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Abstract 
Super-massive white dwarf (WD) stars in the mass range 2.4 - 2.8 solar masses 
are believed to be the progenitors of “super-luminous” Type Ia supernovae 
according to a hypothesis proposed by some researchers. They theorize such a 
higher mass of the WD due to the presence of a very strong magnetic field in-
side it. We revisit their first work on magnetic WDs (MWDs) and present our 
theoretical results that are very different from theirs. The main reason for this 
difference is in the use of the equation of state (EoS) to make stellar models of 
MWDs. An electron gas in a magnetic field is Landau quantized and hence, 
the resulting EoS becomes non-polytropic. By constructing models of MWDs 
using such an EoS, we highlight that a strong magnetic field inside a WD 
would make the star super-massive. We have found that our stellar models do 
indeed fall in the mass range given above. Moreover, we are also able to ad-
dress an observational finding that the mean mass of MWDs are almost 
double that of non-magnetic WDs. Magnetic field changes the momentum- 
space of the electrons which in turn changes their density of states (DOS), 
and that in turn changes the EoS of matter inside the star. By correlating the 
magnetic DOS with the non-polytropic EoS, we were also able to find a phys-
ical reason behind our theoretical result of super-massive WDs with strong 
magnetic fields. In order to construct these models, we have considered dif-
ferent equations of state with at most three Landau levels occupied and have 
plotted our results as mass-radius relations for a particular chosen value of 
maximum Fermi energy. Our results also show that a multiple Landau-level 
system of electrons leads to such an EoS that gives multiple branches in the 
mass-radius relations, and that the super-massive MWDs are obtained when 
the Landau-level occupancy is limited to just one level. Finally, our theoretical 
results can be explained solely on the basis of quantum and statistical me-
chanics that warrant no assumptions regarding stars. 
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1. Introduction 

Recently, several observations of “peculiar” Type Ia supernovae: SN 2003fg, SN 
2006gz, SN 2007if, SN 2009dc seem to indicate that their progenitor stars might 
be super-massive WDs with masses in the range 2.4 - 2.8 solar masses (M�). This 
mass range clearly exceeds the Chandrasekhar mass limit of 1.44 M� [1] [2] [3] 
[4]. These supernovae are different from the more common Type Ia supernovae 
in that they are more luminous and the ejected matter has lower kinetic energy 
than that observed in a regular supernova which suggests that the ancestor is 
most likely a WD star that is more massive than a WD of 1.44 M�—a super- 
Chandrasekhar mass progenitor [5]. Some researchers have called for careful 
screening of Type Ia supernova events in future cosmology studies due to a 
possible SN sample contamination from such over-luminous supernovae events; 
while others suggest the need for a possible reconsideration of the expansion his-
tory of the Universe [5] [6]. 

In their very first work on the MWDs, Das & Mukhopadhyay have hypothe-
sized the existence of very strong magnetic fields inside the WD in order to ex-
plain such a higher mass of the star [7]. Also, recently several WDs have been 
discovered that have surface magnetic fields in the range 105 to 109 G [8] [9] [10] 
[11] [12]. Nearly 10% of all WDs are found to be magnetic with fields in excess 
of ~106 G and that the mean mass of their mass distribution is ~0.93 M�, while 
that of non-magnetic WDs is ~0.56 M� [12]. The presence of such high surface 
fields can lead us to hypothesize the existence of stronger interior fields, that al-
though cannot be probed directly, to be quite a few orders of magnitude higher. 
This limit is set by the scalar virial theorem [13]  

2 3 0T W M+ + Π + =                     (1) 

where T is the rotational energy, W the gravitational energy, Π  the internal 
energy and M the magnetic energy. T and Π  are both positive but W is nega-
tive, therefore the maximum magnetic energy M can be comparable to W but 
cannot be more than it in an equilibrium condition as is seen argued in Ref. [13]. 

For a star of mass M and radius R, this gives us 
23 24 ~

3 8
maxBR GM

R
×

π
π

 or  

( )( ) 28 G~ 2 10maxB M M R R −
× � �  for the average maximum interior B-field, and 

for the WDs this limit turns out to be ~1012 G [13]. 
Successful magnetic WD models with B~1012 G at the center but with a va-

nishing field at the surface have been constructed by Ostriker & Hartwick [14]. 
Such a strong field can also be a consequence of a “frozen-in” field concept, also 
known as the flux conservation phenomenon, according to which the magnetic 
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flux of a star is more or less conserved throughout its evolution and its eventual 
collapse to becoming a degenerate star [15] [16]. Also, Ferrario & Wickrama-
singhe argue, on the assumption of flux conservation, that certain main-sequence 
stars such as Ap and Bp stars with fields in the range ~200 - 25,000 G can evolve 
into MWDs with dipolar fields in the range ~106 - 109 G, and this field range be-
longs to the vast majority of known MWDs [17]. 

Here, we consider a strongly magnetized, relativistic, completely degenerate 
electron gas at 0 KT = . The star is assumed to be spherically symmetric and 
the magnetic field is assumed to be static and uniform throughout the star. 
The purpose here is to study the effect of strong magnetic field on the mo-
mentum-space ( p -space) and DOS of electrons as well as on the EoS of matter 
within the star, and then obtain the mass-radius relation of such a magnetized 
white dwarf star. Because the electrons within the star are considered to be rela-
tivistic (except possibly those in the density regions of a thin outer crust of a 
WD), we choose such values of B-field that are higher than a critical value which 
is given by equating the cyclotron energy of the electron to its rest mass energy 
[13],  

2
c mcω =�                          (2) 

where m is the mass and cω  is the cyclotron frequency of the electron corres-
ponding to the critical B-field and is given by  

.cr
c

eB
mc

ω =                          (3) 

Therefore, the critical magnetic field is given by  
2 3

134.414 10 .cr
m cB G

e
= = ×
�

                  (4) 

Central field values of about 1012.3 G could be possible due to the aforemen-
tioned flux conservation if the progenitor of WD originally had a high magnetic 
field of the order 108 G to begin with [18]. The collapse of such a star into a de-
generate remnant would dramatically increase the interior magnetic field since 
the total flux, 2BRφ ∝ , is more or less conserved. Central field “ cenB ” in excess 
of 103 G has been theoretically proved to be possible within a MWD in the case 
of an electron gas occupying only one Landau level [19]. So, it does seem rea-
sonable to hypothesize fields ≥ 1013 G. Although such high interior fields seem 
too extreme, there can be interesting consequences by assuming much stronger 
magnetic fields of the order of 1013-15 G, as is presented in this work. 

