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Abstract 
An equation is given for analytically defining the value of the fine structure 
constant, whose derivation follows two main steps, relative to the generation 
of electric charges and to the polarizability of vacuum due to virtual dipoles. 
The obtained value matches the experimental one by a factor lower than the 
relative standard uncertainty produced by the National Institute of Standards 
and Technology (NIST). 
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1. Introduction 

The search for a theory that might give reasons for the value of constants in nat-
ural phenomena dates from the very beginning of man observing nature 
processes, and as new physics was going to be introduced into human know-
ledge, the problem stepped forward to include more fundamental constants. The 
modern problem was lucidly set by P. A. M. Dirac in a paper dated 1937 [1], 
where proper mention was given of the frantic efforts made by A. Eddington [2] 
in the field. Today, the values of fundamental constants are known with ever 
increasing precision [3] and efforts to give reasons of any single quantity or any 
link among different quantities are constantly under way and it would be in-
evitably tedious to cite even a limited group of them. 

Probably, the so-called fine structure constant, from the name Arnold Som-
merfeld used for it in 1916 in extending the Bohr model of the atom [4], stands 
as the most tricky character of the drama, for its receding way to be tracked and 
its adimensional nature. An endless number of articles treat the history and 
mystery of the constant and here we do only refer to a couple of them, relative to 
the earliest and to the most recent times [5] [6]. 

The present paper reports the process aimed at evaluating the fine structure 
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constant with a value that matches the experimental one reported by the Nation-
al Institute of Standards and Technology (NIST) by a relative factor 8.4 × 10−11, 
which is lower than the relative standard uncertainty [3]. That stands as a strong 
support for publicizing the obtained equation, in view of proper comments on 
the underlying procedure. 

The question naively rises as to whether an Occam’s razor approach would be 
successful in the struggle for defining the constant value. The way reported here 
follows two main steps, derived by the assumption that virtual particles [7] 
modify the electric permittivity of the vacuum, therefore the implicit value of the 
constant, as it results from the measured values of the contributing physical 
magnitudes. The two steps refer to the wave function describing the generation 
of electric charges in the so-called pair production phenomenon, and to the re-
duced permittivity of the vacuum in the absence of virtual particles. The proce-
dure is based on the fundamental laws of electromagnetism and basic quantum 
physics and, as such, the referred literature is limited to basic texts. 

2. Evaluating the Charge Value 

The generation of an electric charge q is only possible with the contemporary 
generation of a second charge –q, allocated in the same point or, more properly, 
whose space-time distribution of the wave function completely matches that of 
the first charge, apart from a phase factor, that would be only observable at the 
interfering of the two waves. The two charges thus created do not produce any 
electric field in space, whose time variation would have a spherical symmetry 
that would not be consistent with the Maxwell laws of electromagnetism. How-
ever, they successively separate and create a dipole field in space. The charge 
value that attains the maximum probability is computed and successively that 
value is selected which allows the particles to separate. To this aim, let us con-
struct the function ψ of either charge, say the positive one q, by applying the op-
erator q̂ , corresponding to the derivative of ψ with respect to the conjugate va-
riable of the charge itself, written as Θ: 

( ),i q qψ ψ∂
− = Θ

∂Θ
 .                      (1) 

Solution of the equation is  

e
qi

Cψ
Θ

=  ,                          (2) 

with the constant C to be determined by initial conditions. Function Θ should be 
such that its product with quantity q shares the dimensions of the Planck con-
stant h, equal then to those of the ratio between the electric flux Φ(E) and the 
particle velocity v. In addition, when generated, each charge would move away 
with velocity v in a direction opposite to that of the second charge and the elec-
tric field generated by it starts growing spherically outwards with velocity c from 
the point of generation. 

The flux of the electric field may then be calculated on a plane normal to the 
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velocity, through the generation point. The surface for the evaluation of the flux 
can be closed with any half sphere surface at a proper distance where the electric 
field perturbation has not yet reached.  

The flux derivative ( ) v∂Φ ∂E  depends neither on v nor on time t, and 
stands for the Θ function to be considered, since the wave function in this way 
would not depend on space or time variables. Indeed, for a charge created at the 
origin of the coordinates at the time t < 0, that moves away along the positive x 
axis with a velocity v, the electric field in a point P = (0, 0, z) of the z axis at the 
time t = 0, is [5] 

( )
3 22304 1 r

q

r v c

γ
ε γ

= −
 + 

π
E r                     (3) 

where r is the distance at the time t = 0 between the charge and the point P, vr 
the component of the velocity vector v along r, c the velocity of light, ε0 the di-
electric constant and γ the factor 21 1γ β= − , with v cβ = . The electric 
field flux through the plane x = 0 at time t = 0 may be, then, calculated by consi-
dering the cylinder geometry of the problem to obtain

 
 

( ) ( )
0

0, 0 1
2
qx t β
ε

Φ = = = − .                    (4) 

