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Abstract 
The quantization of the forced harmonic oscillator is studied with the quan-
tum variable ( ˆ,x v ), with the commutation relation [ ]ˆ,x v i m=  , and using a 
Schrödinger’s like equation on these variable, and associating a linear operator 
to a constant of motion ( ), ,K x v t  of the classical system, The comparison 
with the quantization in the space ( ,x p ) is done with the usual Schrödinger’s 

equation for the Hamiltonian ( ), ,H x p t , and with the commutation relation 

[ ]ˆ,x p i=  . It is found that for the non-resonant case, both forms of quantiza-
tion bring about the same result. However, for the resonant case, both forms 
of quantization are different, and the probability for the system to be in the 
exited state for the ( ˆ,x v ) quantization has fewer oscillations than the ( ˆ,x p ) 
quantization, the average energy of the system is higher in ( ˆ,x p ) quantiza-
tion than on the ( ˆ,x v ) quantization, and the Boltzmann- Shannon entropy 
on the ( ˆ,x p ) quantization is higher than on the ( ˆ,x v ) quantization. 
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1. Introduction 

The usual quantum mechanics formulation is done in the space ( ˆ,x p ) [1], where 
p̂ i x= − ∂ ∂  is the linear operator associated to the classical generalized linear 

momentum of the motion of a particle of mass “m”, where the commutation rela-
tion [ ]ˆ,x p i=   [2] is satisfied. A linear operator is associated to the classical 
Hamiltonian, ( )ˆ ˆ, ,H x p t , to form the so called Schrödinger’s equation [3] 

( )ˆ ˆ, , ,i H x p t
t

∂Ψ
= Ψ

∂
                        (1) 
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where ( ),x tΨ = Ψ  is the wave function. This formulation has had enormous 
success to explain and to predict most microscopic behavior of the nature [4]. 
However, despite this enormous success, Hamiltonian-Lagrangian mathematical 
formulation has some details, even for 1-D problem where one knows that the 
Lagrangian (therefore the Hamiltonian) always exists [5]. First, from the expres-
sion to obtain the generalized linear momentum given the Lagragian, ( ), ,L x x t  
for the system, 

( ), , ,Lp x x t
x
∂

=
∂





                         (2) 

it is not always possible to obtain explicitly ( ), ,x x x p t=   to be able to get the 
explicit expression for the Hamiltonian from the Legrandre’s transformation [6], 

( ) ( ) ( )( ), , , , , , , , .H x p t x x p t p L x x x p t t= −               (3) 

Second, when one is dealing with classical dissipative systems [7], 

( ) ( )
d

, ,
d
mx

F x x
t

=


                         (4) 

either it is not possible to find its Hamiltonian, or two different Hamiltonians 
are possible to find for the system [8] [9] [10] [11] [12]. Last one, for those 
problems of variable mass systems, 

( )( ) ( )
d , ,

,
d

m x x t x
F x

t
=

 

                      (5) 

which are not invariant under Galileo’s transformations and Sommerfeld mod-
ification is not consistent, to find the Hamiltonian for this system [13] requires 
to start from the “Inverse Problem of the Mechanics”.  

Therefore, one has the necessity to find some extension of the known quanti-
zation arised from the Hamilton-Lagrangian approach. In this way, there is al-
ready a proposition [14] [15] of using a function ( ), ,K x v t  that could be a con-
stant of motion of the classical system, and to associate a linear operator to the 
velocity of the form 

ˆ ,v i
m x

∂
= −

∂
                            (6) 

such that [ ]ˆ,x v i m=  , and to associate a linear operator 

( ) ( )ˆ ˆ, , , , ,K x v t K x v t→                       (7) 

which can be used to form the Shrödinger’s like equation 

( )ˆ ˆ, , .i K x v t
t

∂Ψ
= Ψ

∂
                        (8) 

The usual Quantum Mechanics is formulated through the Shrödinger’s Equa-
tion (1), given in terms of the Hamiltonian associate to the system. However, in 
this paper, we intend to use the approach (8) as a possible alternative and ex-
tended way for the Quantum Mechanics, and this is done by studying the 1-D 
forced harmonic oscillator to determine whether or not there is a difference on 
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the quantization, and hopefully to see if the approach (8) could have with these 
result and experimental verification. 