In the presence of a magnetic field, an electron gas will be Landau quantized. 
Here, we study the effect of magnetic field on a system of relativistic, degenerate 
electrons that occupy at most three Landau levels. We also address the possibili-
ty of having super-massive WDs, having very strong, static and uniform mag-
netic field throughout, that violate the Chandrasekhar limit. We do this by 
making stellar models of MWDs from a “non-polytropic” EoS and find that our 
theoretical results do concur with the observations.  
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Normally, one makes such models of WDs from a polytropic relation, which 

relates pressures with density, of the form P KρΓ= , where 1n
n
+

Γ = . This is a  

simple power-law that works very well for a non-magnetic WD. In their work, 
Das & Mukhopadhyay (DM) have done piece-wise polytropic fits to the 
non-polytropic EoS of the MWD and have incorrectly assumed each individual 
fit, with particular values of K and Γ , to hold throughout the star. This is how 
DM have made models of MWDs [7]. We believe this to be an improper ap-
proach in dealing with a “non-polytropic” EoS. Not only that but a justification 
of their results of super-massive MWDs, from a fundamental perspective, is 
missing in their work. We have not done such piece-wise fits in our work and 
have also succeeded in providing an elementary explanation of our findings by 
correlating the electron momentum-space and the DOS with the EoS, and even-
tually, with the mass-radius relations of MWDs. 

We have organized this paper as follows. In the next section, §2, we discuss 
the relevant equations and procedures necessary to construct models of MWDs 
and to correlate everything. In §3, we emphasize on the correlation between the 
plots of the EoS and those of the DOS. In §4, our numerical results are presented 
in the form of plots of mass-radius relations and a table summarizing all the 
mass-radius values. In the ensuing section, §5, we discuss the significant changes 
that take place in the momentum-space of electrons in presence of a magnetic 
field and correlate that to the DOS. More explanation for the super-Chandra- 
sekhar WD star is given in §6. A comparison with the non-magnetic results is 
provided in §7, wherein we have retrieved the Chandrasekhar mass limit when 

0B → , i.e., in the weak-field limit. In §8, we compare our results with those of 
Das & Mukhopadhyay and summarize the shortcomings in DM’s methods. 
Lastly, we conclude our results in §9.  

2. Relevant Equations of a Cold, Degenerate Relativistic Free  
Electron Gas in a Magnetic Field  

On solving the relativistic Dirac equation, one obtains the energy eigenvalues of 
a free electron in an external static and uniform magnetic field oriented in the 
z-direction, which are given by [13]  

1
2

2 2 2 4
, 1 2

zp z
cr

BE p c m c
Bν ν

  
= + +  
   

                (5) 

where  

1 1
2 2 znν σ= + +                        (6) 

is the Landau quantum number and can take on values 0,1,2,ν = �  which are 
known as Landau levels. Here, 0,1,2,n = �  is the principal quantum number 
and 1zσ = ±  is the spin quantum number or the spin of the electron. The elec-
trons can become relativistic in either of the following two ways [13].  
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1) the cyclotron energy of the electron exceeds its rest mass energy  
2) the density is so high that the mean Fermi energy of an electron exceeds its 

rest mass energy.  
The first possibility gives us the definition of the critical magnetic field crB  

given in Equation (4). In the absence of a magnetic field, the density of states 
( )g E  per unit volume, denoted by ( )*g E  is given by,  

( ) ( ) ( )
1

* 2 2 4 2
3 3

d 8
d

eg E n
g E E E m c

V E h c
π

= = = −              (7) 

which can be integrated from 2E mc=  to FE E= , where FE  is the Fermi 
energy of the electrons, to get the number density of electrons en ,  

( )
3

2 2 4 2
3 3

8
3e Fn E m c
h c

−
π

=                      (8) 

Due to the presence of the magnetic field B, the DOS per unit volume be-
comes  

( )

( ) ( )
( )

*

2 2 4
2 3 2 2 2 40

d
d

2 1 2
2 1 2

m

en
g E

E
b ED E m c b

mc E m c b

ν

ν
ν

ν
λ ν=

=

 = Θ − + 
−π +

∑
   (9) 

where 
cr

Bb
B

=  is the dimensionless magnetic field, 
mc

λ =
�  is the Compton 

wavelength of an electron, Θ  is the Heaviside function and Dν  is the degene-
racy of the Landau level ν  such that 1Dν =  for 0ν =  and 2Dν =  for  

1ν ≥ . 
It just so happens that the above equation resembles the equation of the DOS 

of a quantum wire [20] with the exception that the Fermi gas in a quantum wire 
is, of course, non-relativistic. In a quantum wire, an electron gas is confined in 
two dimensions (say x and y-directions) but can move freely in the z-direction. 
Classically speaking, in a MWD, we essentially have the same situation of an 
electron confined in two dimensions (circular orbit) and free moving in the 
third dimension. 

The upper limit of the summation can be found by setting 2 0Fp ≥  in the eq-
uation for the Fermi energy given by [13]  

( )2 2 2 2 4 1 2F FE p c m c bν= + +                   (10) 

which gives us  
2 2 4

2 42
FE m c
bm c

ν
−

≤                        (11) 

or  
2 1
2

F

b
ν

−
≤


                         (12) 

and therefore  
2 1

2
Fmax

m b
ε

ν
−

=                        (13) 
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where 
2

F
F

E
mc

=  is the unitless Fermi energy and 
2

Fmax
Fmax

E
mc

=  is the unitless 

maximum Fermi energy of the system. Here, the values of ν  and mν  are those 
values of Landau levels that are fully or partially occupied once all the lower 
energy levels are completely filled by the electrons with mν , in particular, cor-
responding to the highest Fermi energy chosen i.e. FmaxE . 

When the electrons fill up all the lower energy states up to the Fermi level, we 
get the electron number density as [13]  

( )
( )2 3

0

2
2

m

e F
bn D x

ν

ν
ν

ν
λ =π

= ∑                    (14) 

where ( ) ( )F
F

p
x

mc
ν

ν =  is the unitless Fermi momentum defined by  

( ) ( )
1
21 2 .F Fx bν ν= − +                      (15) 

The matter density ρ  is related to the electron number density via  

e e Hn mρ µ=                           (16) 

where eµ  is the mean molecular weight per electron and Hm  is the mass of a 
hydrogen atom. The electron energy density at 0 KT =  is given by [13]  

( )
( )

( )
( ) ( )

,2 3 0
0

2
2 3

0

2 d
2

2 1 2
1 22

m
F

z

m

x z
e p

F

pb D E
mc

xb mc D b
b

ν ν
ν ν

ν

ν

ν
ν

ε
λ

ν
ν ψ

νλ

=

=

 =  
 

 
=

π


+π

+ 
 

∑ ∫

∑
           (17) 

where  

( ) ( ) ( )
1

2 2 22
0

1 11 d 1 ln 1 .
2 2

w
w w w w w w wψ ′ ′= + = + + + +∫      (18) 