The function Θ can now be computed as the derivative of the flux expression 
reported above, and that however shall be considered as a density of the function 
with respect to the solid angle Ω, since the velocity v can be oriented along any 
direction: 

d d
d dv
Θ Φ
=

Ω
                             (5) 

In addition, a factor 2 has to be taken into consideration for the electric field 
flux and its derivative, since an equal additional amount to it is contributed by 
the second charge, entangled with the first one. Finally, one obtains    

 0

4 q
cε

Θ =
π .                            (6) 

that has to be inserted into Equation (2) to give 
2

0
4

e
qi

cC εψ
π

+ =
 ,                         (7) 

being ψ+ specified for the positive charge q. The wave function of the second 
charge of opposite sign –q is equal to that of the first one, save for the sign in the 
exponent and a different constant C'. With regard to these constants, the proba-
bility of the generation of both particles 2

pairP ψ ψ+ −= +  vanishes at q = 0, so 
that we may assume C C′ = − , and one may write  

22
2

pair
P

42sin qP
q

ψ ψ+ −

  
 = + =  
   

π ,                (8) 

where the expression of the Planck charge unit P 02q chε=  has been used. 
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Such a probability value, however, which is a maximum at  

max 4 2 4
1.167

2
5Pq eq e

α
=

π
=

π
= ,                (9) 

with ( )2
Pe qα =  the fine structure constant, is not relative to a pair of particles 

experimentally observable, but only to the generation of a pair of opposite 
charges departing one from the other. These are just virtual particles which, in 
order to be detectable, must separate one from the other, in a process that is 
counteracted by the electrostatic attractive force between them. The process has 
no interpretation in classical physics, but could be only described by quantum 
physics. The quantum potential of Bohmian theory [8], for instance, would allow 
to localize two pointlike particles in different places at the very same time, per-
mitting a finite force to overtake the attractive effect. The separation of the par-
ticles makes the wave function to collapse into a definite state, which corres-
ponds to the maximum of probability with a minimum work. Since the electros-
tatic attractive force depends on a factor q2/ε0, the probability function in Equa-
tion (8) could be multiplied by this inverse factor and the maximum of the ob-
tained overall function defines the state of the free particles: 

2
2

22
P

gen sep 2

P

4sin
sin

4

q
q

P P P
q

q

ξ
ξ

 
    = ⋅ ∝ =  

   


π


 

π
             (10) 

where Pgen = Ppair is the probability of generating the pair and a similar notation 
Psep is used for the separation process, although this is not a probability function. 
It is worth pointing that the zeroes and maxima of the P function do not depend 
on the multiplying coefficient of the single component functions, and this makes 
it possible to define the P function in just one variable P4 q qξ = π , as reported 
in Equation (10).  

The two functions Pgen and Psep are represented in Figure 1 vs. the parameter  
 

 

Figure 1. Probability functions vs. value of the charge, in Planck unit P 02q chε= . Units 

for each component function are arbitrarily chosen, in as much as the positions of max-
ima and minima in the product of functions Pgen and Psep are not sensitive to normaliza-
tion factors. 
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( )P 4q q ξ= π , where the two effects are identified, that counteract each other 
at low values of ξ, up to the first maximum, that is attained at ξmax = 
1.07961158997447. This value is not compatible with the known values of the 
involved constant and that is supposedly due to the presence of virtual particles 
in the vacuum, which affect the interaction between the true charges, by chang-
ing the electric permittivity of vacuum to its commonly known value ε0. 

Indeed, the maximum condition on function P sets a constrain on all the elec-
tromagnetic quantities involved, q, c and ε0. The velocity c, however, is not to be 
considered affected by virtual particles, as it is suggested by its equality for elec-
tromagnetic and gravitational waves [9]. 

The ξmax condition reduces then to a constrain on the electromagnetic interac-
tion parameter q2/ε0. Charges originate with ±e values in an absolute vacuum 
that possesses an electric permittivity ε00, and then access to reality in the real 
vacuum, whose permittivity is 0 00rε ε ε= . Condition from Equation (10) should 
be then better written in the variable 

0
00

4
2

e
ch

ξ
ε
π

=                           (11) 

whose ξmax value sets the absolute vacuum permittivity at  

00
m

12
2

ax

8.75384214951 4 44 10 S.I.
2

e
ch

ε
ξ

− 
= = ×



π



            (12) 

and εr = 1.0114630423466.  
It has to be noted that function P attains its maximum for the variable ξ solv-

ing the equation 
2 2tan 2ξ ξ= ,                         (13) 

with a value ξmax whose squared value is (4π)2 the fine structure constant value, 
increased by a factor due to the relative permeability factor εr, so that one may 
define a constant 0 0.00738100243079751rα ε α= =  in absolute vacuum, or 

1
0 135.482952528a− = . 