2. Analytical Approach for ( )K x v t, ,  

The forced harmonic oscillator is classically characterized by Newton’s equation 

( ) ( )2
0

d
cos ,

d
mx

m x t
t

ω α ω ϕ= − + +


                   (9) 

where “m” is the mass of the particle, 0ω  is the natural frequency of oscillation 
(when 0α = ), and α  is the amplitude of the forced force. The well-known 
solution of this problem is 

( )

( )

( )

1 0 2 0 02 2
0

0
1 0 2 0 0

0

cos
cos sin ,

( )
sin

cos sin ,
2

t
C t C t

m
x t

t
C t C t t

m

α ω ϕ
ω ω ω ω

ω ω

α ω ϕ
ω ω ω ω

ω

 +
+ + ≠ −= 

+ + + =

       (10) 

where one has the non-resonant case ( 0ω ω≠ ) and the resonant case ( 0ω ω= ). 
The velocity is known by making the differentiation of (10) with respect the time, 
and the constants C1 and C2 are determined by the initial condition ( ( ) ( )0 , 0x v ). 
For the non-resonant case, these constants are 

( ) ( ) ( )

1 0 0
0

0 02 2
00

cos sin

cos cos sin sin

vC x t t

t t t t
m

ω ω
ω

α ωω ϕ ω ω ϕ ω
ωω ω

= −

 
− + + + 

−  

    (11a) 

and 

( ) ( ) ( )

2 0 0
0

0 02 2
00

sin cos

cos sin sin cos

vC x t t

t t t t
m

ω ω
ω

α ωω ϕ ω ω ϕ ω
ωω ω

= +

 
− + − + 

−  

    (11b) 

For the resonant case ( 0ω ω= ), one has 

( )

( ) ( )

1 0 0 0 0
0 0

0 0 0 0
0

cos sin sin cos
2

1cos sin sin sin

vC x t t t t t
m

t t t t t

αω ω ω ϕ ω
ω ω

ω ϕ ω ω ϕ ω
ω


= − + − +




+ + + + 


       (12a) 

and 

( )

( ) ( )

2 0 0 0 0
0 0

0 0 0 0
0

sin cos sin sin
2

1cos cos sin cos

vC x t t t t t
m

t t t t t

αω ω ω ϕ ω
ω ω

ω ϕ ω ω ϕ ω
ω


= + − +




+ + + + 


        (12b) 

Now, by choosing a constant of motion of the form 
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( ) ( ) ( ), 2 2 2
0 1 2

1, , ,
2

nr rK x v t m C Cα ω= +                   (13) 

where “nr” means non-resonant and “r” means resonant, it follows that 

( ) ( ), 2 2 2
00

1 1lim , , ,
2 2

nr rK x v t mv m xαα
ω

→
= +                 (14) 

Which represents the usual energy of the harmonic oscillator, independently of 
the non-resonant case or resonant case. This constant of motion can be written as 

( ) ( ) ( ) ( ) ( ), ,
0, , , , , ,nr r nr rK x v t K x v W x v tα α= +               (15) 

where 0K  and ( ),nr rWα  are defined as 

( ) 2 2 2
0 0

1 1, ,
2 2

K x v mv m xω= +                     (16) 

( ) ( ) ( ) ( )

( ) ( )

2 2 2
0

2 2

0

1, , cos 2 cos
2

2sin sin ,

nrW x v t m A t Ax t

BvB t t

α ω ω ϕ ω ϕ

ω ϕ ω ϕ
ω


= + − +




+ + + + 


       (17) 

and 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
0 0 0

0 0

0 0

2 2
0 0

21 2, , cos sin
2

2 cos sin

2 sin sin ,

r a t v bvW x v t m a t t t

a t b t t

a t x t b t

α ω ω ϕ ω ϕ
ω ω

ω ϕ ω ϕ

ω ϕ ω ϕ


= − + − +


+ + +


− + + + 



   (18) 

where one has made the definitions 

( ) ( )2 2 2 2
0 0 0

,A B
m m

α αω
ω ω ω ω ω

= =
− −

               (19a) 

and 

( ) 2
0 0

, .
2 2

ta t b
m m
α α
ω ω

= =                     (19b) 

To solve Equation (8), one observes that the eigenvalues problem for the opera-
tor 0K̂ , 

( )0
ˆ ˆ, ,K x v EΦ = Φ                         (20) 

has exactly the same solution of that one given by the Hamiltonian problem, 

( )2 2 2
0ˆ 2p m m x m Eω+ Φ = Φ  where the solution is the set ( ) ( ){ }0

0
,m n n

E x
≥

Φ , 
( ) ( )0

0 1 2nE nω= +
                      (21a) 

and 

( ) ( )2
1 4

2 0 0 1e ,  , .
2 !