Then the pressure of electron gas in a magnetic field is given by [13]  

( )
( ) ( )

2

2
2 3

0

d
d

2 1 2
1 22

m

e
e e e e F

T e e

F

EP n n E
V n n

xb mc D b
b

ν

ν
ν

ε
ε

ν
ν η

νλ =

 ∂ = − = = − +  ∂   
 

= +  
+π 

∑
           (19) 

where  

( ) ( )2 21 11 ln 1 .
2 2

w w w w wη = + − + +               (20) 

The purpose of this paper is to highlight the effects of a strong magnetic field 
on the DOS of electrons and hence on the EoS of matter inside the star, and 
eventually to investigate the possibility of strong magnetic fields giving rise to 
super-massive WD stars that would probably explain the recent observations of 
the peculiar Type Ia supernovae. Considering this, we restrict our system to at 
most three Landau levels corresponding to 0ν = , 1ν =  and 2ν =  which will 
be respectively called a one-level, two-level and three-level system similar to that 
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done in an earlier work [7]. Each of these systems have a particular value of 

FmaxE  for a chosen magnetic field b or vice versa. The way to do that is to fix 

mν  and FmaxE  and calculate the value of the B-field from Equation (13). Here, 
the maximum value of the Landau quantum number mν  will have values 1, 2, 
or 3 corresponding to one-level, two-level or a three-level system. For example, 
this means that for 3mν = , all three Landau levels up to 2ν =  are completely 
occupied by electrons. 

Next, we let FmaxE  have three values— 22mc , 220mc  and 2200mc  and for 
each of these values we first generate a parametric plot of the EoS—a “Pe-vs-ρ” 
plot corresponding to one-level, two-level and three-level systems of a degene-
rate electron gas in a magnetic field, since for a given B-field, en  and eP  are 
functions of Fermi energy FE . By doing this, we can also generate a table 
(Table 1) of values for the variables given in Equation (13). The plot is made by 
simultaneously solving Equations (14), (16) and (19). Each point on the plot im-
plicitly represents a value of the Fermi energy FE , and the entire plot is gener-
ated by varying FE  from 2

FE mc=  to F FmaxE E=  to ensure that the electron 
gas is relativistic throughout the star, except possibly for a very thin outer crust, 
which does not affect the main results of our work. 

The next step would be to solve the equation of hydrostatic equilibrium of the 
star under the assumption of spherical symmetry in order to find ρ  as a func-
tion of radial distance “r”. The hydrostatic equilibrium equation is given by [21]  

2

2

1 d d 4 .
d d

r P G
r rr

ρ
ρ


= −


π





                    (21) 

The pressure due to radiation is neglected here and so is the pressure due to 
the ionized nuclei which are non-relativistic at the densities found in a typical 
WD because they are much heavier than electrons. So, eP P=  has been as-
sumed throughout this paper. The above equation can be re-written as  

2

2

1 d d d 4
d d d

r P G
r rr

ρ ρ
ρ ρ

 
= −


π


                  (22) 

 
Table 1. Table of variables corresponding to Equation (13). 

FmaxE  Maximum Landau levels b-field 

22mc  

1 1.5 

2 0.75 

3 0.5 

220mc  

1 199.5 

2 99.75 

3 66.5 

2200mc  

1 19999.5 

2 9999.75 

3 6666.5 
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in order to solve for ( )rρ ρ=  with a set of two boundary conditions which are 
given below:  

0r cρ ρ= =                         (23) 

0

d 0.
d rr
ρ

=

=                        (24) 

The radius R of the star is given by the first zero of the solution, while the 
mass M of the star is given by  

2
0

4 d .
R

M r rρπ= ∫                      (25) 

3. Correlation between the Plots of the Non-Polytropic  
Equations of State and Those of the Density of States  

Figure 1 shows the plots of the non-polytropic EoS of a cold, degenerate, relati-
vistic electron gas in a magnetic field. Here, an explanation will be given only for 

220FmaxE mc=  because the same explanation applies to the other two values of 

FmaxE . Consider a one Landau-level system ( 0ν = ) which corresponds to 
199.5b =  and is indicated by the solid line. The last point on the curve corres-

ponds to that number density of electrons en  which completely fills up all the 
available single-particle energy states of the first Landau level. We can see that 
the upper part of the curve is much stiffer in comparison to the lower part which 
is softer. To understand this behavior, we look at Equation (9) for the DOS per 
unit volume (hereafter referred to as just DOS) in a magnetic field and Figure 2 
which are the plots of the DOS given here in units of 5 × 1031 cm−3erg−1. They 
resemble the DOS of a non-relativistic electron gas in a magnetic field [24]. For 
the first Landau level corresponding to 0ν = , we essentially have an infinite 
DOS at 21E mc= , as can be seen from Equation (9), which then drops off as the 
energy of the electrons increases when they start to occupy the higher energy 
states. The area under this curve will give us the number density of electrons. 

From the graph of DOS in Figure 2(a), one can see that it becomes more or 
less steady at a value of about 3.5 (in units of 5 × 1031 cm−3erg−1) at about  

25E mc= . For a given B-field, en  is directly proportional to the Fermi energy  

FE . So, when FE  decreases, en  also decreases. Integrating from 21E mc=  to  
220E mc=  gives us the total number of electrons per unit volume i.e. en  (~70.205 

in units of 5 × 1031 cm−3) that will occupy all available states up to 220E mc= . 
These electrons have a certain amount of pressure (the degeneracy pressure) as 
can be seen from the last point on the plot of the EoS (corresponding to  

220FmaxE mc= ) for a one-level system-pressure 28 3~ 2.84 10 erg cmeP −× ⋅  and 
density 10 3~ 1.17 10 g cmρ −× ⋅  or number density ~ 70.205en . As the Fermi 
energy decreases, so does en  and hence the pressure due to all those electrons. 

Integrating from 21E mc=  to 25E mc=  gives ~ 17.218en  and integrating 
from 25E mc=  to 220E mc=  gives us ~ 52.987en . Therefore, we can con-
clude that for lower energy states up to about 25E mc=  there are much fewer 
electrons than those that occupy states from 25E mc=  to 220E mc= . Just because 
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Figure 1. Equations of state in a strong magnetic field plotted for upto three Landau 
levels for three different maximum Fermi energies FmaxE . Here, DP  and Dρ  are 
given in units of 2.668 × 1027 erg cm−3 and 2 × 109 g cm−3 respectively. 

