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Abstract 
In this note, we propose that an object moving with proper constant accelera-
tion, i.e., a Rindler observer experiences a sublimation (or evaporation) pro- 
cess. In this first proposal, we do not consider the backreaction due to the 
sublimation. We focus on charged matter particles for the discussion, but for 
simplicity, we present the quantization of the neutrally charged massive scalar 
field in Rindler space. The amplitude from the Minkowski observer perspec-
tive of detection of matter particles that have been emitted by a Rindler ob-
server, or accelerated detector, is computed in a new fashion. We make a 
comparison between the Rindler observer sublimation and the black hole 
evaporation. We present three variants of a new experimental setup, and we 
show that in two of them, the Minkowski amplitude of detection of matter 
particles corresponds to that of a thermal process. There is one, however, where 
deviations from thermality can be found. It is numerically explored. 
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1. Introduction 

Black holes evaporation [1] [2] [3] [4] is perhaps the most fantastic prediction in 
modern physics. However, its experimental confirmation is far from being reached, 
mainly because of the probability of emission of a stellar black hole is ridicu-
lously tiny. The lifetime, for instance, for a black hole of solar mass is much 
longer than the age of the universe [1], this is an indication that this process is 
possible but unlikely. Despite this unlikeliness, the efforts for understanding the 
phenomena related to the quantum mechanics of the black holes have been in-
creasing over the last four decades. Nevertheless, so far, we do not have a full 
understanding of this phenomenon. 

A related phenomenon that could offer some hints about the black hole quan-
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tum mechanics is the Unruh effect [5] [6] [7]. A Rindler observer, an object with 
proper constant acceleration (we refer to it as accelerated detector too), expe-
riences the vacuum as full of real pairs of entangled particle-antiparticle [8] [9], 
and hence it perceives thermal radiation. 

It turns out that under specific considerations, an object with proper constant 
acceleration might evaporate too. In this paper regard the Rindler observers as 
solid objects, and the final state of its constituents as a gas, for instance, of elec-
trons, this is why we refer to this process as Rindler observer sublimation. 

In this paper, we discuss the sublimation process of an accelerated detector 
without considering the backreaction due to the sublimation itself. We shall view 
the amplitude of the detection of particles emitted from an accelerated object, 
from the Minkowski perspective. Here we focus on electrons and positrons. We 
shall also discuss the interpretation of the amplitudes and probabilities in cor-
respondence to the experiment. We will show that there are three possible expe-
rimental setups where we can get quantitatively different results related to the 
thermal nature of the radiation perceived by the Minkowski observer. 

Our results are presented in parallel to reference [3]. In the end, we conclude 
that the sublimation of a Rindler observer is not too different from the evapora-
tion of a black hole. Although, no information paradox appears in the case under 
consideration. 

As we show, and it is well known for electromagnetic radiation [7], the proba-
bilities of emission and absorption of a uniformly accelerated particle correspond 
to a thermal process. However, we will see how from the Minkowski observer 
point of view, there could be situations where deviations from thermality can be 
found. These deviations from thermality are intrinsically connected to the un-
iformly accelerated detectors and do not have any analog in black holes. 

For motivating the idea we want to put forward, we would like to focus on the 
accelerated objects. First, let us point out that usually, the Unruh effect is related 
to electromagnetic fields. Nevertheless, it is universal and holds for any quantum 
field in nature. Either by field quantization or by using some accelerated detector 
model, the same effect comes out. Although, extra care is needed when consi-
dering detector models due to some discrepancies with the field quantization 
[10]. 

Perhaps, the most popular detector models are the Unruh-DeWitt type [7] 
[11]. When accelerated, they can absorb and emit electromagnetic radiation 
(usually modeled as massless scalar fields). If the detector made of matter par-
ticles, electrons, for instance, is found in a state different than its ground state at 
some time, it is said that the detector has detected a quanta of the electromag-
netic field. 

Now, if the Unruh effect is also valid for matter particles, we could use accele-
rated detectors for probing these kinds of background too. Note, however, that it 
is hard to apply the excited state argument to a matter particles detector after 
having absorbed a particle of the same kind. In other words, electrons, for in-
stance, can absorb and emit photons but no electrons. So if we consider an acce-
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lerated detector made of electrons and the quantum vacuum that it is probing is 
a background of electrons (and positrons), absorption or emission yield to the 
gaining or losing of its constituents. In [12] [13] similar processes were described. 
We could also view this phenomenon as a tunneling process similar to [14] for 
black holes. 