n n n n n

m m
x A H x x A

n
ξ ω ω

ξ−  Φ = = =  
 π 

     (21b) 

Using Dirac’s notation [16], where ( )n x x nΦ = , with n  characterizing the 
nth-state, and then one has the eigenvalue problem written as 
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( )0
0

ˆ .nK n E n=                          (22) 

Therefore, one can propose the solution of the Shrödinger’s Equation (8) with 
the operator constant of motion K̂ , 

( )
( ) ( ) ( ){ } ( ),

0
ˆ ˆ ˆ, , , ,nr rt

i K x v W x v t t
t α

∂ Ψ
= + Ψ

∂
             (23) 

of the form 

( ) ( )
0

.n
n

t C t n
∞

=

Ψ = ∑                        (24) 

Taking into consideration (22), the orthogonality of the states ( mnm n δ= ), one 
obtains the following equation for the coefficients 

( ) ( ) ( ) ( ) ( ) ( )0 ,

0
,nr r

m m m n mn
n

i C t E C t C t W t
∞

=

= +∑

                (25) 

where ( ) ( ),nr r
mnW t  represents the matrix element 

( ) ( ) ( ), , .nr r nr r
mnW t m W nα=                      (26) 

The Equation (25) can be simplified using the new variable 

( )
( )

( )
0

e .kiE t
k kC t D t−=                        (27) 

The equations for these new coefficients are 

( ) ( ) ( ) ( ),

0
e ,mn nr ri t

m n mn
n

i D t D t W tω
∞

=

= ∑

                  (28) 

where ( ) ( )0 0k kC D=  and the probability to find the system in the state k  is 
( ) ( )2 2

k kC t D t= . Matrix elements are much easier to calculate by using the 
non-Hermitian ascent “ †a ” and descent “ a ” operators, 

†0 0

0 0

ˆ ˆ  ,   ,
2 2 2 2

m mm ma x i v a x i v
ω ω

ω ω
= + = −

   

          (29) 

with the knows properties [17] 

[ ] † † †, , 0, , 1,a a a a a a   = = =                     (30a) 

and 
† 1 1 , 1 .a n n n a n n n= + + = −              (30b) 

For non-resonant case (nr), after calculating the matrix elements, using the or-
thogonality of the states, and making some rearrangements, one gets the equa-
tions for the real and imaginary parts of the coefficients, ( ) ( ) ( )k k kD t X t iY t= + , 
as 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

2 2
1 1

cos cos cos sin

1 cos cos cos sin

sin cos sin sin

1 sin cos sin sin

cos sin

k k k

k k

k k

k k

k

X c k t tY t tX

c k t tY t tX

d k t tX t tY

d k t tX t tY

a t Y b t

ω ϕ ω ω ϕ ω

ω ϕ ω ω ϕ ω

ω ϕ ω ω ϕ ω

ω ϕ ω ω ϕ ω

ω ϕ ω ϕ

− −

+ +

− −

+ +

= − + + +  

− + + − +  

+ + − +  

− + + + +  
+ + + +



kY

     (31a) 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

2 2
1 1

cos cos cos sin

1 cos cos cos sin

sin cos sin sin

1 sin cos sin sin

cos sin

k k k

k k

k k

k k

k

Y c k t tX t tY

c k t tX t tY

d k t tY t tX

d k t tY t tX

a t X b t

ω ϕ ω ω ϕ ω

ω ϕ ω ω ϕ ω

ω ϕ ω ω ϕ ω

ω ϕ ω ω ϕ ω

ω ϕ ω ϕ

− −

+ +

− −

+ +

= + + − +  

+ + + + +  

+ + + +  

− + + − +  
+ + + +



,kX

     (31b) 

where a1, b1, c and d have been defined as 

( ) ( )
2 2 2 2

0
1 12 22 2 2 2

0 0

,
2 2

a b
m m

α ω α ω

ω ω ω ω
= =

− − 

             (32b) 

2
0 0

2 2 2 2
0 00

1 , .
22

c d
mm

αω ωαω
ω ω ω ωω

= =
− − 



             (32b) 

For the resonant case (r), one can in addition make the following change of coef-
ficients 

( ) ( )2 3 24e i t m
k kD t D tα−= 

                       (33) 

to eliminate the quadratic time dependence appearing in the expression (18) and 
(19b). Note that ( ) ( )0 0k kD D=   and ( ) ( )

