D= Φ  or D-module and we may set DM M=  if we want to specify the 
ring of differential operators. We may introduce the formal prolongation with 
respect to id  by setting ( )1i

k k
i k i kd a y a yτ τµ τµ

µ µ+Φ ≡ + ∂  in order to induce maps 

1: : k k
i i

d M M y yµ µ+→ →  by residue with respect to I if we use to denote the re-
sidue : k kDy M y y→ →  by a bar like in algebraic geometry. However, for 
simplicity, we shall not write down the bar when the background will indicate 
clearly if we are in Dy  or in M. As a byproduct, the differential modules we 
shall consider will always be finitely generated ( 1, ,k m= < ∞� ) and finitely 
presented ( 1, , pτ = < ∞� ). Equivalently, introducing the matrix of operators 

( )ka dτµ
µ=  with m columns and p rows, we may introduce the morphism  

( ) ( ):p mD D P P τ
τ τ→ → Φ


 over D by acting with D on the left of these row vectors  

while acting with   on the right of these row vectors by composition of oper-
ators with ( )im I= . The presentation of M is defined by the exact cokernel 
sequence 0p mD D M→ → →


. We notice that the presentation only depends 

on ,K D  and Φ  or  , that is to say never refers to the concept of (explicit 
local or formal) solutions. It follows from its definition that M can be endowed 
with a quotient filtration obtained from that of mD  which is defined by the or-
der of the jet coordinates qy  in qD y . We have therefore the inductive limit 

0 10 qM M M M M∞⊆ ⊆ ⊆ ⊆ ⊆ ⊆ =� �  with 1i q qd M M +⊆  and qM DM=  
for 0q�  with prolongations , , 0r q q rD M M q r+⊆ ∀ ≥ . 

DEFINITION 1.2.1: An exact sequence of morphisms finishing at M is said 
to be a resolution of M. If the differential modules involved apart from M are 
free, that is isomorphic to a certain power of D, we shall say that we have a free 
resolution of M. 

Having in mind that K is a left D-module with the action  
( ) ( ), : ,i iD K K d a a→ →∂  and that D is a bimodule over itself, we have only 
two possible constructions: 

DEFINITION 1.2.2: We may define the right (care!) differential module 
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( ),Dhom M D . 
DEFINITION 1.2.3: We define the system ( ),KR hom M K=  and set 

( ),q K qR hom M K=  as the system of order q. We have the projective limit 

1 0qR R R R R∞= → → → → →� � . It follows that : k k
q qf R y f Kµ µ∈ → ∈  

with 0k
ka fτµ

µ =  defines a section at order q and we may set f f R∞ = ∈  for a 
section of R. For an arbitrary differential field K, such a definition has nothing to 
do with the concept of a formal power series solution (care). 

PROPOSITION 1.2.4: When M is a left D-module, then R is also a left D 
-module. 

Proof: As D is generated by K and T as we already said, let us define: 

( )( ) ( ) , ,af m af m a K m M= ∀ ∈ ∀ ∈  
( )( ) ( ) ( ) , ,i

if m f m f m a d T m Mξ ξ ξ ξ= − ∀ = ∈ ∀ ∈  
In the operator sense, it is easy to check that i i id a ad a= + ∂  and that 

[ ],ξη ηξ ξ η− =  is the standard bracket of vector fields. We finally get 
( ) ( )( ) 1i

k k k k
i i id f d f y f fµ µ µµ += = ∂ −  and thus recover exactly the Spencer opera-

tor of the previous section though this is not evident at all. We also get 

( ) 1 1 1 1 , , 1, ,
j i i j

k k k k k
i j ij i j i j j id d f f f f f d d d d i j nµ µ µ µµ + + + += ∂ − ∂ − ∂ + ⇒ = ∀ = �  and 

thus 1i q q id R R d R R+ ⊆ ⇒ ⊂  induces a well defined operator  
* : i

iR T R f dx d f→ ⊗ → ⊗ . This operator has been first introduced, up to 
sign, by F.S. Macaulay as early as in 1916 but this is still not acknowledged [17]. 
For more details on the Spencer operator and its applications, the reader may 
look at [15] [18] [19] [20] [21]. 

Q.E.D. 
DEFINITION 1.2.5: With any differential module M we shall associate the 

graded module ( )G gr M=  over the polynomial ring ( ) [ ]gr D K χ
 by set-

ting 0q qG G∞
== ⊕  with 1q q qG M M −=  and we get *

q qg G=  where the symbol 

qg  is defined by the short exact sequences: 

1 10 0 0 0q q q q q qM M G g R R− −→ → → → ⇔ → → → →  
We have the short exact sequences 10 0q q qD D S T−→ → → →  leading to 
( )q qgr D S T

 and we may set as usual ( )* ,KT hom T K=  in a coherent way 
with differential geometry. 

The two following definitions, which are well known in commutative algebra, 
are also valid (with more work) in the case of differential modules (see [5] for 
more details or the references [9] [22] [23] [24] for an introduction to homolog-
ical algebra and diagram chasing). 

DEFINITION 1.2.6: The set of elements  
( ) { }| 0 , 0t M m M P D Pm M= ∈ ∃ ≠ ∈ = ⊆  is a differential module called the 

torsion submodule of M. More generally, a module M is called a torsion module 
if ( )t M M=  and a torsion-free module if ( ) 0t M = . In the short exact se-
quence ( )0 0t M M M ′→ → → → , the module M ′  is torsion-free. Its defin-
ing module of equations I ′  is obtained by adding to I a representative basis of 
( )t M  set up to zero and we have thus I I ′⊆ . 
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DEFINITION 1.2.7: A differential module F is said to be free if rF D  for 
some integer 0r >  and we shall define ( )Drk F r= . If F is the biggest free 
dfferential module contained in M, then M/F is a torsion differential module and 

( ), 0Dhom M F D = . In that case, we shall define the differential rank of M to be 
( ) ( )D Drk M rk F r= = . Accordingly, if M is defined by a linear involutive oper-

ator of order q, then ( ) n
D qrk M α= . 

PROPOSITION 1.2.8: If 0 0M M M′ ′′→ → → →  is a short exact sequence 
of differential modules and maps or operators, we have  

( ) ( ) ( )D D Drk M rk M rk M′ ′′= + . 
In the general situation, let us consider the sequence 

f g
M M M′ ′′→ →  of mod-

ules which may not be exact and define ( ) ( )B im f Z ker g H Z B= ⊆ = ⇒ = . 
LEMMA 1.2.9: The kernel of the induced epimorphism ( ) ( )coker f coim g→  

is isomorphic to H. 
Proof: It follows from a snake chase in the commutative and exact diagram 

where ( ) ( )coim g im g
: 

( )

( )

0

0 0

0 0

0 0

0 0

0

g

H

B M coker f

Z M coim g

H

↓

↓ ↓ ↓
→ → → →

↓ ↓

→ → → →
↓ ↓ ↓

↓

�

 

Q.E.D. 
In order to conclude this section, we may say that the main difficulty met 

when passing from the differential framework to the algebraic framework is the 
“inversion” of arrows. Indeed, when an operator is injective, that is when we  

have the exact sequence 0 E F→ →


 with ( ) ( ),dim E m dim F p= = , like in the 

case of the operator ( )0
qj

qE J E→ → , on the contrary, using differential mod-

ules, we have the epimorphism 0p mD D→ →


. The case of a formally surjective 

operator, like the div operator, described by the exact sequence 0E F→ →


 is 
now providing the exact sequence of differential modules  

0 0p mD D M→ → → →


 because   has no CC. 

2. Parametrization Problem 

In this section, we shall set up and solve the minimum parametrization problem 
by comparing the differential geometric approach and the differential algebraic 
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approach. In fact, both sides are essential because certain concepts, like “tor-
sion”, are simpler in the module approach, as we already said, while others, like 
“involution” are simpler in the operator approach. However, the reader must 
never forget that the “extension modules” or the “side changing functor” are 
pure product of differential homological algebra with no system counterpart. 
Also, the close link existing between “differential duality” and “adjoint operator” 
may not be evident at all, even for people quite familiar with mathematical 
physics [5] [12] [15] [16]. 