3. Evaluating the Vacuum Permittivity 

The consistency of the procedure finds its validation in obtaining else way the 
value of the permittivity of the absolute vacuum, or the susceptibility of the real 
vacuum  

1 0.0114630423466rχ ε= − = .                  (14) 

In order to prospect such validation, let us look for the polarization produced 
in the vacuum, when a uniform electric field E is present in a given volume of 
space. A number of virtual electric dipoles are constantly produced and annihi-
late in a way which depends upon the strength of the field E, each dipole lasting 
for a time Δt, inversely related to the energy needed to form it. The overall 
component of the dipoles along the electric field direction per unit volume 
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stands as the electric polarization vector P of the vacuum, and its ratio to the 
electric field equals the product of the susceptibility constant χ of the vacuum 
times its permittivity 

             

0ε χ=
P
E

.                           (15) 

In order to obtain the value of the permittivity, a procedure may be followed 
similar to the one previously followed for the charge maximum probability, by 
considering the product of the virtual dipole multiplied by its life-time (pΔt). 
Indeed, the product of each charge times its displacement is to be taken into ac-
count in place of the dipole, so as to deal separately with the positive and the 
negative charge. The polarization electric field EP stands then as the conjugated 
variable, so that the contribution of the positive charge in the expression of the 
wave function may be written as 

P P

pol e e
t

i i
ψ

⋅ ∆
+ ∝ =

p E E
E ,                       (16) 

where use has been done of the relation between time and energy. The wave 
function then writes as  

P
pol pol pol sin sinψ ψ ψ χ+ −  = + ∝ = 

 

E
E

.               (17) 

As for the case previously considered for the expected value of the charge, the 
expected value for the susceptibility χ will be the one that makes the function ψpol 
to attain its maximum at 

2
χ =

π
,                           (18) 

which is two orders of magnitude higher than the expected one. However, the 
electric polarization χ in the absolute vacuum is contributed by all the virtual 
particles, whose charge distribution follows the one previously reported in Equa-
tion (8), that gets its maximum for ξ2 = π/2, where sinξ2 = 1. Since the effective 
polarization in the real vacuum is contributed by those virtual charges alone that 
might interact with real charges, that is with electrons, the resulting maximum 
value π/2 has to be multiplied by the value the charge function attains for the 
electronic charge value, that is by sinα, with α the fine structure constant. Ex-
pression sinα is obtained from Equation (8), save for the factor 1/8π in the phase 
expression. This is due to the electric field E aligning the dipoles along its own 
direction, so that no integration over the solid angle (4π) has to be taken into 
account and that each charge contributes to just one half of the dipole intensity.  

An additional effect has to be considered for the final evaluation of the sus-
ceptibility, which is the normalization factor of the probability function. The in-
teraction, indeed, of the real charges with the electronic charges in the virtual 
field makes the wave function denominator to be reduced by the probability of 
the electron pair in the virtual field, that is by the amount sin2α. The interaction 
of a real charge, however, with one virtual pair finally releases an electronic 
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charge of the same sign, whose probability  
22

+
2

sin sin
2 2 2

sin x dx

α α
π∞

−∞

 
=     

 


1



1

∫
                  (19) 

has to be subtracted from the probability value sin2α just reported above. Once, 
however, that this effect is taken into account, the function has to be newly nor-
malized by subtraction of its probability term  

2
sin sin

2 2
α α

  π
 
 π

.                        (20) 

The real electric susceptibility χreal will be finally written as 

real 2 2
2

sin
2 1 sin sin1 sin sin

2 2 2 2

αχ
α αα α

=
   

− + −   
  

π



π

π π

,         (21)  

which is set equal to  

0
real 1

α
χ

α
= − ,                        (22) 

to give α = 0.00729735256868569, which matches the experimental value by a 
relative factor 8.41 × 10−11. It should be noted that the α value of the fine struc-
ture constant is reported in the NIST data [3] with a standard uncertainty rang-
ing from 0.0072973525682 to α = 0.0072973525704, between whose limit the 
value reported above is contained [10]. That sets a definite value to the relative εr 
permittivity of vacuum, as it results from Equation (14). 

4. Conclusions  

In conclusion, two steps are produced for analytically deriving the value of the 
fine structure constant. Firstly, a wave function is constructed describing the 
generation of two electrical charges in the so-called absolute vacuum that lately 
do separate as free charges in the real vacuum. In this way, the obtained value for 
the electrical permittivity results to be slightly higher than the experimental one, 
due to the effect of virtual charges acting in the separation process. A second 
step is then produced, in order to evaluate the contribution of this effect on the 
value of the permittivity through the introduction of a wave function for the po-
larization vector that leads to the value of the finite structure constant, equal to 
the one available in the NIST data.  

The procedure relays on the search of the wave functions describing the un-
derlining physical processes and on their relative maxima determination, and its 
validity really stands upon the optimum match between the derived numerical 
value of the fine structure constant and its experimental datum. Slight variations 
introduced into the procedure, particularly into the normalization function of 
the susceptibility, do greatly alter the deduced value in a way which seems to be 
impracticable for valuable results. 
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