22
k kD t D t=  . Doing the same as it 

was done above, the real and imaginary parts of these new coefficients,  

k k kD X iY= +   , obey the equations 

( ) ( ) ( ){ ( )

( ) } ( ) ( ){
( ) ( ) }

1 1 0 1

1 0 1 1 0

1 1 0

sin

cos 1 sin

cos

k k k k k

k k k

k k

X f t Y k h t X g t Y t h t Y

g t X t k h t X g t Y t

h t Y g t X t

ω

ω ω

ω

− − −

− + +

+ +

  = + − − +  

  + + + +  

 − − 

    

  

 

     (34a) 

( ) ( ) ( ){ ( )

( ) } ( ) ( ){
( ) ( ) }

1 1 0 1

1 0 1 1 0

1 1 0

cos

sin 1 cos

sin

k k k k k

k k k

k k

Y f t X k h t X g t Y t h t Y

g t X t k h t X g t Y t

h t Y g t X t

ω

ω ω

ω

− − −

− + +

+ +

  = − + − −  

  + + + +  

 + − 

    

  

 

     (34b) 

where the functions f, h, and g have been defined as 

( ) ( ) ( )
2 2

2
0 0 0

0 0

sin cos sin ,
8 4

tf t t t t
m m
α αω ω ϕ ω ϕ
ω ω

= + + +
 

        (35a) 

( ) ( ) ( )0 0
0

1 sin cos ,
2

g t t t tα ω ϕ ω ϕ
ω
 

= + + + 
 

             (35b) 

and 

( ) ( )0
0sin .

2
t

h t t
αω

ω ϕ= +


                     (35c) 

The dynamical systems (31) and (34) are solved by Runge-Kutta method a 
4th-order. 

3. Analytical Approach for ( )K x p t, ,  

The Hamiltonian of the forced harmonic oscillator is [18] 
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( ) ( ) ( )0, , , cos ,H x p t H x p x tα ω ϕ= + +                 (36) 

where H0 is given by 

( )
2

2 2
0 0

1, .
2 2
pH x p m x
m

ω= +                     (37) 

The solution of the eigenvalue problem 

0H EΦ = Φ                           (38) 

is well known [19], and its solution is the same as (21). Therefore, to solve the 
Shrödinger’s Equation (1), one proposes a solution of the form 

( )
( )

( )
0

0
e ,niE t

k
n

t D t n
∞

−

=

Ψ = ∑                     (39) 

which, after substituting in the Shrödinger’s equation, using the eigenvalues and 
the orthogonality between any two states, and making some rearranging, the 
following dynamical systems is brought about for the real and imaginary parts of 
the coefficients, ( ) ( ) ( )k k kD t x t iy t= + , 

( )

( )
1 1 0

1 1 0

1 cos sin

1 cos cos

k k k

k k

x k x k x t t

k y k y t t

λ ω ϕ ω

λ ω ϕ ω

− +

− +

 = − − + + 
 − + + + 



           (40a) 

( )

( )
1 1 0

1 1 0

1 cos sin

1 cos cos ,

k k k

k k

y k y k y t t

k x k x t t

λ ω ϕ ω

λ ω ϕ ω

− +

− +

 = − − + + 
 + + + + 



          (40b) 

where the constant λ  has been defined as 

0

.
2m

λ α
ω

=
                          (41) 

These equations are also solved by using Runge-Kutta method at 4th-order. 

4. Boltzmann-Shannon Entropy and Energy 

Besides the probability to find the system in the state n  at the time “t”, 
( ) 2

kD t , for the analysis of the dynamics of the system in the spaces ( ˆ,x v ) and 
( ˆ,x p ), one can also consider the Boltzmann-Shannon entropy, 

( ) ( ) ( )2 2

0
ln ,

l

k k
k

S t D t D t
=

= −∑                    (42) 

and its average over an evolution time “T”, 

( )
0

1 d ,
T

S S t t
T

= ∫                         (43) 

as parameter which characterize the quantum dynamics of the system. This pa-
rameter gives us an indication of how many states enter in the dynamics evolu-
tion of the system. Therefore, it gives an indication of the information lost in the 
dynamics due to the increasing of the entropy in the quantum system. In addi-
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tion, one can also consider the expectation value of the energy 

( ) ( ) 20
0 0

00

ˆ 1 ,
ˆ 2

l

n
n

H
E t n D t

K
ω ω

=

 
= Ψ Ψ = +  

 
∑            (44) 

and its average value over the evolution time of the system, 

( )
0

1 d .
T

E E t t
T

= ∫                        (45) 

This parameter gives information about how the energy is distributed among the 
states and how many of them are involved in the quantum dynamics.  