Let us start with a given linear differential operator 
1

η ζ→


 between the sec-
tions of two given vector bundles 0F  and 1F  of respective fiber dimension m 
and p. Multiplying the equations 1η ζ=  by p test functions λ  considered as 

a section of the adjoint vector bundle ( ) * *
1 1

nad F T F= ∧ ⊗  and integrating by 

parts, we may introduce the adjoint vector bundle ( ) * *
0 0

nad F T F= ∧ ⊗  with 

sections µ  in order to obtain the adjoint operator 
( )1ad

µ λ←


, writing on pur-
pose the arrow backwards, that is from right to left. As any operator is the ad-
joint of another operator because ( )( )ad ad =  , we may decide to denote by 

( )ad

v µ←


 the generating CC of ( )1ad   by introducing a vector bundle E with 

sections ξ  and its adjoint ( ) * *nad E T E= ∧ ⊗  with sections ν . We have thus 
obtained the formally exact differential sequence: 

( ) ( )1ad ad

ν µ λ← ←
 

 
and its formally exact adjoint sequence: 

1

ξ η ζ→ →


 
providing a parametrization if and only if 1  generates the CC of 1 . Such a 
situation may not be satisfied but we shall assume it from now on because oth-
erwise 1  cannot be parametrized according to the double differential duality 
test, for example in the case of the Einstein equations [25] [26] [27] or the exten-
sion to the conformal group and other Lie groups of transformations [15] [19] 
[20] [21] [28] [29] [30]. Nevertheless, for the interested reader only, we provide 
the following key result on which this procedure is based (see [5] [12] [13] [14] 
[16] for more details): 

THEOREM 2.1: If M is a differential module, we have the exact sequence of 
differential modules: 

( ) ( )( )0 , ,D Dt M M hom hom M D D
ε

→ → →              (6) 

where the map ε  is defined by ( )( ) ( ) ( ), , ,Dm f f m m M f hom M Dε = ∀ ∈ ∈ . 
Moreover, if N is the differential module defined by ( )ad  , then  
( ) ( )1 ,Dt M ext N D= . 
In order to pass to the differential module framework, let us introduce the free 

differential modules , ,l m pD D D D D Dξ η ζ   . We have similarly the ad-
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joint free differential modules , ,l m pD D D D D Dν µ λ   , because  
( )( ) ( )dim ad E dim E=  and ( ),m m

Dhom D D D . Of course, in actual practice, 
the geometric meaning is totally different because we have volume forms in the 
dual framework. We have thus obtained the formally exact sequence of differen-
tial modules: 

1p m lD D D→ →
 

 
and the formally exact adjoint sequence: 

( ) ( )1ad ad
p m lD D D← ←

 

 
The procedure with 4 steps is as follows in the operator language: 

• STEP 1: Start with the formally exact parametrizing sequence already con-
structed by differential biduality. We have thus ( ) ( )1im ker=   and the 
corresponding differential module 1M  defined by 1  is torsion-free by 
assumption. 

• STEP 2: Construct the adjoint sequence which is also formally exact by as-
sumption. 

• STEP 3: Find a maximum set of differentially independent CC ( ) :ad µ ν′ ′→  
among the generating CC ( ) :ad µ ν→  of ( )1ad   in such a way that 

( )( )im ad ′  is a maximum free differential submodule of ( )( )im ad   that 
is any element in ( )( )im ad   is differentially algebraic over ( )( )im ad ′ . 

• STEP 4: Using differential duality, construct ( )( )ad ad′ ′=  . 
It remains to prove that 1  generates the CC of ′  in the following dia-

gram: 

( ) ( )

( )

1

1

4 '

1

2

3

0 0

ad ad

ad

ξ

ξ η ζ

ν µ λ

ν

′

′

↑

→ →

← ←

↑

′

↑





 









              (7) 

PROPOSITION 2.2: ′  is a minimum parametrization of 1 . 
Proof: Let us denote the number of potentials ξ  by l  (respectively ξ ′  by 

l′ ), the number of unknowns η  by m and the number of given equations ζ  
by p. As ( )ad ′  has no CC by construction, then ( ) :ad µ ν′ ′→  is a for-
mally surjective operator. On the differential module level, we have the injective 
operator ( ) : l mad D D′′ →  because there are no CC. Applying ( ),Dhom D•  
or duality, we get an operator m lD D ′→  with a cokernel which is a torsion 
module because it has rank ( ) ( )( ) 0D Dl rk l rk ad l l′ ′ ′ ′ ′ ′− = − = − =  . 
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However, in actual practice as will be seen in the contact case, things are not 
so simple and we shall use the following commutative and exact diagram of dif-
ferential modules based on a long ker/coker long exact sequence (compare to 
[31] and [32]): 

( )( )
( )

( )( )0 0

0 0

0

ad
l m

l

ker ad D D coker ad

L

D ′

→ → → → →

↑

↑



 

 

 

  (8) 

Setting ( )( )lL D ker ad=   and introducing the biggest free differential 
module lD L′ ⊆  we have ( ) ( ) ( )l l

D D Drk D rk L rk D l l′ ′= ≤ ⇒ ≤ , we may de-
fine the injective (care) operator ( )ad ′  by the composition of monomor-
phisms l mD L D′ → →  where the second is obtained by picking a basis of lD ′ , 
lifting it to lD  and pushing it to mD  by applying ( )ad  . We notice that L 
can be viewed as the differential module defined by the generating CC of 

( )ad   that could also be used as in [31]. 
Then we have ( ) ( ) ( )1 1 10 0ad ad ad′ ′ ′= = ⇒ =� � �       and thus 

1  is surely among the CC of ′ . Therefore, the differential sequence 
1

ξ η ζ
′

′→ →


 on the operator level or the sequence 
1p m lD D D

′
′→ →

 
 on the  

differential module level may not be exact and we can thus apply the previous 
Lemma. Changing slightly the notations, we have now  

( ) ( ) ( )1B im ker ker Z′= = ⊆ =   . But we have also ( ) ( )D Drk B m rk= −  , 
( ) ( ) ( ) ( ) ( ) 0D D D Drk Z m rk rk H rk rk′ ′= − ⇒ = − =    by construction. 
Taking into account the previous Lemma, we may set ( )1 1

lcoim M D= ⊆  
by assumption and consider ( ) 1

lim M D ′′ ′= ⊆  in order to obtain the short 
exact sequence of differential modules 1 10 0H M M ′→ → → → . As H is a tor-
sion module and the differential module 1M  defined by 1  is torsion-free by 
assumption, the only possibility is that 0H =  and thus ( ) ( )1im ker ′=  , 
that is ′  is a minimum parametrization of 1  with l l′ ≤  potentials. 

Q.E.D. 
EXAMPLE 2.3: Contact transformations 
With ( ) ( )1 2 33, , ,m n K x x x x= = = =� � , we may introduce the so-called 

contact 1-form 1 3 2dx x dxα = − . The system of infinitesimal Lie equations de-
fining the infinitesimal contact transformations is obtained by eliminating the 
factor ( )xρ  in the equations ( )ξ α ρα=  where   is the standard Lie de-
rivative. This system is thus only generated by 1η  and 2η  below but is not 
involutive and one has to introduce 3η  defined by the first order CC: 

1 2 3 2 3
3 2 1 0xζ η η η η≡ ∂ − ∂ − ∂ + =  

in order to obtain the following involutive system with two equations of class 3 
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and one equation of class 2, a result leading to 3 2 1
1 1 12, 1, 0β β β= = = : 

( )

3 3 2 3 2 1
3 2 1 1

2 1 3 2
3 3

21 1 3 2 3 1 3 2 3
2 2 1 1

2 0 1 2 3
0 1 2 3

1 20

x

x

x x x

η ξ ξ ξ ξ

η ξ ξ

η ξ ξ ξ ξ ξ

 ≡ ∂ + ∂ + ∂ − ∂ = ≡ ∂ − ∂ =
 •≡ ∂ − ∂ + ∂ − ∂ − =  

The characters are thus 3 2 1
1 1 13 2 1 3 1 2, 3 0 3α α α= − = < = − = = − =  with sum 

equal to ( )11 2 3 6 3 3 3dim g+ + = = = × − . In this situation, if M is the differen-
tial module defined by this system or the corresponding operator  , we know 
that ( ) ( ) ( )3

1 1 3 2D D Drk M rk D rkα ξ= = = − = −  . Of course, a differential 
transcendence basis for   can be the operator { }2 3: ,ξ η η′ →  but, in view 
of the CC, we may equally choose any couple among { }1 2 3, ,η η η  and we obtain 

( ) ( ) 2D Drk rk′ = =   in any case, but now ′  is formally surjective, con-
trary to  . The same result can also be obtained directly from the unique CC 
or the corresponding operator 1  defining the differential module 1M . Final-
ly, we have ( ) ( ) ( )1 13 1 2D D Drk M rk D rkη= − = = −   and we check that we 
have indeed ( ) ( ) ( )1 1 2 3D D Drk M rk M rk Dξ+ = + = = . 