Perhaps the simplest model we could build for a matter particle detector would 
be an accelerated box with a given number of particles (electrons, for instance) 
confined within it, with a very high confining potential. If, after some time, the 
number of particles within the box increases or decreases, it would be an indica-
tion that the detector has probed the vacuum. For this accelerated box, no inte-
raction term between the detector and a quantum field [7] [11] is needed. 

Due to the similarity that the processes described above have with the subli-
mation process of a given substance, we have chosen to call it sublimation in-
stead of evaporation. Notice that when focusing only on the electromagnetic 
field, unlike for black holes, for uniformly accelerated detectors (made of matter 
particles), there is no room for introducing the idea of sublimation.  

To derive the propagator between two points in the black hole geometry [3], 
Hartle and Hawking used the Feynman’s worldline path integral (WPI) formula-
tion [15] [16] [17]. They consider one point inside the horizon and the other 
outside. Two different patches are involved in the specification of these points 
location, also, in the specification of the initial and final state. 

In this work, with the end of getting the amplitudes we are interested in, we 
work with the propagator between one point inside the Rindler wedge and the 
other point anywhere in Minkowski space. We use two different patches, too, as 
in [3]. Here, we do not present the derivation of the Green’s function using the 
WPI. Still, supported by it, we extract some useful information that allows us to 
make conclusions on which propagator is appropriate for obtaining the ampli-
tudes. 

The worldline path integral formulation offers an intuitive way of representing 
the emission and absorption processes. If one attempts to evaluate the amplitude 
by applying the method of stationary phase to the integrals involved, one finds 
that the stationary paths which connect the accelerated particle and the observa-
tion point are straight lines Figure 1. 

The processes depicted in Figure 1 are unlikely, like for black holes [3]. We 
arrive at this conclusion after computing the amplitudes related to them. Al-
though there is an experimental setup with a small window for confirmation.  

The paper is organized as follows. In Section 2, the quantization in Rindler 
space using different boundary conditions to the ordinary ones in the canonical 
quantization is reviewed. The interpretation of the amplitudes is discussed in 
Section 3. In this section, a new derivation of the amplitudes is presented in pa-
rallel to reference [3]. Three new experimental setups for detecting the radiation 
emitted from an accelerated detector are presented. In particular, one of them 
leads to a non-thermal emission. Strictly speaking, it could be called “a non- 
thermal detection by the Minkowski observer,” this is clarified in 3.1. The non- 
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Figure 1. Pictorial representation of the Rindler observer subli-
mation. The red straight lines represent the stationary paths which 
connect the accelerated object and the observation points. 

 
thermal radiance is numerically explored in 3.2. After conclusions, two Appen-
dixes are presented. 

Notation and conventions 
We use Rϕ  to denote the scalar field in Rindler coordinates, while Mϕ  de-

notes the scalar field in Minkowski coordinates. ( ) ( )0 , sinhx τ ρ ρ τ= , and  
( ) ( )1 , coshx τ ρ ρ τ= , are used to denote the relation between the Minkowski 

and Rindler coordinates. The normalized eigenfunctions in the ρ  direction in 
Rindler space are ( ),ν κψ ρ . Where ν  is a quantum number associated to the 
energy in the Rindler frame; and ( )

1
2 22k mκ = + , where k  is de momentum 

in the ( )1 2,x x  directions, being m, the mass of the scalar particles. We refer to 
the amplitudes and probabilities of emission and absorption of the accelerated 
detector as emiA , and absA ; emiP , and absP , respectively. At the same time, they 
can be regarded as the amplitudes and probabilities of absorption and emission 
of a screen placed at some distance relative to the accelerated detector. We refer 
to this screen as a Minkowski detector. ( )J xµ , denotes the quantum mechanics 
current of probability. While 1ϕ , and 2ϕ , are the quantum mechanics wave 
functions as perceived from the Rindler and the Miskowski observer perspective. 

2. Quantization 

In this section, we review the quantization of a massive scalar field in Rindler 
space following [8] [9]. For simplicity, we work with a massive neutrally charged 
scalar field, but this work can be easily extended to massive charged scalars or 
fermions. 