 

 

Figure 2. Density of states of a degenerate electron gas in a magnetic field plotted 

for three Landau levels corresponding to 220FmaxE mc= . Here, 
DOS

V
 and E are 

given in units of 5 × 1031 cm−3 erg−1 and 2mc  respectively. 
 
the DOS is so low (about 3.5) for a significant portion of the energy range, elec-
trons from the energy range 25E mc=  to 220E mc=  end up having such higher 
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energies. Then, combining the contribution of all the electrons, that occupy energy 
states from 21E mc=  to 220FmaxE E mc= = , results in a significant value of 
pressure (the highest value of pressure in the EoS-plot). The same is also true for 
electrons occupying states up to lower Fermi energies all the way down from 

220FmaxE mc=  up to about 25FE mc= , and hence the resulting graph of the 
EoS of a one-level system looks “stiffer” for almost the entire density range, ex-
cept at very low densities from 0 to about 2.9 × 109 gcm−3 (corresponding to 

21FE mc=  to 25FE mc= ) in the plot where the curve (EoS) is “softer” due to 
lesser electrons occupying energy states up to smaller and smaller Fermi energies 
(up to about 25FE mc= ).  

Basically, when the DOS is low, the electrons occupy energy levels that are not 
close to each other (similar to the case of a particle confined in a one-dimensional 
box of infinite potential), and that translates into a steeper rise in pressure with 
density in contrast to electrons occupying very close-by energy levels when the 
DOS is high, which translates into a softer rise in pressure with density. So, it is a 
combination of low DOS and high en  that results in a steeper rise in pressure for 
Fermi energies 25FE mc  which in turn results in a “stiff” EoS, or that of high 
DOS but low en  for 25FE mc<  that results in a “soft” EoS. 

Essentially, the same explanation holds for two-level and three-level systems 
as well except that both these systems have, respectively, two and three energy 
values when the denominator of Equation (9) becomes zero, and we have infi-
nite DOS at those energy values. For a two-level system, one infinity occurs at 

21E mc=  and the second one occurs at about 214.1598E mc=  which we get 
by substituting 1ν =  and 99.75b =  into the denominator of Equation (9) and 
equating it to zero. The total number density of electrons at 220FmaxE mc=  is 
found, after integrating from 21E mc=  to 220E mc= , to be about 84.745. Out 
of this total, the number of electrons occupying states from 21E mc=  to  

22E mc= , 22E mc=  to 214.1598E mc= , 214.1598E mc=  to 215E mc= , and 
215E mc=  to 220E mc=  are respectively about 3.043, 21.777, 18.876, and 41.047. 

Once again, because of the way the DOS is distributed as function of energy, the 
rise in pressure with density due to the electrons is very high, especially due to 
the total number of electrons that occupy states from about 22E mc=  to an 
energy value just below 214.1598E mc=  (corresponding number density  

2 14.1598 ~ 21.777en → ) and then again from about 215E mc=  to  
220FmaxE E mc= =  ( 15 20 ~ 41.047en → ). The same is true for Fermi energies lower 

than 220FE mc=  until about 215FE mc=  because as the electrons start to fill 
the lower energy states, they reach the states at energies from about  

214.1598E mc=  to about 215E mc=  where the DOS is very high, therefore, 
many electrons ( 14.1598 15 ~ 18.876en → ) end up occupying the states in this energy 
range which translates into relatively lower rise in pressure with density. The 
reason why the rise in pressure with density is not much for Fermi energies that 
fall in this energy range, even when the DOS is very high, is simply because it is a 
very small energy range, therefore, the electrons end up occupying very close-by 
energy values in such a small energy range. This is exactly the reason why one 
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sees a softer EoS for a two-level system in Figure 1(b), in the region to the right 
of the kink— 9 3~ 4.15 10 g cmρ −× ⋅  (value at the kink) to 9 3~ 7.31 10 g cmρ −× ⋅  
corresponding to 214.1598FE mc=  and 215FE mc= , respectively. It is this re-
gion of the EoS where the pressure does not rise too much with density which is 
what is termed as having a “soft” equation of state. In a similar manner, we can 
see that there is also a softening of the EoS at very low densities corresponding to 
Fermi energies between 21FE mc=  and 22FE mc= . Thus, there is a direct cor-
relation between the way in which the DOS is distributed as a function of elec-
tron energies and the appearance of the EoS-graph. A similar explanation also 
holds true for a three-level system of a degenerate electron gas where we can see 
three regions of softening of the EoS (Figure 1(b)).  

Once the explanation given above is understood, a seemingly surprising fact 
also becomes clear now when we look at Figure 1(b) of the EoS. From this fig-
ure, we see that for the one-level system, the last point on the graph corresponds 
to a density of about 1.17 × 1010 gcm−3 or an electron number density of about 
3.5 × 1033 cm−3 while that for a two-level system corresponds to  

10 3~ 1.42 10 g cmρ −× ⋅  or 33 3~ 4.2 10 cmen −×  and for a three-level system  
10 3~ 1.48 10 g cmρ −× ⋅  or 33 3~ 4.4 10 cmen −× . So, even though, the density is the 

smallest for a one Landau level system for the same FmaxE , we have the largest 
value of pressure corresponding to that density value on the graph— 

28 3~ 2.84 10 erg cmeP −× ⋅  as compared to 28 3~ 2.18 10 erg cmeP −× ⋅  and  
28 3~ 2.04 10 erg cmeP −× ⋅  for two-level and three-level systems, respectively. The 

way the DOS for a one-level system is distributed as compared to the other two 
systems i.e., a much larger range of energy values have a drop in the DOS, we 
can conclude that a one Landau-level system of electrons, even though less dense 
(at the same value of FmaxE ), will end up having much more pressure because of 
a steeper rise in pressure with respect to density. 

4. The Mass-Radius Relations  

In this section, we will give an explanation for the mass-radius (M-R) relations 
of a MWD star corresponding to 220FmaxE mc=  and link it to the discussion 
given in the previous section—Section 3. A similar explanation will also hold 
true for the other two cases— 22FmaxE mc=  and 2200mc . Figure 3 shows the 
M-R relations for all three levels corresponding to 220FmaxE mc= . On all the 
graphs, each dot represents a star with a particular value of central density cρ  
which is chosen from the different density values from the EoS-plot. Further-
more, as one goes from right to left (on a given branch) in the plot, we find stars 
with decreasing values of cρ . Here, the reader is reminded of the assumptions 
of spherical symmetry and a uniform and static magnetic field.  