It is well known that such a system can be parametrized by the injective para-
metrization (see [2] and [3] for more details and the study of the general dimen-
sion 2 1n p= + ): 

3 1 2 3 3 1 3 2
3 3 2 1, ,x x xφ φ ξ φ ξ φ φ ξ ξ ξ φ− ∂ + = − ∂ = ∂ + ∂ = ⇒ − =  

It is however not so well known and quite striking that such a parametrization 
can be recovered independently by using the parametrization of the differential 
module defined by 1 0η =  with potentials 1ξ  and 2ξ  while setting: 

( ) ( )21 2 3 1 3 2 3 1 3 2
2 2 1 1, x x xξ ξ ξ ξ ξ ξ ξ→ = ∂ − ∂ + ∂ − ∂

 
Taking into account the differential constraint 2 1 3 2

3 3 0xη ξ ξ≡ ∂ − ∂ = , that is 

( )2 1 3 2
3 xξ ξ ξ= −∂ −  and substituting in 3 0η = , we get no additional con-

straint. We finally only need to modify the potentials while “defining” now 
1 3 2 1xφ ξ ξ ξ= − =  as before. 

The associated differential sequence is: 
1 1

0 0φ ξ η ζ
−

→ → → → →
 

 
0 1 3 3 1 0→ → → → →  

with Euler-Poincaré characteristic 1 3 3 1 0− + − =  but is not a Janet sequence 
because 1−  is not involutive, its completion to involution being the trivially 
involutive operator ( )1 1:j jφ φ→ . 

Introducing the ring [ ] [ ]1 2 3, ,D K d d d K d= =  of linear differential operators 
with coefficients in the differential field K, the corresponding differential module 
M D  is projective and even free, thus torsion-free or 0-pure, being defined 
by the split exact sequence of free differential modules: 

1 13 30 0D D D D
−

→ → → → →
 

 
We let the reader prove as an exercise that the adjoint sequence: 
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( ) ( ) ( )1 1

0 0
ad ad ad

θ ν µ λ
−

← ← ← ← ←
  

 
0 1 3 3 1 0← ← ← ← ←  

starting from the Lagrange multiplier λ  is also a split exact sequence of free 
differential modules. 

We finally prove that the situation met for the contact structure is exactly the 
same as the one that we shall meet in the metric structure, namely that one can 
identify 1−  not with 1  of course but with ( )1ad  . For this, let us modify 
the “basis” linearly by setting ( )1 1 3 2 2 2 3 3, ,xξ ξ ξ ξ ξ ξ ξ= − = =  and suppress-
ing the bar for simplicity, we obtain the new injective parametrization: 

1 2 3 3
3 2 1, , xφ ξ φ ξ φ φ ξ= − ∂ = ∂ + ∂ =  

and may eliminate φ  in order to consider the new involutive system, renum-
bering the equations through a cyclic permutation of ( )1,2,3 : 

1 3 2 3 2 1
3 2 1 1

3 1 2
3

2 1 3 1 3
2 1

0 1 2 3
0 1 2 3

1 20

x

x

η ξ ξ ξ ξ

η ξ ξ

η ξ ξ ξ

 ≡ ∂ + ∂ + ∂ − ∂ =
 ≡ ∂ + =
 •≡ ∂ + ∂ − =  

with the unique first order CC defining 1 : 
2 3 3 3 1

3 2 1 0xζ η η η η≡ ∂ − ∂ − ∂ + =  
Multiplying by λ  and integrating by parts, we obtain for ( )1ad  : 

1 1 2 2 3 3 3
3 2 1, , xη λ µ η λ µ η λ λ µ→ = → −∂ = → ∂ + ∂ =  

obtaining therefore ( ) ( )1 1 1 1ad ad− −= ⇔ =     exactly. 
As for ξ η= , we obtain the formal operator matrix: 

3
1 2 1 3
3

2 1

3

0 1
1 0

d d x d d
d x d

d

 − +
 

+ − 
 
   

Similarly, for ( )ad   we obtain the formal operator matrix: 

( )
( )

3
1 2 1 3

3
2 1

3

0 1

1 0

d d x d d

d x d

d

 − + −
 
 − +
 
 − −
   

and finally discover that ( )ad = −  , a striking result showing that both oper-
ators have the same CC and parametrization even though   is not self-adjoint. 

3. Einstein Equations 

Linearizing the Ricci tensor ijρ  over the Minkowski metric ω , we obtain the 
usual second order homogeneous Ricci operator RΩ→  with 4 terms: 

( )2 2rs
ij rs ij ij rs ri sj sj ri jiR d d d d Rω= Ω + Ω − Ω − Ω =            (9) 

( ) ( )ij ij ru sv
ij ij rs uvtr R R d tr dω ω ω ω= = Ω − Ω             (10) 
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We may define the Einstein operator by setting ( )1
2ij ij ijE R tr Rω= −  and 

obtain the 6 terms [33]: 

( )
( )

2 rs
ij rs ij ij rs ri sj sj ri

rs uv ru sv
ij rs uv rs uv

E d d d d

d d

ω

ω ω ω ω ω

= Ω + Ω − Ω − Ω

− Ω − Ω
            (11) 

We have the (locally exact) differential sequence of operators acting on sec-
tions of vector bundles where the order of an operator is written under its arrow: 

*
2 1 21 2 1

Killing Riemann Bianchi
T S T F F→ → →                   (12) 

( ) ( ) ( )( )
1 22 2 2 21 2 1 12 1 2 24n n n n n n n n→ + → − → − −
 

 
Our purpose is now to study the differential sequence onto which its right part 

is projecting: 

* * *
2 22 1

0
Einstein div

S T S T T→ → →
 

( ) ( )1 2 1 2 0n n n n n+ → + → →  
and the following adjoint sequence where we have set [15] [19] [20] [31] [34]: 

( ) ( ) ( ), ,Cauchy ad Killing Beltrami ad Riemann Lanczos ad Bianchi= = =  

( ) ( ) ( ) ( )*
2 1 2

Cauchy Beltrami Lanczos
ad T ad S T ad F ad F← ← ←           (13) 

In this sequence, if E is a vector bundle over the ground manifold X with di-
mension n, we may introduce the new vector bundle ( ) * *nad E T E= ∧ ⊗  where 

*E  is obtained from E by inverting the transition rules exactly like *T  is ob-
tained from T. We have for example ( ) * * * 1 *n n nad T T T T T T−= ∧ ⊗ ∧ ⊗ ∧   
because *T  is isomorphic to T by using the metric ω . The 10 × 10 Einstein 
operator matrix is induced from the 10 × 20 Riemann operator matrix and the 
10 × 4 div operator matrix is induced from the 20 × 20 Bianchi operator matrix. 
We advise the reader not familiar with the formal theory of systems or operators 
to follow the computation in dimension 2n =  with the 1 × 3 Airy operator 
matrix, which is the formal adjoint of the 3 × 1 Riemann operator matrix, and 

3n =  with the 6 × 6 Beltrami operator matrix which is the formal adjoint of the 
6 × 6 Riemann operator matrix which is easily seen to be self-adjoint up to a 
change of basis. 

With more details, we have: 
• 2n = : The stress equations become 11 12 21 22

1 2 1 20, 0d d d dσ σ σ σ+ = + = . 
Their second order parametrization 11 12 21 22

22 12 11, ,d d dσ φ σ σ φ σ φ= = = − =  
has been provided by George Biddell Airy in 1863 [35] and is well known [5]. 
We get the second order system: 

11
22

12
12

22
11

0 1 2
0 1

10

d

d

d

σ φ

σ φ

σ φ

 ≡ =
− ≡ = •
 •≡ =  
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which is involutive with one equation of class 2, 2 equations of class 1 and it is 
easy to check that the 2 corresponding first order CC are just the Cauchy equa-
tions. Of course, the Airy function (1 term) has absolutely nothing to do with the 
perturbation of the metric (3 terms). With more details, when ω  is the Eucli-
dean metric, we may consider the only component: 

( ) ( )( ) ( )11 22 11 22 11 11 12 12 22 22

22 11 11 22 12 12

2
2

tr R d d d d d
d d d

= + Ω +Ω − Ω + Ω + Ω

= Ω + Ω − Ω  
Multiplying by the Airy function φ  and integrating by parts, we discover 

that: 

( ) ( )Airy ad Riemann Riemann ad Airy= ⇔ =  
in the following differential sequences: 

1 2
2 3 1 0

Killing Riemann
→ → →

 

1 2
0 2 3 1

Cauchy Airy
← ← ←

 
• 3n = : It is more delicate to parametrize the 3 PD equations: 

11 12 13
1 2 3

21 22 23
1 2 3

31 32 33
1 2 3

0,

0,

0

d d d

d d d

d d d

σ σ σ

σ σ σ

σ σ σ

+ + =

+ + =

+ + =  
A direct computational approach has been provided by Eugenio Beltrami in 

1892 [36] [37], James Clerk Maxwell in 1870 [38] and Giacinto Morera in 1892 
[37] [39] by introducing the 6 stress functions ij jiφ φ=  in the Beltrami parame-
trization. The corresponding system: 