In [8] [9] in contrast to the ordinary canonical quantization, the field operator 
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is subjected to the boundary conditions  

( ) ( ) ( )( )0 1, , , , , , ,R i M i ix x x xϕ τ ρ ϕ τ ρ τ ρ=  

( ) ( ) ( )( )0 1, , , , , , ,R f M f fx x x xϕ τ ρ ϕ τ ρ τ ρ=              (1) 

where  

( ) ( )0 , sinh ,x τ ρ ρ τ=  

( ) ( )1 , cosh .x τ ρ ρ τ=                       (2) 

These are the boundary conditions that are consistent with the Lagrangian 
approach of field theory. In the Rindler frame, Rϕ , is specified at the initial and 
final time ,i fτ τ , respectively. These are the slices that intersect the points where 
the acceleration is turned on and off. The operator Mϕ , can be obtained in the 
canonical quantization in Minkowski space from the solution of  

( ) ( )2 0 1, , 0.Mm x x xϕ− =                     (3) 

The massive scalar field action in the Rindler wedge i fτ τ τ< <  reads  

( )

( ) ( ) ( ) )2 3

22 1

0

2 22 2 2

1 d d d
2

.

f

i

R

R R R Rx x

S x

m

τ

τ
τ

ρ

τ ρ ρ ϕ

ρ ϕ ϕ ϕ ϕ

∞ ∞
−

−∞

= − − ∂

 + ∂ + ∂ + ∂ +  

∫ ∫ ∫
          (4) 

The variation of (4) subjected to ( ) ( ), , , , 0R i R fx xδϕ τ ρ δϕ τ ρ= = , and  
0Sδ = , leads to  

( ) ( )2 , , 0.Rm xϕ τ ρ− =                      (5) 

The general solution of (3) is  

( )
( ) ( )

( )
( )

( )
( )

0 1
0 1

1

0 1
0 1

1

2 i0 1 1
2 1 ,

20

i†
,

d d 1, , e
2 2 2

e .

k x k x k x
M k k

k x k x k x

k k

k kx x x a
k

a

ϕ
∞ ∞

− + + ⋅

−∞ −∞

+ + ⋅

= 




π

+

π




∫ ∫
      (6) 

While the general solution of (5) reads [5]  

( )
( ) ( )

( ) ( )( ) ( )
2

i i i
,2 1 , ,

0 2

d 1, , d e e e ,
2 2

k x
R k k

kx b bντ ντ
ν κν νϕ τ ρ ν ψ ρ

ν

∞ ∞
− ⋅

−
−∞ π

= +∫ ∫ †  (7) 

with  

( )
1

2 22 ,k mκ = +                        (8) 

and  

( ) ( )
1 1

2 22 2 2 2 2
0 1 1 ,k k k m k κ= + + = +                (9) 

2 2 2
2 3k k k= + , and ( ),ν κψ ρ , the normalized eigenfunctions of the equation  
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( )
2

2 2 2 2
,2

d d 0,
dd ν κρ ρ κ ρ ν ψ ρ
ρρ

 
+ − + = 

 
            (10) 

( ) ( )( ) ( )
1

1 2
, i2 sinh K ,ν κ νψ ρ ν ν κρ− π= π              (11) 

( ) ( ) ( ), ,
0

d ,ν κ ν κ
ρψ ρ ψ ρ δ ν ν
ρ

∞

′ ′= −∫                (12) 

where ( )iK ν κρ , are the modified Bessel function of the second kind. 
Imposing (1) we get the equations  

( ) ( ) ( ) ( ) ( )
1

,i i † 2 i2
, ,

0

e e 2 d d e , , ,i i k x
M ik kb b x xν κντ ντ

ν ν

ψ ρ
ν ρ ϕ τ ρ

ρ

∞ ∞
− − ⋅

−
−∞

+ = ∫ ∫    (13) 

and  

( ) ( ) ( ) ( ) ( )
1

i i ,† 2 i2
, ,

0

e e 2 d d e , , ,f f k x
M fk kb b x xντ ντ ν κ

ν ν

ψ ρ
ν ρ ϕ τ ρ

ρ

∞ ∞
− − ⋅

−
−∞

+ = ∫ ∫   (14) 

we have used the short hand notation  

( ) ( ) ( )( )0 1, , , , , , .M Mx x x xϕ τ ρ ϕ τ ρ τ ρ=              (15) 

Solving for ( ),kbν
, we get  

( )
( )
( )

( ) ( )

( )

1
2 i,2 i

,
0

i

2
i d d e e , ,
2sin

e , , .

f

i

k x
M ik

f i

M f

b x x

x

ντν κ
ν

ντ

ψ ρν
ρ ϕ τ ρ

ρν τ τ

ϕ τ ρ

∞ ∞
⋅

−∞

= −  − 
− 

∫ ∫  (16) 

In [8] [9], an alternative way of deriving the vacuum energy was presented 
without using the Bogoliubov coefficients. It highlights the loops and the open 
paths contributions to the Rindler vacuum energy. 