4.1. One Landau Level System 

First, we take a look at Figure 3(a) which shows the M-R relations for a one 
Landau level system with 199.5b = . The end point on this graph is a star with 
mass ~ 2.49M M�  and radius 7~ 6.68 10 cmR × . This star has a cρ  equal to 
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Figure 3. Mass-Radius relations for all three Landau levels corresponding to  
220FmaxE mc= . Here, radius DR  and mass DM  are given in units of 108 cm and M

�
 re-

spectively. 
 
the last density value ( 10 3~ 1.17 10 g cmρ −× ⋅ ) in the EoS-plot for a one-level sys-
tem. Thus, we see that a high magnetic field can result in a star, the mass of 
which is significantly higher than the Chandrasekhar limit.  

4.2. Two Landau Level System 

Next, we look at Figure 3(b) which shows the M-R relations for a two Landau 
level system with 99.75b = . Here, we notice something which is not imme-
diately obvious—there are two branches for a two Landau level system. On each 
branch, again, the stars are shown such that as one goes from right to left, we 
find stars with a decreasing value of cρ . The stars on the lower branch have 
central densities that are chosen from all those values of densities appearing to 
the right of the kink in the EoS of a two-level system, with the last (rightmost) 
star ( ~ 0.49M M� ) on this branch having its cρ  equal to the highest density 
value in that plot. This branch ends at some non-zero value of mass M and ra-
dius R with a particular central density value which is located slightly to the right 
of the kink, and then we have a jump in the mass-radius values to ~ 2.36M M�  
and 7~ 9.26 10 cmR × , the rightmost star on the upper branch. This particular 
star has 9 34 10 g cmcρ

−= × ⋅  which falls to the left of kink, a region of the EoS 
with only one Landau level occupied. 

The subsequent stars on the upper branch have lower masses as well as lower 
radii, corresponding to further smaller values of cρ . This would be a good 
stopping point for the reader to recall the discussion related to the two-level sys-
tem given in the previous section. The reason why the highest density value  
( 10 3~ 1.42 10 g cmρ −× ⋅ ) of the EoS gives a star with ~ 0.49M M�  and  

7~ 2.94 10 cmR ×  i.e., a star with such a small mass and radius is because of the 
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softening of the EoS at two places—one just to the right of the kink and the other 
at densities closer to zero, but more so due to the softening to the right of the 
kink. Such a star has within it a significant range of densities— 

9 3~ 4.15 10 g cmρ −× ⋅  to 9 3~ 7.31 10 g cmρ −× ⋅  or in terms of dimensionless den- 
sity, ~ 2.07Dρ  (value at the kink) to ~ 3.65Dρ  in Figure 1(b), where the 
pressure does not change too much when compared to the much stiffer parts of 
the EoS. Unitless densities ~ 2.07Dρ  and ~ 3.65Dρ  correspond to  

214.1598FE mc=  and 215FE mc= , respectively. A pressure gradient is required 
for the hydrostatic equilibrium of a star. Although, we do have a pressure gra-
dient throughout the star, that particular range of densities do not contribute a 
necessary pressure gradient required by the star to become massive, and hence 
such a star remains less massive even though it is a star with a cρ  equal to the 
highest density value on the EoS-plot. The same explanation also applies to all 
those stars on the lower branch whose central densities lie on that part of the 
EoS which is to the right of the kink i.e., when the second Landau level has also 
started to get filled up. This softening especially affects those stars that have their 

cρ  chosen from those density values that lie in the softer region of the EoS i.e., 
from ~ 2.07Dρ  to ~ 3.65Dρ  (given above), because this range of densities 
would form the core of these stars, and hence such stars end up being even 
smaller and less massive. 

Moving on to the upper branch, we have a star which is the most massive and 
has the largest radius even when its central density 9 34 10 g cmcρ

−= × ⋅ , which is 
smaller than the central densities of all the stars on the lower branch. This, again, 
is possible because of how the DOS looks like up to the energies just below 

214.1598E mc=  (Figure 2(b)) because that value of Fermi energy would cor-
respond to a density value just to the left of the kink where the EoS is very stiff. 
Due to this drop in the DOS, there will be a much steeper rise in the outward 
pressure due to the electrons (the degeneracy pressure). Also, the somewhat 
lower pressure gradient region for most stars on the upper branch exists in the 
outermost layers of the star which are its lowest density regions, and hence 
would not have a considerable effect on its hydrostatic equilibrium.  

4.3. Three Landau Level System 

Figure 3(c) shows the M-R relations for a three Landau level system with  
66.5b = . Following the same trend of explanation as given above for a two-level 

system, we see that a three-level system results in three branches. Again, the 
branches are presented in the same manner as for the two-level system with the 
rightmost star of the bottom-most branch having the highest central density of 
all the stars in all three branches. This cρ  would correspond to the last density 
value ( 10 3~ 1.48 10 g cmρ −× ⋅ ) on the EoS-plot of a three-level system. Not sur-
prisingly, this star has a small mass and radius ( ~ 0.25M M�  and  

7~ 2.21 10 cmR × ). This star has three regions of density where the EoS is softer 
compared to other regions—one to the right of the highest kink, the second to 
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the right of the lower kink and the third at very low densities. This star is barely 
stable due to these three regions inside it, but mainly due to the two softer-EoS 
regions located to the right of the two kinks in Figure 1(b), and this is why it 
ends up being less massive and smaller in size as well. This branch ends at some 
non-zero value of mass M and radius R with a particular central density value 
located slightly to the right of the highest kink and then we have a jump in the 
mass-radius values for the middle branch. 

For the middle branch, the rightmost star has ~ 0.37M M�  and  
7~ 3.37 10 cmR ×  corresponding to 9 37 10 g cmρ −= × ⋅  which is located to the 

left of the highest kink. It has a lower mass mainly because of a range of densities 
within it (located to the right of the lower kink) where the pressure does not 
change too much as can be seen from Figure 1(b) again. The subsequent stars 
have lower masses as well as radii; exactly the same trend which was seen for the 
two-level case with the last star having a cρ  which is equal to a particular value 
of ρ  located to the right of the lower kink (basically from the softer part of the 
EoS) and having a non-zero but really small mass, and then we have a jump to 
the topmost branch. 

In the topmost branch, the rightmost star has ~ 2.11M M�  and  
8~ 1.11 10 cmR ×  with 9 32 10 g cmcρ

−= × ⋅ . This density value is located to the 
left of the lower kink which is the region of the EoS that is very stiff and where 
the electrons occupy only the first Landau level. 

The other two cases— 22FmaxE mc=  and 2200mc  will have the same look to 
their mass-radius plots. They, of course, will have different values of stellar 
masses and radii for the right-most stars in different branches. Table 2 summa-
rizes the M-R relations for all three cases. The last column in that table shows 
the mass-radius values of the rightmost star in a particular branch, and these 
values are arranged (separated by commas) in rows with the lowest branch first, 
then the middle one and lastly the upper branch. 