11
33 22 22 33 23 23

12
33 12 12 33 13 23 23 13

22
33 11 11 33 13 13

13
23 12 12 23 22 13 13 22

23
23 11 11 23 12 13 13 12

33
22 11 11 22 12 12

1 2 32 0
1 2 30
12 0

0
0

2 0

d d d
d d d d

d d d
d d d d

d d d d
d d d

σ φ φ φ
σ φ φ φ φ

σ φ φ φ
σ φ φ φ φ
σ φ φ φ φ

σ φ φ φ

 ≡ + − =

− ≡ + − − =
 ≡ + − =


≡ + − − =
− ≡ + − − =


≡ + − =

2 3
1 2
1 2
1 2

•
•
•

 
is involutive with 3 equations of class 3, 3 equations of class 2 and no equation of 
class 1. The three characters are thus  

3 2 1
2 2 21 6 3 3 2 6 3 9 3 6 0 18α α α= × − = < = × − = < = × − =  and we have  
( )

( ) ( )
1 2 3

2 2 2 2

* * *
2 2 2

18 9 3 30

6 6 6

dim g

dim S T S T dim S T

α α α= + + = + + =

= ⊗ − = × −
 [1]. The 3 CC are describing 

the stress equations which admit therefore a parametrization... but without any 
geometric framework, in particular without any possibility to imagine that the 
above second order operator is nothing else but the formal adjoint of the Rie-
mann operator, namely the (linearized) Riemann tensor with ( )2 2 1 2 6n n − =  
independent components when 3n =  [31]. Breaking the canonical form of the 
six equations which is associated with the Janet tabular, we may rewrite the Bel-

https://doi.org/10.4236/jmp.2021.124032


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.124032 468 Journal of Modern Physics 
 

trami parametrization of the Cauchy stress equations as follows, after exchang-
ing the third row with the fourth row, keeping the ordering  
( ) ( ) ( ) ( ) ( ) ( ){ }11 12 13 22 23 33< < < < < : 

33 23 22

33 23 13 12
1 2 3

23 22 13 12
1 2 3

33 13 11
1 2 3

23 13 12 11

22 12 11

0 0 0 2
0 0

0 0 0
0 0

0 0 0 0
0 2 0 0

0 0 0
0 0

2 0 0 0

d d d
d d d d

d d d
d d d d

d d d
d d d

d d d
d d d d

d d d

− 
 − −   − −  ≡   −  

  − −
  −   

as an identity where 0 on the right denotes the zero operator. However, if Ω  is 
a perturbation of the metric ω , the standard implicit summation used in con-
tinuum mechanics is, when 3n = : 

11 12 13 22 23 33
11 12 13 22 23 33

22 33 11 33 22 11 23 23 11

23 13 12 13 23 12 12 33 12 33 12 12

2 2 2

2

ij
ij

d d d
d d d d

σ σ σ σ σ σ σ

φ φ φ
φ φ φ φ

Ω = Ω + Ω + Ω + Ω + Ω + Ω

= Ω +Ω − Ω +

+Ω +Ω −Ω −Ω +

�
�  

because the stress tensor density σ  is supposed to be symmetric. Integrating 
by parts in order to construct the adjoint operator, we get: 

11 33 22 22 33 23 23

12 13 23 23 13 33 12 12 33

2d d d
d d d d

φ
φ

→ Ω + Ω − Ω

→ Ω + Ω − Ω − Ω  
and so on, obtaining therefore the striking identification: 

( ) ( )Riemann ad Beltrami Beltrami ad Riemann= ⇔ =  
between the (linearized) Riemann tensor and the Beltrami parametrization. 

Taking into account the factor 2 involved by multiplying the second, third and 
fifth row by 2, we get the new 6 × 6 operator matrix with rank 3: 

33 23 22

33 23 13 12

23 22 13 12

33 13 11

23 13 12 11

22 12 11

0 0 0 2
0 2 2 0 2 2
0 2 2 2 2 0

0 2 0 0
2 2 2 0 2 0

2 0 0 0

d d d
d d d d

d d d d
d d d

d d d d
d d d

− 
 − − 
 − −
 

− 
 − −
  −   

clearly providing a self-adjoint operator. 
Surprisingly, the Maxwell parametrization is obtained by keeping  

11 22 33, ,A B Cφ φ φ= = =  while setting 12 23 31 0φ φ φ= = =  in order to obtain the 
system: 

11
33 22

22
33 11

23
23

33
22 11

13
13

12
12

1 2 30
1 2 30
1 20
1 20
10
10

d B d C
d A d C

d A
d A d B

d B
d C

σ
σ
σ

σ
σ
σ

 ≡ + =


≡ + =
 •− ≡ =
 •≡ + =
 • •− ≡ =


• •− ≡ =  
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However, this system may not be involutive and no CC can be found “a pri-
ori” because the coordinate system is surely not δ -regular. Indeed, effecting the 
linear change of coordinates 1 1 2 2 3 3 2 1, ,x x x x x x x x= = = + +  and taking out 
the bar for simplicity, we obtain the new involutive system: 

33 13 23 12

33 13

33 23

23 22 13 13 12

23 22 13 12 11

22 22 12 11 11

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2
2 0 1 2

2 0 1 2

d C d C d C d C
d B d B
d A d A
d C d C d C d B d C
d A d C d B d C d C
d A d C d C d C d B

+ + + =
 + =
 + =
 + − − − = •
 − + + − = •


+ − + + = •  
and it is easy to check that the 3 CC obtained just amount to the desired 3 stress 
equations when coming back to the original system of coordinates. However, the 
three characters are different as we have now  

3 2 1
2 2 23 3 0 2 3 3 3 3 3 0 9α α α= − = < = × − = < = × − =  with sum equal to  
( )2 6 3 6 18 6 12dim g = × − = − = . We have thus a minimum parametrization that 

cannot be parametrized again. 
Again, if there is a geometrical background, this change of local coordinates is 

hidding it totally. Moreover, we notice that the stress functions kept in the pro-
cedure are just the ones on which 33d  is acting. The reason for such an appar-
ently technical choice is related to very general deep arguments in the theory of 
differential modules that will only be explained at the end of the paper. 

The Morera parametrization is obtained similarly by keeping now  

23 13 12, ,L M Nφ φ φ= = =  while setting 11 22 33 0φ φ φ= = = , namely: 

23

33 13 23

13

22 23 12

11 12 13

12

0
0

0
0
0

0

d L
d N d L d M
d M
d M d N d L
d L d M d N
d N

=
 − − =
 =
 − − =
 − − =


=  

Using now the same change of coordinates as the one already done for the 
Maxwell parametrization, we obtain the following system with 3 equations of 
(full) class 3 and 3 equations of class 2 in the Pommaret basis corresponding to 
the Janet tabular: 

( ) ( )
( )
( )

33 23 13 12

33 13

33 23

23 23 23 13 13 13 12

23 13 13 13 12 11

22 12 12 12 11

0 1 2 3
0 1 2 3

0 1 2 3
0 1 2

2 0 1 2
0 1 2

d N d N d N d N
d M d M
d L d L
d N d M d L d N d M d L d N
d M d N d M d L d M d L

d M d N d M d L d L

+ + + =
 + =
 + =
 + − + − + + = •
 + − − + − = •


+ − − + = •  
After elementary but tedious computations (that could not be avoided!), one 

can prove that the 3 CC corresponding to the 3 dots are effectively satisfied and 
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that they correspond to the 3 Cauchy stress equations which are therefore para-
metrized. The parametrization is thus provided by an involutive operator defin-
ing a torsion module because the character 3

2α  is vanishing in δ -regular 
coordinates, just like before for the Maxwell parametrization. We have thus 
another minimum parametrization that cannot be parametrized again. Of 
course, such a result could not have been understood by Beltrami in 1892 be-
cause the work of Cartan could not be adapted easily as it is using the language 
of exterior forms and the work of Janet only appeared in 1920 with no explicit 
reference to involution because only Janet bases are used [8] while the Pomma-
ret bases have only been introduced in 1978 [1]. 

On a purely computational level, we may also keep only { }11 12 22, ,φ φ φ  and 
obtain the different involutive system with the same characters and, in particu-
lar, 3

2 0α = : 
11

33 22
12

33 12
22

33 11
13

23 12 13 22
23

23 11 13 12
33

22 11 11 22 12 12

1 2 30
1 2 30
1 2 30
1 20
1 20
1 22 0

d
d

d
d d

d d
d d d

σ φ
σ φ

σ φ
σ φ φ
σ φ φ

σ φ φ φ

 ≡ =

− ≡ =
 ≡ =
 •≡ − =
 •− ≡ − =


•≡ + − =  
So far, we have thus obtained three explicit local minimum parametrizations 

of the Cauchy stress equations with ( )1 2 3n n − =  stress potentials but there 
may be others [21]. 
• 4n = : It just remains to explain the relation of the previous results with 

Einstein equations. The first surprising link is provided by the following 
technical proposition: 

PROPOSITION 3.1: The Beltrami parametrization is just described by the 
Einstein operator when 3n = . The same confusion existing between the Bianc-
hi operator and the Cauchy operator has been made by both Einstein and Bel-
trami because the Einstein operator and the Beltrami operator are self-adjoint in 
arbitrary dimension 3n ≥ , contrary to the Ricci operator. 