Here we shall present the Bogoliubov coefficients derived from the boundary 
conditions (1). It will be surprising for the reader, despite we are using different 
boundary conditions to (51), from (1) we get exactly the Bogoliubov coefficients 
we can obtain from the canonical quantization [5], see Appendix A. 

For this purpose we solve integrals of the form  

( ) ( ),2 i

0

d d e , , ,k x
Mx xν κψ ρ

ρ ϕ τ ρ
ρ

∞ ∞
⋅

−∞
∫ ∫                 (17) 

which equals to  

( )( )
( ) ( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ) ( ) )

i ii i
1 1 ,
2 2

i ii i
,

1 1 d i e i e
sinh4

i e i e ,

z z
z k

z z
z k

z a

a

ν νν τ ν τ

ν νν τ ν τ

νν

∞
− − + +

−∞

− + − +
−

ππ

 + 

 + + 

∫ �

†

      (18) 

where  

1arcsinh ,
pz
κ

 =  
 

                       (19) 
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and  

( )( )
( )

1 1
12 2

1
22 2

1

d
d cosh d .

pz z z

p

κ

κ

= =

+

�               (20) 

Plugging (18) in (16) we get  

( )
( )

( ) ( )( ) i
1, , ,

2 2

1 1 d e e .
2

e 1

z
k z k z kb z a aν ν

ν
ν

∞
−π

π
−

−∞

= +
π

−
∫ � †           (21) 

Using (19) and (20) we arrive at (55) which are the Bogoliubov coefficients as 
presented, for instance, in [5]. We emphasize that here they have been obtained 
from (1). 

The vacuum energy R
vacE  in Rindler space is given by  

( ) ( ) ( )

2

02 , ,
0

d d 0 0 ,
2

R M M R
vac k k

kE b b Eν νν ν
∞ ∞

−∞

= +
π

∫ ∫ †             (22) 

where  

( )3 2
0

0

1 0 d d ,
2

RE kδ νν
∞ ∞

−∞

= ∫ ∫                    (23) 

is the contribution of the loops inside the Rindler wedge, as discussed in [8]. 
Usually, this contribution is discarded. The Minkowski vacuum 0M , satisfies 

( )1 , 0 0M
k ka = . The thermal distribution can be easily computed using (55) and 

(43),  

( )

2

3 02 2
0

d d ,
2 e 12

R R
vac

kE V Eν

ν ν
π

∞ ∞

−∞

= +
−ππ

∫ ∫                (24) 

where  

( ) 3
1 1 32 0 d , .x V V Vδ

∞

−∞

= = =π ∫                   (25) 

3. Rindler Observer Sublimation 

The accelerated detector at some initial time can be idealized as a solid made of 
electrons (and other particles). After some time, all these electrons would be part 
of the radiation. Namely, they could be considered as a gas of electrons. How 
likely could this process be? We answer this question in the next section by 
computing the probability of emission and absorption of a uniformly accelerated 
detector from the Minkowski perspective. 

3.1. Amplitudes and Thermal Radiance 

Let us now compute the amplitude associated with the emission or absorption of 
one Rindler mode by the accelerated detector from the Minkowski observer 
perspective. Namely, the amplitude for the process in Figure 1. This particular 
amplitude tells us, like in [3], for a black hole, whether or not a Rindler observer 

https://doi.org/10.4236/jmp.2020.119086


J. A. Rosabal 
 

 
DOI: 10.4236/jmp.2020.119086 1379 Journal of Modern Physics 
 

can emit matter particles. 
It is useful to know that if the accelerated detector emits a Rindler mode, we 

regard the initial state as ( )
†

, 0M
kbν

. Conversely, if a Rindler mode is absorbed 

by the accelerated detector the initial state is ( ), 0M
kbν

. 