 
Table 2. Mass-radius values of the rightmost star in a branch. 

FmaxE  Total branches 
and Landau levels 

Mass-Radius of rightmost star 
(in units of M� and 108 cm) 

22mc  

1-1 1.32 - 5.54 

2-2 0.37 - 3.08, 0.85 - 6.83 

3-3 0.19 - 2.34, 0.32 - 3.62, 0.81 - 8.01 

220mc  

1-1 2.49 - 0.668 

2-2 0.49 - 0.29, 2.36 - 0.93 

3-3 0.25 - 0.22, 0.37 - 0.34, 2.11 - 1.11 

2200mc  

1-1 2.56 - 0.07 

2-2 0.49 - 0.03, 2.45 - 0.09 

3-3 0.25 - 0.02, 0.45 - 0.03, 2.25 - 0.12 
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5. Magnetic Momentum-Space and the Shape of the DOS  
Curve  

Because of the significant changes that take place in the p -space in the presence 
of a magnetic field, we devote one entire section to explain the magnetic p
-space and the shape of the DOS curve. Those changes in p -space are responsi-
ble for the changes in the DOS, which in turn are responsible for modifying the 
EoS that leads to a super-Chandrasekhar WD.  

Figure 4 shows the p -space in the absence of a magnetic field. Here, the in-
dividual momentum components xp , yp  and zp  form a continuum. In the 
absence of B-field, the number of states in a small interval dk  in k -space, 
where k  is a wave vector, are given by [22]  

( )
( )

( )
3 2 2

3 2 3

d 2 d 2 8 dd d .
22

k Vk k V p pf k k f p p
L h
× × π

= =
π

=
π

=         (26) 

Here, the spacing of lattice points in k -space is taken to be 2
L
π  by assum-

ing periodic boundary conditions for obtaining solutions to the wave equation in 
a cubic enclosure of side L and volume 3V L= .  

In the presence of B-field, we have quantization in the px-py plane with the ra-
dii of the circles given by  

2 2 2 2 2 12
2x yp p p m c n b⊥

  + = = +    
                (27) 

where ⊥p  is the projection of p  onto the px-py plane. The successive circles 
correspond to increasing values of the principle quantum number n. For a given 
n and zp , the number of free orbitals that coalesce into a single magnetic level 
i.e., the degeneracy D in the px-py plane is given by  

2
eBAD

c
=

π�
                          (28) 

 

 

Figure 4. p -space in absence of a magnetic field. 
Here, xp , yp  and zp  values form a continuum. 
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where A is the area of the orbit (of course, semi-classically speaking) in the x-y 
plane [23]. 

Because of the presence of the magnetic field, the quantized three-dimensional 
p -space gets defined by cylindrical surfaces corresponding to successive values 

of quantum number n on including the third momentum direction: zp  [24]. 
The Fermi surface is a sphere that would cut the cylinders, as illustrated in Fig-
ure 5, to give states that are occupied by electrons with a Fermi momentum be-
longing to a particular level i.e., 0n = , 1 or 2. For a given B-field, as the Fermi 
surface grows more and more cylinders are covered by it. One can also see that 
the Fermi momentum in the z-direction gets smaller as the radius of the cylinder 
increases i.e., the highest quantum number has the smallest Fp  in the z-direc- 
tion. Also, when the magnetic field becomes very strong, there exists only the 
ground Landau level corresponding to eigenvalue 0n =  i.e., only one cylin-
drical surface [24]. 

Now, as an example, when three cylinders corresponding to 0n = , 1 and 2 
are occupied, the value of DOS at 220E mc=  in Figure 6 contains contribu-
tions from all those states that lie on the surface of the cylinders, of course, in-
cluding spin states as well. Because the degeneracy in the px-py plane is constant, 
there are a fixed number of states on each circle in Figure 5. The number density 

en  corresponding to individual Landau levels 0ν = , 1 and 2 in Figure 6 is re-
spectively ~ 1.17 × 1033, 1.91 × 1033 and 1.35 × 1033 cm−3 or 23.402, 38.215 and 
27.022 in units of 5 × 1031 cm−3. For clarity, see also Figure 7 which shows elec-
tron number density en  plotted as a function of Fermi energy FE . These val-
ues can be explained by recalling Equation (6) and the fact that, except for the 
Landau quantum number 0ν = , there are two ways in which we can construct 
a Landau level with quantum number ν . Accordingly, 0ν =  can only be due 
to 0n =  and 1zσ = −  i.e., all spin-down electron states only, and this shows 
up as the first value of en  given above. Basically, these are all the spin-down 
electrons states that lie on the surface of the innermost cylinder in Figure 5. Si-
milarly for 1ν = , we have 0n =  and 1zσ =  or 1n =  and 1zσ = −  i.e., spin- 
up electron states from the innermost cylinder and spin-down states from the 
middle cylinder and they all add up to the second value of en  given above. Lastly, 

2ν =  is due to 1n =  and 1zσ =  or 2n =  and 1zσ = −  i.e., spin-up states 
from the middle cylinder and spin-down states from the outermost cylinder 
combine to given the last value of en  given above. Naturally, the height of the 
cylinders in p -space dictates how many momentum states are there on each 
cylindrical surface i.e., number of states ∝  the cylinder height. This is why 

1ν =  Landau level has the most electrons. All these facts are clearly reflected in 
Figures 5-7 that show individual contributions to the DOS from all three Lan-
dau levels. 

The discontinuities/infinities in the DOS are due to the fact that as a new level 
starts to get occupied, new states corresponding to that new Landau level are 
added at the same energy i.e., the derivative of electron number density with re-
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spect to energy d
d

en
E

 becomes infinite because d 0E = , even though d 0en ≠ . 

For example, when some value of 2 2 2
x y zp p p p= + +  corresponding to 0n =  

becomes equal to that of p⊥  of the Landau level 1ν =  with 1n = , then the 
second cylinder in p -space also starts to get occupied at that same energy. The 
same explanation holds for other levels also.  

 

 

Figure 5. p -space in presence of a magnetic field. Each cylinder is of radius p⊥  de-
fined by Equation (27). The radii are not drawn to scale and that implies that the height 
of the cylinders are also not to scale. Figure is adapted by authors from [24]. 

 

 

Figure 6. Diagram showing contributions to the density of states per volume from indi-

vidual Landau levels. A total of three levels are shown here. The 
DOS

V
 or ( )*g E  and E 

are given in units of 5 × 1031 cm−3 erg−1 and 2mc  respectively. 
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Figure 7. Diagram showing electron number density en  as a function of 

Fermi energy FE  for a three-level system corresponding to 220FmaxE mc= . 

en  and FE  are given in units of 5 × 1031 cm−3 and 2mc  respectively. 
 