Proof: The number of components of the Riemann tensor is  
( ) ( )2 2

1 1 12dim F n n= − . We have the combinatorial formula  

( ) ( ) ( )( )( )2 2 1 12 1 2 1 2 3 12n n n n n n n n− − + = + + −  expressing that the num-
ber of components of the Riemann tensor is always greater or equal to the num-
ber of components of the Ricci tensor whenever 2n > . Also, we have shown in 
many books [1] [2] [3] [4] [15] [19] or papers [10] [21] [29] [30] that the num-
ber of Bianchi identities is equal to ( )( )2 2 1 2 24n n n− − , that is 3 when 3n =  
and 20 when 4n = . Of course, it is well known that the div operator, induced as 
CC of the Einstein operator, has n components in arbitrary dimension 3n ≥ . 

Accordingly, when 3n =  we have ( ) ( )2 2 1 12 1 2 6n n n n− = + =  and it 
only remains to prove that the Einstein operator reduces to the Beltrami opera-
tor and not just to the Ricci operator. The following formulas can be found in 
any textbook on general relativity: 
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Hence the difference can only be seen when 0i jω ≠ = . In our situation with 
3n =  and the Euclidean metric for simplicity, we have: 

( ) ( )
( ) ( )

12 12 11 22 33 12 12 11 22 33

11 12 12 22 13 23 12 11 22 12 23 13

33 12 12 33 13 23 23 13

2 2R E d d d d

d d d d d d
d d d d

= = + + Ω + Ω +Ω +Ω

− Ω + Ω + Ω − Ω + Ω + Ω

= Ω + Ω − Ω − Ω  

( ) ( )
( )

( ) ( ) ( )

11 11 22 33 11 11 11 22 33

11 11 12 12 13 13

22 33 11 11 22 33 12 12 13 13

2

2

2

R d d d d

d d d

d d d d d

= + + Ω + Ω +Ω +Ω

− Ω + Ω + Ω

= + Ω + Ω +Ω − Ω + Ω  

( ) ( )
( )

11 22 11 33 22 11 22 33 33 11 33 22

12 12 13 13 23 232

tr R d d d d d d

d d d

= Ω + Ω + Ω + Ω + Ω + Ω

− Ω + Ω + Ω
 

11 22 33 33 22 23 232 2E d d d− = Ω + Ω − Ω  

In the light of modern differential geometry, comparing these results with the 
works of both Maxwell, Morera, Beltrami and Einstein, it becomes clear that 
they have been confusing the div operator induced from the Bianchi operator 
with the Cauchy operator. However, it is also clear that they both obtained a 
possibility to parametrize the Cauchy operator by means of 3 arbitrary potential 
like functions in the case of Maxwell and Morera, 6 in the case of Beltrami who 
explains the previous choices, and 10 in the case of Einstein. Of course, as they 
were ignoring that the Einstein operator was self-adjoint whenever 3n ≥ , they 
did not notice that we have ( )Cauchy ad Killing=  and they were unable to 
compare their results with the Airy operator found as early as in 1870 for the 
same mechanical purpose when 2n = . To speak in a rough way, the situation is 
similar to what could happen in the study of contact structures if one should 
confuse 1−  with 1  [29]. Finally, using Theorem 2.1 or Proposition 2.2, we 
can choose a differential transcendence basis with ( )1 2n n −  potentials that 
can be indexed by ij jiφ φ=  with i j<  or 1 , 1i j n≤ ≤ −  or even 2 ,i j n≤ ≤  
when the dimension 2n ≥  is arbitrary (see [2] or [40] for more details on dif-
ferential algebra). 

Q.E.D. 
REMARK 3.2: In the opinion of the author of this paper who is not a histo-

rian of sciences but a specialist of mathematical physics interested in the analogy 
existing between electromagnetism (EM), elasticity (EL) and gravitation (GR) by 
using the conformal group of space-time (see [3] [10] [28] [29] [30] [41] [42] 
[43] [44] for related works), it is difficult to imagine that Einstein could not have 
been aware of the works of Maxwell and Beltrami on the foundations of EL and 
tensor calculus. Indeed, not only they were quite famous when he started his re-
search work but it must also be noticed that the Mach-Lippmann analogy [45] 
[46] [47] [48] was introduced at the same time (see [3] and [49] for more details 
on the field-matter couplings and the phenomenological law discovered by... 
Maxwell too). The main idea is that classical variational calculus using a Lagran-
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gian formalism must be only considered as the basic scheme of a more general 
and powerful “duality theory” that only depends on new purely mathematical 
tools, namely “group theory” and “differential homological algebra” (see [4] or 
[15] for the theory and [21] for the applications). 

The two following crucial results, still neither known nor acknowledged today, 
are provided by the next proposition and corresponding corollary [40]: 

PROPOSITION 3.3: The Cauchy operator can be parametrized by the formal 
adjoint of the Ricci operator (4 terms) and the Einstein operator (6 terms) is 
thus useless. The so-called gravitational waves equations are thus nothing else 
than the formal adjoint of the linearized Ricci operator. 

Proof: The Einstein operator EΩ→  is defined by setting  

( )1
2ij ij ijE R tr Rω= −  that we shall write Einstein C Ricci= �  where  

* *
2 2:C S T S T→  is a symmetric matrix only depending on ω , which is inverti-

ble whenever 3n ≥ . Surprisingly, we may also introduce the same linear trans-

formation ( )1:
2

C trωΩ→Ω = Ω− Ω  and the unknown composite operator 

: EΩ→Ω→  in such a way that Einstein C= �  where   is defined by 
(see [33], 5.1.5 p 134): 

2 rs rs rs
ij rs ij ri sj sj ri

ru sv
ij rs uv

E d d d

d

ω ω ω

ω ω ω

= Ω − Ω − Ω

+ Ω
 

Now, introducing the test functions ijλ , we get: 

( )1
2

1
2

ij ij
ij ij ij

ij rs ij ij
rs ij ij

E R tr R

R R

λ λ ω

λ λ ω ω λ

 = − 
 

 = − = 
 

 

Integrating by parts while setting as usual rs
rsdω= , we obtain: 

( )rs rs ij sj ri ri sj rs
ij ij ij rs rsd d dλ ω λ ω λ ω λ σ+ − − Ω = Ω          (14) 

Moreover, suppressing the “bar” for simplicity, we have: 

0

rs ij rs rs ij sj ri ri sj
r rij rij rij rijd d d d dσ ω λ ω λ ω λ ω λ= + − −

=
 

As Einstein is a self-adjoint operator (contrary to the Ricci operator), we have 
the identities: 

( ) ( ) ( ) ( )
( ) ( )

ad Einstein ad C ad Einstein C ad

ad Ricci ad Ricci

= ⇒ =

⇒ = ⇒ =

� � 

   

Indeed, ( )ad C C=  because C is a symmetric matrix and we know that 
( )ad Einstein Einstein= . Accordingly, the operator ( )ad Ricci  parametrizes 

the Cauchy equations, without any reference to the Einstein operator which has 
no mathematical origin, in the sense that it cannot be obtained by any diagram 
chasing. The three terms after the Dalembert operator factorize through the di-
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vergence operator ri
id λ . We may thus add the differential constraints 0ri

id λ =  
without any reference to a gauge transformation in order to obtain a (minimum) 
relative parametrization (see [14] and [18] for details and explicit examples). 
When 4n =  we finally obtain the adjoint sequences: 

( )

4 10 10

0 4 10 10

Killing Ricci

ad RicciCauchy

→ →

← ← ←  

without any reference to the Bianchi operator and the induced div operator. 
Finally, using Theorem 2.1 or Proposition 2.2, we may choose a differential 

transcendence basis made by { }|ij i jλ <  or { }|1 , 1ij i j nλ < < −  or even 

{ }| 2 ,ij i j nλ < <  when the dimension 2n ≥  is arbitrary (see again [2] or [40] 

for more details on differential algebra). 
Q.E.D. 

COROLLARY 3.4: The differential module N defined by the Ricci or the 
Einstein operator is not torsion-free and cannot therefore be parametrized. Its 
torsion submodule is generated by the 10 components of the Weyl operator that 
are separately killed by the Dalembert operator. 

Proof: In order to avoid using extension modules, we present the 5 steps of the 
double differential duality test in this framework: 

Step 1: Start with the Einstein operator 1 :10 10
Einstein
→ . 