The amplitudes of the process described above, where the final state perceived 
by a Minkowski observer is a Minkowski particle ( )1

†
, 0M

k ka , are  

( ) ( )

( )
( ) ( )

1 , ,

1 i
2 2 20 1

1
2 0 102

0 0

e 1 2 ,
e 1

M M
k k kb a

A a b

k k
k k

k kk

ν

νν

ν

δ

′→

π

π

′=

′ ′ + ′= − ′ ′−′
π

 −

† †
†

       (26) 

and  

( ) ( )

( )
( ) ( )

1 , ,

1 i
2 2 20 1

1
2 0 102

0 0

1 1 2 ,
e 1

M M
k k kb a

A a b

k k
k k

k kk

ν

ν

ν

δ
π

′ ′→

−

=

′
π

′ + ′= − ′ ′−′  −

†

       (27) 

where ( )22 2
0 1k k k m′ ′= + + . Here we have used (55). 

The total probability will be the sum over all initial modes for a given fre-
quency ν , [3] of the square of the amplitude. A Rindler mode ( )

†
, 0M
kbν

 or  

( ), 0M
kbν

 is fully specified by three quantum number ( )2 3, ,k kν . For a definite 
frequency mode the total amplitude is  

( )

22

2
2

d ,
2

emi
emi

AkP
V

∞

−∞ π
= ∫  

( )

22

2
2

d .
2

abs
abs

AkP
V

∞

−∞ π
= ∫                     (28) 

The formal square of the δ  function is considered as  

( )
( )

( )2 2
2 ,

2
Vk k k kδ δ ′=
π

′ − −                  (29) 

where we have used (25). One can avoid these formal manipulations using wave 
packets, see for instance [18]. 

Notice that the total probability fulfill the relation [3] [19]  

2e ,abs

emi

P
P

ν− π=                         (30) 

which indicates that the emission and absorption process is thermal with a tem-
perature  

,
2 c B

T
kπ

=
�a                         (31) 

we have restored the acceleration a and the physical constants. Relation (30) im-
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plies that the probability of absorption is always smaller than the probability of 
emission. Namely, for the accelerated detector, it is more likely emit than absorb. 
Hence, gradually it loses its constituents. We recall at this point that we are con-
sidering emission and absorption of matter particles, although the same analysis 
goes to electromagnetic radiation. 

We want to make a parenthesis here to discuss what transition amplitudes we 
are computing in (26) and (27). The final Minkowski state involved in (26) and 
(27) is defined over a space-like slice at the Minkowski time 0x = +∞ . So, it 
means that if we wait long enough, there will be transitions from Rindler modes 
emitted by the accelerated object to Minkowski particles. However, (26) and (27) 
do not tell us how and where to measure in the three-dimensional space to 
detect these particles. 

In what follows, we present a different derivation of the radiance of a Rindler 
observer. It makes transparent how and where we should measure in the three- 
dimensional space to detect some radiated particles. This calculation is made in 
analogy to the one presented in [3] for the black hole radiance. It shows that the 
radiative processes of a Rindler observer are not so different from those in a black 
hole. In the end, we conclude that in the same way a black hole evaporates1 [3] a 
Rindler observer sublimates.  

As we are dealing with the emission and absorption of one single particle, we 
can use the probability current  

( ) ( ) ( ) ( ) ( )( )* *
2 2J i ,

x x
x x x x xµ µµ ϕ ϕ ϕ ϕ= − ∂ − ∂             (32) 

to compute the amplitude. By proceeding in this way, we will gain some intui-
tion on how to detect the radiated particles. 

First, suppose we place a screen2 which is our radiation detector (Minkowski 
observer or detector) perpendicular to the direction of motion of the accelerated 
object, as indicated in Figure 2 and Figure 3.  

This screen measures on shell 
22 2 2

0 1k k k m= + + , purely positive energy par-
ticles in modes ( )2 xϕ . The location of the screen will be specified through the 
calculation. We will consider three situations. The screen placed to the left/right 
of 1

1x ρ= , and R → +∞ . 
The amplitude of detecting a mode ( )2 xϕ , at the screen 1x R= , from the 

Minkowski perspective, having started at 1ρ ρ= , in a mode ( )1 yϕ , from the 
Rindler perspective is given by the total flux of probability through the screen  

( ) ( ) 1
0 2 1

1
screen

J n d d J n ,
x R

A x x x xµ
µ

∞ ∞

=
−∞ −∞

= =∫ ∫ ∫             (33) 

where, using the Green’s third identity,  

( ) ( ) ( ) ( ) ( )( )
1

2
1 1 1d d , , ,x y y G x y G x y yρ ρ ρ ρ

ϕ ρ τ ϕ ϕ
∞ ∞

=
−∞ −∞

= ∂ − ∂∫ ∫     (34) 

 

 

1We refer the reader to section IV of [3]. 
2The screen is the analogous of the spherical detector placed outside the horizon to collect the 
Hawking radiation at a constant r [3]. 
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Figure 2. Pictorial representation in spacetime of the experimental setup. 
In blue, the screen (Minkowski detector). The thick black line represents 
the accelerated object. In this setup, the screen is placed to the left of 

1
1x ρ= . 1J , represents the current associated with an incoming wave 

moving from right to left. 
 