After every discontinuity in the DOS, we also see that the DOS drops. This 
can be understood by combining the facts that firstly, the momentum zp  is 
quantized and secondly, the electron energy eigenvalues are given by Equation 
(5). Therefore, the higher the value of zp , the smaller the DOS in a unit energy 
interval, similar to that in the case of a particle in a 1-d box. 

6. Further Explanation for the Super-Chandrasekhar Mass  

From Section 4, we saw that a super-massive WD was indeed possible if it had a 
very strong B-field inside it. What is more interesting is that a super-massive 
WD was possible when the electrons had occupied only the first Landau level ir-
respective of the total levels in the EoS—one, two or three. This happens due to 
the fact that after the infinity in the DOS (in one-level system) and between the 
first two infinities in the DOS (in two and three-level systems), there is a drop in 
the DOS to a very small value which allows the electrons that occupy all the 
energy states up to a certain Fermi energy FE , which falls within those energy 
ranges, to exert a higher outward pressure even at significantly lower densities. 
This was particularly evident in the cases of two and three-level systems.  

Also, for the same FmaxE , as the magnetic field goes down the radii of the cy-
linders corresponding to the quantum number n also goes down (Equation (27)). 
This means that the degeneracy in the px-py plane also decreases as can be seen 
from Equation (28). So, the electrons corresponding to 0n =  or 0ν =  level 
for two and three-level systems start occupying states with non-zero zp  much 
earlier than those in a one-level system. Hence, such electrons start exerting 
higher degeneracy pressure (at the same density) sooner compared those in 
one-level system, and that makes the equations of state of two and three-level 
systems much stiffer than the one with just one Landau level occupied i.e., only 

0ν = . This can be seen from Figure 1 and Figure 5.  
These two reasons in the previous two paragraphs, make the EoS related to 

just the first Landau level very stiff for almost the entire corresponding density 
range except at very low densities that, anyways, would form the outer layer of 
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the star and therefore would not matter that much. 
For two and three-level systems, the EoS at the highest density also starts out 

as very stiff, but because of a significant range/s of densities for two/three-level 
systems within the star where the pressure gradient is not adequate, the star re-
mains less massive even at those higher central densities.  

Therefore, it just so happens that a MWD becomes more massive than the 
Chandrasekhar-limit WD of 1.44 M� when the electron occupancy is limited to 
just one Landau level irrespective of the total number of levels in this case of 

220FmaxE mc= .  

7. Comparison with the Non-Magnetic Results  

Figure 8 shows the EoS for a 500-level system and a system with no B-field as 
well as their superimposed equations of state for 220FmaxE mc= . They look ex-
actly the same proving that, for the same FmaxE , as the magnetic field goes down, 
the number of Landau levels increases and so the magnetic EoS approaches the 
non-magnetic one. 

 

 

Figure 8. Equations of state for (a) 500-level system, (b) a system with no magnetic field 
and (c) their superposed equations of state corresponding to 220FmaxE mc= . Here, DP  
and Dρ  are given in units of 2.668 × 1027 erg cm−3 and 2 × 109 g cm−3 respectively. 
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Figure 9 shows the M-R relations for a 500-level system. The end point on the 
curve in this figure corresponds to ~ 1.39M M�  (which is closer to the Chan-
drasekhar limit of 1.44 M�) and 7~ 8.73 10 cmR × . We can also see that for 
500-levels there is only one branch. Also, these M-R relations are the same as 
those of a non-magnetic WD, in the following two aspects [21]:  

1) Stars are much lighter and do not violate the Chandrasekhar limit.  
2) The radius of a star decreases as the mass increases.  
These can be explained from Figure 10. It shows that a magnetic EoS is much 

stiffer than a non-magnetic one. A stiffer EoS is more successful in counteracting 
gravity than a softer one (non-magnetic one). That is why MWDs can become 
more massive than their non-magnetic counterparts. It can also be seen from 
Figure 10 that for the same outward degeneracy pressure a non-magnetic elec-
tron gas is more dense for almost the entire pressure range. This means that gra-
vitational pressure has a good chance of overcoming the degeneracy pressure, 
which is exactly what happens in a typical non-magnetic WD. In addition, the 
non-magnetic EoS being soft, also facilitates gravitational compression. The lower 
mass stars in Figure 9 will be bigger because the electron gas, at those densities, 
would oppose gravity effectively.  

Figure 11 shows a comparison of enclosed mass of a star as a function of 
radial distance r for both a one-level system and a 500-level system. The same 
central density is chosen for both stars ( 10 3~ 1.17 10 g cmcρ

−× ⋅ ). The mass-radius 
values for these stars are ~ 2.49M M�  and 7~ 6.68 10 cmR ×  (one level) and  

~ 1.38M M�  and 7~ 9.29 10 cmR ×  (500 levels). We can see that the star’s ra-
dius in the case of a 500-level system is bigger even when its mass is much 
smaller or that of a one-level system is smaller even when its mass is much big-
ger. This can be explained, again, from Figure 10. A stiffer EoS (one-level sys-
tem) is more successful in counteracting gravity, but that also means that the 
same degenerate gas has to support more mass. More mass means more gravi- 
tational compression. Hence, we have a compact star corresponding to a one- 
level system. One can clearly see in Figure 11 that much more mass is enclosed 
for the same radial distance in the case of a one-level MWD; therefore it has a 
smaller radius.  

From Figure 12 we can see that the magnetic EoS starts to approach the non- 
magnetic one when the B-field decreases, even for much fewer Landau levels. 
The kinks in the EoS get smaller as the number of Landau levels increases for the 
same FmaxE . We can conclude from all this, that as the number of Landau levels 
increases (or as the B-field decreases), one no longer finds the same number of 
branches in the M-R relations as the number of Landau levels in the EoS, but 
rather the M-R relations evolve in such a way that the number of branches re-
duces, and ultimately they coalesce to become one branch as can be seen for 500 
Landau levels. This is something we can expect since the M-R relations should 
have just one branch in the limit 0B → . 

We can also expect this because the plot of a magnetic DOS starts to look like 
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a non-magnetic one when the number of Landau levels increases, as shown in 
Figure 13. One can also notice how the energy ranges in-between the infinities 
in the DOS become smaller and smaller as the number of Landau levels increases 
giving the overall appearance of a non-magnetic DOS, as can be seen from Fig-
ure 2 and Figure 13. This means that the kinks in the EoS become so small that 
its overall appearance is of a non-magnetic one. Basically, in Figure 5, as the 
number of cylinders increases for the same FmaxE  (or the same sized Fermi sur-
face), the magnetic p -space begins to look like the continuum of a non-magnetic 
p -space. 