Step 2: Consider its formal adjoint: ( )1 :10 10
Einstein

ad ← . 
Step 3: Compute the generating CC, namely the Cauchy operator:  

( ) : 4 10
Cauchy

ad ← . 

Step 4: Consider its formal adjoint: ( )( ) : 4 10
Killing

ad ad= →  . 

Step 5: Compute the generating CC, namely the Riemann operator:  

1 :10 20
Riemann

′ → . 

With a slight abuse of language, we have the direct sum Riemann Ricci Weyl= ⊕  
with 20 10 10= + . It follows from differential homological algebra that the 10 
additional CC in 1′  that are not in 1 , are generating the torsion submodule 
( )t N  of the differential module N defined by the Einstein or Ricci operator. In 

general, if K is a differential field with commuting derivations 1, , n∂ ∂� , we way 
consider the ring [ ] [ ]1, , nD K d d K d= =�  of differential operators with coef-
ficients in K and it is known that ( ) ( )( )D Drk rk ad=   for any operator ma-
trix   with coefficients in K. In the present situation, as the Minkowski metric 
has coefficients equal to 0,1, 1− , we may choose the ground differential field to 
be K =  . Hence, there exist operators   and   such that we have an 
identity: 

Weyl Ricci=� �   

One may also notice that ( ) ( )D Drk Einstein rk Ricci=  with: 
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( ) ( ) ( )

( ) ( ) ( )

1 1
,

2 2
1 1

2 2

D

D

n n n n
rk Einstein n

n n n n
rk Riemann n

+ −
= − =

+ −
= − =

 

The differential ranks of the Einstein and Riemann operators are thus equal, 
but this is a pure coincidence because ( )Drk Einstein  has only to do with the 
div operator induced by contracting the Bianchi operator, while ( )Drk Riemann  
has only to do with the classical Killing operator and the fact that the corres-
ponding differential module is a torsion module because we have a Lie group of  

transformations having 
( ) ( )1 1

2 2
n n n n

n
− +

+ =  parameters (translations + rota- 

tions). Hence, as the Riemann operator is a direct sum of the Weyl operator and 
the Einstein or Ricci operator according to the previous theorem, each compo-
nent of the Weyl operator must be killed by a certain operator whenever the 
Einstein or Ricci equations in vacuum are satisfied. It is not at all evident that we 
have =   acting on each component of the Weyl operator. A direct tricky 
computation can be found in ([49], p 206), ([50], exercise 7.7) and ([15], p 95). 
With more details, we may start from the long exact sequence: 

0 4 10 20 20 6 0
Killing Riemann Bianchi

→Θ→ → → → → →  

This resolution of the set of Killing vector fields is not a Janet sequence be-
cause the Killing operator is not involutive as it is an operator of finite type with 
symbol of dimension ( )1 2 6n n − =  and one should need one prolongation for 
getting an involutive operator with vanishing second order symbol. Splitting the 
Riemann operator we get the commutative and exact diagram: 

0 0 0

0 10 16 6 0

4 10 20 20 6 0

10 10 4 0

0 0 0

Killing Riemann Bianchi

Einstein div

↓ ↓ ↓
→ → →

↓ ↓↑ ↓

→ → → → →
↓↑ ↓ ↓

→ → →
↓ ↓ ↓





 

Passing to the module point of view, we have the long exact sequence: 

6 20 20 10 40 0
KillingBianchi Riemann

D D D D D M→ → → → → → →  

which is a resolution of the Killing differential module ( )M coker Killing=  
and we check that we have indeed the vanishing of the Euler-Poincaré characte-
ristic 6 20 20 10 4 0− + − + = . Accordingly, we have  

( ) ( ) 4N coker Riemann im Killing D′ = ⊂  and thus N ′  is torsion-free with 
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( ) 4 0 4Drk N n′ = − = =  because ( ) 0Drk M = . 
We have the following commutative and exact diagram where  

( )N coker Einstein= : 

( )

4 10 10

6 20 20 10

6 16 10

0

0 0 0

0 0

0 0

0 0 0

0 0 0

div Einstein

Bianchi Riemann

t N

D D D N

D D D D N

D D D

↓

↓ ↓ ↓ ↓

→ → → → →

↓ ↓ ↓ ↓

′→ → → → → →

↓ ↓ ↓ ↓

→ → →

↓ ↓ ↓





 

If L is the kernel of the epimorphism N N ′→ , it is a torsion module because 
( ) ( ) ( ) 4 4 0D D Drk L rk N rk N ′= − = − = . We have thus ( )L t N⊆  in the fol-

lowing commutative and exact diagram: 

( )

( )

0 0

0

0 0

0

0 0

L t N

N N

N N t N

↓ ↓

→ →

↓ ↓

→ = →

↓ ↓

′ → →

↓ ↓

 

where ( )N t N  is a torsion-free module by definition. A snake chase allows to 
prove that the cokernel of the monomorphism ( )L t N→  is isomorphic to the 
kernel of the induced epimorphism ( )N N t N′ →  and must be therefore, at 
the same time, a torsion module because ( ) ( )( ) 0D Drk L rk t N= =  and a tor-
sion-free module because 4N D′ ⊂ , a result leading to a contradiction unless it 
is zero and thus ( )L t N= . A snake chase in the previous diagram allows to ex-
hibit the long exact connecting sequence: 

( )6 16 100 0D D D t N→ → → → →  
It must be noticed that one cannot find canonical morphisms between the 

classical and conformal resolutions constructed similarly because we recall that, 
for 4n =  (only), the CC of the Weyl operator are of order 2 and not 1 like the 
Bianchi CC for the Riemann operator (see [37] for a computer algebra check-
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ing !). However, it follows from the last theorem that the short exact sequence 
10 20 100 0D D D→ → → →  splits with 20 10 10D D D⊕  but the existence of a 

canonical lift 20 10 0D D→ →  in the above diagram does not allow to split the 
right column and thus ( )N N t N′≠ ⊕  as N ′  is not even free. Hence, one can 
only say that the space of solutions of Einstein equations in vacuum contains the 
generic solutions of the Riemann operator which are parametrized by arbitrary 
vector fields. As for the torsion elements, we have ( ) ( )16 10t N coker D D= →  
and we may thus represent them by the components of the Weyl tensor, killed 
by the Dalembertian. This module interpretation may thus question the proper 
origin and existence of gravitational waves because the div operator on the upper 
left part of the diagram has strictly nothing to do with the ( )Cauchy ad Killing=  
operator which cannot appear anywhere in this diagram. 

Q.E.D. 
COROLLARY 3.5: More generally, when   is a Lie operator of finite type, 

that is when [ ],Θ Θ ⊂ Θ  under the ordinary bracket of vector fields or 
,q q qR R R  ⊂   under the bracket of Lie algebroids and 0q rg + =  for r large 

enough, then the Spencer sequence is locally isomorphic to the tensor product of 
the Poincaré sequence for the exterior derivative by a finite dimensional Lie al-
gebra. It is thus formally exact both with its adjoint sequence. As it is known that 
the extension modules do not depend on the resolution used, this is the reason 
for which not only the Cauchy operator can be parametrized but also the Cosse-
rat couple-stress equations ( )1ad   can be parametrized by ( )2ad  , a result 
not evident at all (see [41] and [43] for explicit computations). 

REMARK 3.6: A similar situation is well known for the Cauchy-Riemann eq-
uations when 2n = . Indeed, any infinitesimal complex transformation ξ  must 
be solution of the linear first order homogeneous system 2 1 1 2

2 1 2 10, 0ξ ξ ξ ξ− = + =  
of infinitesimal Lie equations though we obtain 1 1 2 2

11 22 11 220, 0ξ ξ ξ ξ+ = + = , that is 
1ξ  and 2ξ  are separately killed by the second order Laplace operator 

11 22d d∆ = + . 
REMARK 3.7: A similar situation is also well known for the wave equations 

for the EM field F in electromagnetism. Indeed, starting with the first set of 
Maxwell equations 0dF =  and using the Minkowski constitutive law in vacuum 
with electric constant 0ε  and magnetic constant 0µ  such that 2

0 0 1cε µ =  for 
the seconf set of Maxwell equations, a standard tricky differential elimination 
allows to avoid the Lorenz (no “t”) gauge condition for the EM potential and to 
obtain directly 0F =  (see [15] and [40] for the details). 