In this way, solving the dynamical systems (31), (34), and (40), the evolution 
of the probabilities ( ) 2

kD t ’s are gotten. Thus, the Boltzmann-Shannon entropy 
(42), the expectation value of the energy (44) and their average values (43) and 
(45) can be calculated and can be compared for the quantization in the spaces 
( ,x v ) and ( ,x p ). 

5. Results 

One considers a proton with mass 271.6726219 10 kgm −= ×  oscillating with a 
frequency 9

0 2 10 Hzω = ×π  on a one-dimensional line, and interacting with a 
periodic force of amplitude α = 10−13 Newtons with frequency ω and phase 

0ϕ = . The initial conditions of the system are 

( ) ( ) ( ) 00 0 0 , 0, ,11k k k kC D D kδ= = = =

               (46) 

that is, the system is on the ground state, and one selects ten exited possible state 
of the system. For the non-resonant case ( 0ω ω≠ ), the resulting dynamics from 
expressions (1) and (8) are exactly the same. There is not excitation of the sys-
tem at all since the system remains in the ground state in both cases. For the re-
sonant case ( 0ω ω= ), Figure 1 shows the probabilities of having the system on 
the ground state ( 0k = ) and on the first excited state ( 1k = ) for the quantiza-
tion on the space ( ,x v ), solid lines, and the quantization on the space ( ,x p ), 
dotted lines. As one can see, for the Hamiltonian quantization approach (H) 
there are much more oscillations of the probabilities than the quantization of the 
constant of motion approach (K), that is, there are more transitions per unit 
time in the H-approach case than in the K-approach case. One must note that 
the probability to have the system in the first excited state for the K-approach 
case is totally different from the H-approach case. 

Figure 2 shows the average value of the energy as a function of the strength of 
the forced force (α). As one can see, this average value is always higher for 
H-approach case (the usual Quantum Mechanics approach) than for the 
K-approach case (our pretended extension for the Quantum Mechanics). How-
ever, the difference on the average energy value for both approaches is quite 
small and maybe out of experimental verification. This difference is expected 
since for the H-approach the Hamiltonian is not a constant of motion, but for 
the K-approach one has a quantization with a constant of motion of the system. 

https://doi.org/10.4236/jmp.2021.123021


G. V. López, O. J. P. Bravo 
 

 

DOI: 10.4236/jmp.2021.123021 292 Journal of Modern Physics 
 

 
Figure 1. Ground state and first excited state evolution. 

 

 
Figure 2. Average energy of the system. 

 
Figure 3 shows the average value of the Boltzmann-Shannon entropy as a 

function of the strength of the forced force (α). Notice that, having total number 
of 11 states, the possible maximum entropy is 2.398. As the previous case, this 
parameter is always higher for the H-approach case than for the K-approach 
case due to the same reason that the Hamiltonian is not a constant of motion 
and K is indeed a constant of motion of the system. However, this difference is 
not so small and maybe could be used as a good parameter for experimental 
proposes. This difference means that the H-approach case brings about more 
complex behavior in the quantum dynamics than the K-approach case, and that 
the H-approach case losses more information than the K-approach case. 
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Figure 3. Avarage Boltzmann-Shannon entropy. 

6. Conclusion 

The quantization of the 1-D forced harmonic oscillator was carried out with the 
operators ( ˆ,x v ) using the assigned linear operator to a constant of motion 

( ), ,K x v t  of the classical case. The restriction imposed on this constant was that 
it must be reduced to the known energy expression when the forced force is ze-
ro. This quantization was compared with the usual quantization with the opera-
tors ( ˆ,x p ) and the associated Hamiltonian ( ), ,H x p t  of the classical case. It 
was shown that the probabilities to find the system in the state n , ( ) 2

nD t , 
has less oscillations in the K-quantization than in the H-quantization. In addi-
tion, the average values of the energy and the average value of the Boltzmann- 
Shannon entropy are lower in the K-quantization than in the H-quantization. 
Since the difference in the average value of the energy is quite small, this para-
meter does not look good to measure experimentally. However, the difference in 
the entropy is significant and it represents a good parameter to look experimen-
tally. 
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