 

 

Figure 9. Mass-Radius relations for a 500-Landau level system 
corresponding to 220FmaxE mc= . Here, radius DR  and mass 

DM  are given in units of 108cm and M
�
 respectively. 

 

 

Figure 10. Equations of state for all three Landau level systems 
as well as for the non-magnetic one plotted for the same maxi- 
mum Fermi energy 220FmaxE mc= . Here, DP  and Dρ  are 
given in units of 2.668 × 1027 erg cm−3 and 2 × 109 g cm−3 re-
spectively. 
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Figure 11. Enclosed Mass v/s Radial Distance of a star for one-level and 
500-level systems corresponding to 10 3~ 1.17 10 g cmcρ

−× ⋅ . The top curve 
is of a star with just one-level system. Here, radial distance r and enclosed 
mass ( )M r  are given in units of 108 cm and M

�
 respectively.  

 

 

Figure 12. Equations of state for (a) 50-level system, (b) 100-level system, and (c) 200- 
level system corresponding to 220FmaxE mc= . Here, DP  and Dρ  are given in units of 
2.668 × 1027 erg cm−3 and 2 × 109 g cm−3 respectively.  
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Figure 13. Density of states for (a) 10-level system, (b) 100-level system, (c) 1000-level 
system, (d) 10,000-level system and (e) system with no magnetic field, all corresponding 

to 220FmaxE mc= . Here, 
DOS

V
 and E are given in units of 5 × 1031 cm−3 erg−1 and 2mc  

respectively. 

8. Comparison with an Earlier Work by Das &  
Mukhopadhyay (DM)  

The main point to discuss in this section is the M-R relations. Because of the 
correlation between the DOS and the EoS, we have firmly established that a mul-
tiple (at least two and three) Landau-level system would lead to multiple 
branches in the mass-radius relations. This is very different from what DM are 
proposing [7]. This discrepancy arises due to their incorrect approach in dealing 
with the EoS. They have done “piece-wise” power-law fits (or polytropic fits as  

they call them) of the form P KρΓ= , where 1n
n
+

Γ = , to the EoS and have  

wrongly assumed that each individual fit, with particular values of K and Γ , 
holds throughout the star. Then they have proceeded to numerically solve the 
equation of hydrostatic equilibrium for ρ  as a function of radial distance r, 
and thus have obtained the mass and radius of the star with one polytropic rela-
tion throughout using Equations (21)-(25). This power-law/polytropic relation 
of the EoS works very well only for a non-magnetic WD where just one such re-
lation would hold [21]. 

This approach of DM has a serious flaw, in that, they did not make use of the 
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entire EoS in making stellar models. One can see the presence of unstable masses 
in their M-R relations. A plausible explanation for that is their incorrect use of 
the EoS. There are certain regions of the EoS wherein if one assumes a simple 
power-law/polytropic fit to determine Γ , then one would end up with negative 
values of densities if that same fit is extrapolated until the pressure becomes zero. 
Such fits would be from the immediate regions of the EoS that are to the right of 
the kinks. DM end up with some unstable masses because those negative values 
of densities end up in the equation of hyrdostatic equilibrium (22) for a numeri-
cal solution. The equation of state of a MWD is non-polytropic in nature and it 
would be wrong to assume otherwise. 

One can also derive Equations (14) and (19) solely on the basis of quantum 
mechanics as well as statistical mechanics, and thus does not involve an assump-
tions concerning stars. They together form an “equation of state” for a relativis-
tic degenerate gas no matter where it is found [25]. Once an EoS is generated, 
that itself describes how the pressure varies with density within a star that has a 
particular value of a static and uniform B-field within it. So, when a stellar model 
is generated with a particular value of central density cρ , which is chosen from 
the different density values on the EoS-plot, one has to start with the pressure 
value corresponding to that chosen value of density at the center of the star. 
Then the remaining EoS-plot dictates how the pressure varies with density until 
we reach the surface of the star. We have made proper use of the EoS and have 
not done “piece-wise” or “polytropic” fits. 

9. Conclusions  

In this work, we have established a crucial correlation between the DOS and the 
non-polytropic EoS of a cold, relativistic, degenerate electron gas in a magnetic 
field which is required to understand the possibility of having super-massive 
WD stars with strong magnetic fields inside them. We have found how the dis-
tribution of single-particle states as a function of electron energies in the pres-
ence of a strong magnetic field dramatically changes the EoS of matter inside a 
MWD star, and renders the star super-massive. In particular, it is only when the 
electrons occupied the first Landau level that the star became heavier than the 
Chandrasekhar limiting mass. The drop in the DOS to a very small value in the 
presence of a B-field for an extended range of energy values is vital in making 
the pressure gradient very steep, and thus helping to increase the outward dege-
neracy pressure of the electrons. This was particularly evident in the case of a 
one Landau-level system. 

Although, our results are based on the same assumptions (spherical symmetry, 
and uniform and static B-field) as made by Das & Mukhopadhyay, they satisfac-
torily address the observational finding that a magnetic field does lead to an 
overall higher mean mass of WDs [12]. Such a higher mass of the magnetic WD 
can only be understood if one looks at the fundamental physics involved, as is 
done in this work. 
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We have also found that for two and three-level systems, there are the same 
number of branches in the M-R relations as there are levels. This, again, was 
found to be directly related to the DOS. For these levels, the star had density re-
gions inside it where the pressure gradient was not enough to make that star 
massive even when the central densities were high. The region/s of densities seen 
to the right of the kink/s in the EoS played a crucial role in this. 

One may be puzzled by the discontinuity in the mass-radius values of stars in 
the branches of the two and three-level systems even as the central densities of 
stars, starting from the bottom-most branch to the topmost branch, smoothly 
varied from right to left across the kink/s in their equations of state, however, we 
have to understand the fact that these stars (stellar models) are built from scratch, 
guided by the EoS and its dependence on the DOS in the presence of a magnetic 
field. This is strictly a theoretical model with the assumptions of spherical sym-
metry and uniform and static B-field. So, it does seem that for multiple Landau 
levels (at least for two and three levels), there are these jumps in the stellar mass- 
radius values as the electron occupancy keeps on decreasing to lower levels in a 
given EoS. 

Because we humans cannot reach the stars to perform experiments on them, a 
critical tool for understanding what might be happening within the stars is via 
an EoS developed through theoretical models such as that of a cold, relativistic, 
degenerate electron gas in a magnetic field, as is done in this work. 

We believe that we have convincingly tackled this problem of presence of 
magnetic field inside a star and its consequences from a fundamental perspective. 
Most importantly, we have succeeded in answering the question—“What is so 
special about a magnetic field that it makes a white dwarf super-massive?”  
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