Using computer algebra or a direct checking with the ordering  
11 12 13 22 23 33< < < < < , we obtain: 

44
33 44 33E d lower termsω= Ω +  

44
23 44 23E dω= Ω �  

We have therefore the following Janet tabular: 
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1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3
1 2 3
1 2 3
1 2 3

•
•
•
•

 
we are in the position to compute the characters of the Einstein operator but a 
similar procedure could be followed with the Ricci operator. We obtain at once: 

( )
( )
( )
( )

4 4
2 2

3 3
2 2

2 2
2 2

1 1
2 2

6 10 1 6 4

4 10 2 4 16

0 10 3 0 30

0 10 4 0 40

β α

β α

β α

β α

= ⇒ = × − =

= ⇒ = × − =

= ⇒ = × − =

= ⇒ = × − =  
a result leading to ( ) 1 2 3 4

2 2 2 2 2 90dim g α α α α= + + + =  and  

( ) 1 2 3 4
3 2 2 2 22 3 4 164dim g α α α α= + + + =  along with the long exact sequences: 

* * *
2 2 2 20 0g S T S T S T→ → ⊗ → →  

* * * * *
3 3 2 20 0g S T S T T S T T→ → ⊗ → ⊗ → →  

Now, we have by definition ( )1 2 3 4, , ,div d d d d=  and  
( )0,0,0,0div Einstein =� . 

As the Einstein operator is a self-adjoint 10 × 10 operator matrix up to a 
change of basis [27], we obtain therefore, with a slight abuse of language, 

( ) 0det Einstein =  because: 

11

12

13

1 2 3 4 14

1 2 3 4 22

1 2 3 4 23

1 2 3 4 24

33

34

44

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

E
E
E

d d d d E
d d d d E

d d d d E
d d d d E

E
E
E

 
 
 
 
 

    
    
     =
    
    

   
 
 
 
 
 

�
�
�
�

 
a result not evident at first sight that must be compared with the Poincaré situa-
tion when 3n = : 

( ) ( )
3 2

1 2 3 3 1

2 1

0
0 0 0 0

0

d d
d d d d d

d d

− 
 − = 
 −   
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4. Symbol Sequences 

A way to study the formal properties of a linear differential operator 

0: E F F→ =  of order q between the sections of two vector bundles over a 
manifold X with dimension n is to consider the symbol of   at the covector 

( )*T Xχ ∈ , namely the map ( )χσ   obtained from the leading terms of order 
q. With more details, if   is described by the operator matrix ( )ka dτµ

µ  with 
0 qµ≤ ≤  and *i

idx Tχ χ= ∈ , then ( ) 0: E Fχσ →  is described by the po-
lynomial matrix ( )kaτµ

µχ  with qµ = . When   is formally integrable, then 
χ  is said to be characteristic if ( )χσ   fails to be injective and we may intro-
duce the characteristic set V as usual. When   is involutive, it is known after 
the work of M. Janet (1920) that one can construct first order operators 

1, , n�  , each one generating the compatibility conditions (CC) of the pre-
ceding one. However, the symbol maps ( ) 1:i i iF Fχσ − →  for 1, ,i n= �  may 
not provide an exact sequence and any non-zero covector is characteristic for 
these operators. A comparison of the operators involved in a control system with 

1n = , in the study of the contact transformations with 3n =  and of the linea-
rized Einstein equations with 4n =  proves that the preceding definition must 
be conveniently refined by saying that a covector is systatic if the matrix 

( )χσ   fails to have its maximum generic rank and the previous symbol se-
quence is exact otherwise and we may introduce the systatic set W as in [1] [4] 
[5]. What we have done with the Janet sequence can also be done with the 
Spencer sequence that only involves first order operators induced by the Spencer 
operator. A close link with differential homological algebra and the correspond-
ing differential extension modules can also be established and illustrated [14]. 
These new results are adding doubts to the ones we have already expressed on 
the origin and existence of gravitational waves as follows. 

First of all, we must distinguish two cases: 
• ( )( ) 0n

qmax rk mχ χσ α< ⇔ > : Any covector is characteristic and we have 
*W V T⊂ =  with a slight abuse of language. This is the situation for each of 

the operators 1, , n�  . 
• ( )( ) 0n

chi qmax rk mχ σ α= ⇔ = : The symbol map ( )χσ   fails to be in-
jective if and only if all the m m×  submatrices have vanishing determinants 
and we have *=W V T⊂ . 

PROPOSITION 4.1: If   is involutive, the symbol sequence of the Janet 
sequence: 

( )( )
( ) ( ) ( )1

00 0
n

nker E F F
χ χ χσ σ σ

χσ→ → → → → →�
  

          (15) 

is exact if and only if Wχ ∉ . 
Proof: Using the Janet tabulars for   and 1  with ( )dim E m= , we get: 

( )( )( ) ( )( ) ( ) ( )

( ) ( )( )( )1 1 1

n n
q q

n

dim im rk m

dim ker

χ χ

χ

σ σ α β

α σ

= = − =

= =

   

 
 

and so on. 
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Q.E.D. 
When 3n = , coming back to the Beltrami operator, that is the Einstein oper-

ator which is known to be involutive, we may change the local coordinates as we 
did for the Maxwell and Morera parametrizations. With  

( )3 1 2 3 1,1,1dx dx dx dxχ = = + + = , then ( )( )ker χσ   is defined by: 

22 33 23

12 33 23 13

11 33 13

12 23 13 22

11 23 13 12

11 22 12

2 0
0

2 0
0
0

2 0

φ φ φ
φ φ φ φ
φ φ φ
φ φ φ φ
φ φ φ φ
φ φ φ

+ − =
 + − − =
 + − =
 + − − =
 + − − =


+ − =  
Multiplying the fourth equation by 2 and substituting the first, the third and 

the sixth, we get: 
 

( ) ( ) ( )11 22 22 33 11 33 222 0φ φ φ φ φ φ φ+ + + − + − =  
whenever 23 22 33 13 11 33 12 11 222 , 2 , 2φ φ φ φ φ φ φ φ φ= + = + = + . This unexpected result, 
which has only to do with the use of δ -regular local coordinates, is proving that 
the choice of the stress potentials has strictly nothing to do with the comple-
mentary cancellations respectively adopted by Maxwell or Morera according to 
Beltrami because, in both cases, V Wχ ∉ =  but ( )3 0,0,1dx V Wχ = = ∈ = . 
This result can be extended to an arbitrary dimension. 

5. Conclusion 

After teaching elasticity for 25 years to high level students in some of the best 
french civil engineering schools, the author of this paper still keeps in mind one 
of the most fascinating exercises that he has set up. The purpose was to explain 
why a dam made with concrete is always vertical on the water-side with a slope 
of about 42 degrees on the other free side in order to obtain a minimum cost and 
the auto-stability under cracking of the surface under water (see the introduction 
of [5] for more details). Surprisingly, the main tool involved is the approximate 
computation of the Airy function inside the dam. The author discovered at that 
time that no one of the other teachers did know that the Airy parametrization is 
nothing else than the adjoint of the linearized Riemann operator used as gene-
rating CC for the deformation tensor by any engineer. Being involved in General 
Relativity (GR) at that time, it took him 25 years (1970-1995) to prove that the 
Einstein equations could not be parametrized [25] [26] [27]. However, nobody is 
a prophet in his own country and it is only recently that he discovered that GR 
could be considered as a way to parametrize the Cauchy operator. It follows that 
exactly the same confusion has been done by Maxwell, Morera, Beltrami and 
Einstein because, in all these cases, the operator considered is self-adjoint. As a 
byproduct, the variational formalism cannot allow to discover it as no engineer 
could have had in mind to confuse the deformation tensor with its CC in the 
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Lagrangian used for finite elements computations. It is thus an open historical 
problem to know whether Einstein knew any one of the previous works done as 
all these researchers were quite famous at the time he was active. In our opinion 
at least, the comparison of the various parametrizations described in this paper 
needs no comment as we have only presented facts, just facts. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Pommaret, J.-F. (1978) Systems of Partial Differential Equations and Lie Pseudo-

groups. Gordon and Breach, New York; Russian Translation: MIR, Moscow (1983). 

[2] Pommaret, J.-F. (1983) Differential Galois Theory. Gordon and Breach, New York. 

[3] Pommaret, J.-F. (1988) Lie Pseudogroups and Mechanics. Gordon and Breach, New 
York. 

[4] Pommaret, J.-F. (1994) Partial Differential Equations and Group Theory. Kluwer, 
Dordrecht. https://doi.org/10.1007/978-94-017-2539-2 

[5] Pommaret, J.-F. (2001) Partial Differential Control Theory. Kluwer, Dordrecht.  
https://doi.org/10.1007/978-94-010-0854-9 

[6] Pommaret, J.-F. (2019) Journal of Modern Physics, 10, 371-401.  
https://doi.org/10.4236/jmp.2019.103025 

[7] Spencer, D.C. (1965) Bulletin of the AMS, 75, 1-114. 

[8] Janet, M. (1920) Journal de Mathematique, 8, 65-151. 

[9] Pommaret, J.-F. (2005) Algebraic Analysis of Control Systems Defined by Partial 
Differential Equations. In: Advanced Topics in Control Systems Theory, Springer, 
Berlin, Lecture Notes in Control and Information Sciences 311, Chapter 5, 155-223.  
https://doi.org/10.1007/11334774_5 

[10] Pommaret, J.-F. (2020) Journal of Modern Physics, 11, 1672-1710.  
https://doi.org/10.4236/jmp.2020.1110104 

[11] Gasqui, J. (1982) Compositio Mathematica, 47, 43-69. 

[12] Bjork, J.E. (1993) Analytic D-Modules and Applications. Kluwer, Dordrecht.  
https://doi.org/10.1007/978-94-017-0717-6 

[13] Kashiwara, M. (1995) Algebraic Study of Systems of Partial Differential Equations. 
Mémoires de la Société Mathématique de France, 63 (Transl. from Japanese of His 
1970 Master’s Thesis). 

[14] Pommaret, J.-F. (2015) Multidimensional Systems and Signal Processing, 26, 405-437.  
https://doi.org/10.1007/s11045-013-0265-0 

[15] Pommaret, J.-F. (2018) New Mathematical Methods for Physics. Mathematical 
Physics Books, Nova Science Publishers, New York, 150 p. 

[16] Schneiders, J.-P. (1994) Bulletin de la Société Royale des Sciences de Liège, 63, 
223-295. 

[17] Macaulay, F.S. (1916) The Algebraic Theory of Modular Systems. Cambridge Tract 
19, Cambridge University Press, London. (Reprinted by Stechert-Hafner Service 
Agency, New York, 1964) https://doi.org/10.3792/chmm/1263317740 

https://doi.org/10.4236/jmp.2021.124032
https://doi.org/10.1007/978-94-017-2539-2
https://doi.org/10.1007/978-94-010-0854-9
https://doi.org/10.4236/jmp.2019.103025
https://doi.org/10.1007/11334774_5
https://doi.org/10.4236/jmp.2020.1110104
https://doi.org/10.1007/978-94-017-0717-6
https://doi.org/10.1007/s11045-013-0265-0
https://doi.org/10.3792/chmm/1263317740


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.124032 481 Journal of Modern Physics 
 

[18] Pommaret, J.-F. (2012) Spencer Operator and Applications: From Continuum Me-
chanics to Mathematical Physics. In: Yong, G., Ed., Continuum Mechanics-Progress 
in Fundamentals and Engineering Applications, InTech, Rijeka, 1-32.  
https://doi.org/10.5772/35607 

[19] Pommaret, J.-F. (2016) Deformation Theory of Algebraic and Geometric Structures. 
Lambert Academic Publisher (LAP), Saarbrucken.  
http://arxiv.org/abs/1207.1964  
https://doi.org/10.1007/BFb0083506 

[20] Pommaret, J.-F. (2016) Journal of Modern Physics, 7, 699-728.  
https://arxiv.org/abs/1803.09610  

[21] Pommaret, J.-F. (2019) Journal of Modern Physics, 10, 1454-1486.  
https://doi.org/10.4236/jmp.2019.1012097 

[22] Hu, S.-T. (1968) Introduction to Homological Algebra. Holden-Day, San Francisco. 

[23] Northcott, D.G. (1966) An Introduction to Homological Algebra. Cambridge Uni-
versity Press, Cambridge. 

[24] Rotman, J.J. (1979) An Introduction to Homological Algebra (Pure and Applied 
Mathematics). Academic Press, Cambridge. 

[25] Pommaret, J.-F. (1995) Comptes Rendus Académie des Sciences Paris, Série I, 320, 
1225-1230. 

[26] Zerz, E. (2000) Topics in Multidimensional Linear Systems Theory. Lecture Notes 
in Control and Information Sciences, LNCIS 256, Springer, Berlin. 

[27] Pommaret, J.-F. (2013) Journal of Modern Physics, 4, 223-239.  
https://doi.org/10.4236/jmp.2013.48A022 

[28] Pommaret, J.-F. (2014) Journal of Modern Physics, 5, 157-170.  
https://doi.org/10.4236/jmp.2014.55026 

[29] Pommaret, J.-F. (2020) The Conformal Group Revisited.  
https://arxiv.org/abs/2006.03449  

[30] Pommaret, J.-F. (2020) Nonlinear Conformal Electromagnetism and Gravitation.  
https://arxiv.org/abs/2007.01710  

[31] Pommaret, J.-F. (2016) Journal of Modern Physics, 7, 699-728.  
https://doi.org/10.4236/jmp.2016.77068 

[32] Pommaret, J.-F. and Quadrat, A. (1999) Systems & Control Letters, 37, 247-260.  
https://doi.org/10.1016/S0167-6911(99)00030-4 

[33] Foster, J. and Nightingale, J.D. (1979) A Short Course in General Relativity. Long-
man, London. 

[34] Lanczos, C. (1962) Reviews of Modern Physics, 34, 379-389.  
https://doi.org/10.1103/RevModPhys.34.379 

[35] Airy, G.B. (1863) Philosophical Transactions of the Royal Society of London, 153, 
49-80. https://doi.org/10.1098/rstl.1863.0004 

[36] Beltrami, E. (1892) Atti della Accademia Nazionale dei Lincei, 1, 141-142. 

[37] Landriani, G.S. (2017) Meccanica, 52, 2801-2806.  
https://doi.org/10.1007/s11012-016-0611-z 

[38] Maxwell, J.C. (1870) Transactions of the Royal Society of Edinburgh, 26, 1-40.  
https://doi.org/10.1017/S0080456800026351 

[39] Morera, G. (1892) Atti della Accademia Nazionale dei Lincei, 1, 137-141 + 233-234. 

[40] Pommaret, J.-F. (2017) Journal of Modern Physics, 8, 2122-2158.  

https://doi.org/10.4236/jmp.2021.124032
https://doi.org/10.5772/35607
http://arxiv.org/abs/1207.1964
https://doi.org/10.1007/BFb0083506
https://arxiv.org/abs/1803.09610
https://doi.org/10.4236/jmp.2019.1012097
https://doi.org/10.4236/jmp.2013.48A022
https://doi.org/10.4236/jmp.2014.55026
https://arxiv.org/abs/2006.03449
https://arxiv.org/abs/2007.01710
https://doi.org/10.4236/jmp.2016.77068
https://doi.org/10.1016/S0167-6911(99)00030-4
https://doi.org/10.1103/RevModPhys.34.379
https://doi.org/10.1098/rstl.1863.0004
https://doi.org/10.1007/s11012-016-0611-z
https://doi.org/10.1017/S0080456800026351


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.124032 482 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2017.813130 

[41] Cosserat, E. and Cosserat, F. (1909) Théorie des Corps Déformables. Hermann, 
Paris. 

[42] Pommaret, J.-F. (1997) Annales des Ponts et Chaussées, 82, 59-66. 

[43] Pommaret, J.-F. (2010) Acta Mechanica, 215, 43-55.  
https://doi.org/10.1007/s00707-010-0292-y 

[44] Pommaret, J.-F. (2019) Journal of Modern Physics, 10, 1566-1595.  
http://arxiv.org/abs/1802.02430  
https://doi.org/10.4236/jmp.2019.1013104 

[45] Adler, F.W. (1907) Annalen der Physik und Chemie, 22, 578-594.  
https://doi.org/10.1002/andp.19073270314 

[46] Lippmann, G. (1876) Comptes rendus de l’Académie des Sciences, 82, 1425-1428. 

[47] Lippmann, G. (1907) Annalen der Physik und Chemie, 23, 994-996.  
https://doi.org/10.1002/andp.19073281017 

[48] Mach, E. (1900) Prinzipien der Wärmelehre, 2, Aufl. J.A. Barth, Leipzig, 330. 

[49] Choquet-Bruhat, Y. (2015) Introduction to General Relativity, Black Holes and 
Cosmology. Oxford University Press, Oxford. 

[50] Hughston, L.P. and Tod, K.P. (1990) An Introduction to General Relativity. London 
Mathematical Society Student Texts 5. Cambridge University Press, Cambridge.  
https://doi.org/10.1017/CBO9781139171977 

 
 

https://doi.org/10.4236/jmp.2021.124032
https://doi.org/10.4236/jmp.2017.813130
https://doi.org/10.1007/s00707-010-0292-y
http://arxiv.org/abs/1802.02430
https://doi.org/10.4236/jmp.2019.1013104
https://doi.org/10.1002/andp.19073270314
https://doi.org/10.1002/andp.19073281017
https://doi.org/10.1017/CBO9781139171977

	Minimum Parametrization of the Cauchy Stress Operator
	Abstract
	Keywords
	1. Introduction
	1.1. System Theory
	1.2. Module Theory

	2. Parametrization Problem
	3. Einstein Equations
	4. Symbol Sequences
	5. Conclusion
	Conflicts of Interest
	References