 

Figure 3. Pictorial representation in spacetime of the experimental setup. 
In blue screen (Minkowski detector). The thick black line represents the 
accelerated object. In this setup, the screen is placed to the right of 1

1x ρ= . 

1J − , and 1J + , represent the current associated with the incoming waves 
on each side of the screen. Rτ , is the Rindler time where the accelerated 
particle meets the screen. 

 
and ( )n 0,1,0,0µ = , is the normal vector to the screen. Here the coordinates x 
are referred to the Minkowski observer, ( )0 1, ,x x x x= , while ( ), ,y yτ ρ= , are 
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the Rindler coordinates. The appearance of 1ρ  in front of the integral (34) is 
due to the volume measure on the surface 1ρ ρ= , i.e.,  

2 2 2 2 2d d d ds yρ τ ρ= − + + , hence 
1

2 2
1d d d dh y y

ρ ρ
τ ρ τ

=
− = . The surface  

1ρ ρ= , could be taken anywhere inside the Rindler wedge, in a similar fashion 
to [3] where the surrounding surface inside the horizon in taken at a constant r, 
for simplicity we place it on the same location of the accelerated particle. The 
Green’s function ( ),G x y , has one of its legs evaluated only in the Rindler 
wedge. 

Since one point is in the right Rindler wedge and the other could be outside 
the wedge, the question now is, what Green’s function should we use in (34). 
Note that if we were to compute a process involving only points inside the right 
Rindler wedge, we could use the thermal Green’s function in Rindler space. 

To answer the previous question, we can proceed as in [3]. In this reference, 
one of the points where the Green’s function is evaluated resides inside the ho-
rizon while the other could be anywhere in the Schwarzschild space3. 

For deriving the Green’s function between two points (no matter the location 
of these points) one can use its worldline path integral representation and the 
method of stationary phase [3] [17]  

( )
( )

( )

( ) ( )

( )
( ) ( )

2

2

1 1
i 2

0 0 0

i , ,i
20

1, d e exp i d
4

1d e , , e ,
2 i

x x
m s

x y

S x y sm s

G x y s Dx x
s

s D x y s

µ τ τ τ
=∞

−

=

∞ −

 
=  



=
π


∫ ∫ ∫

∫

�

        (35) 

where ( ), ,S x y s  is the action evaluated on the classical path connecting y and 
x, and  

( ) ( ), , det , ,
x y

D x y s S x y s
µ ν

 ∂ ∂ =
 ∂ ∂ 

               (36) 

The point x belongs to the Minkowski patch. The point y belongs to the Rind-
ler patch, but this patch is just a part of Minkowski space. So, we can regard y as 
belonging to Minkowski space. With this in mind, the path integration in (35) 
should be over all the path starting at y and ending at x in whole Minkowski 
space. The derivation of ( ),G x y  from (35) is a well known calculation, see for 
instance [15] [16] [17]. For this case the method of stationary phase simply re-
duces to the evaluation of the action on the straight line connecting the emission 
and observation points Figure 1, it leads to  

( )
( )

( ) ( ) ( )( )0 0 1 1
0 1i4

4 2 2

d e, ,
i2

x y p x y p x y p
pG x y

p m ε

− − + − + − ⋅∞

−∞

=
− +π

∫           (37) 

in our case, with y restricted to the right wedge, i.e.,  

( )0 sinh ,y ρ τ=  

 

 

3Although, in [3] the relevant portion of the space where the second point of the Green's function is 
evaluated is the exterior part of the black hole. 
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( )1 cosh .y ρ τ=                         (38) 

Relations (32), (33) and (34) can be combined in a more compact form  

( ) ( ) ( ) ( ) ( )*
2 1d d , ,A x y x G x y yµ ν

µ νσ σ ϕ ϕ= − ∂ ∂∫ ∫
� �

        (39) 

where the integral over x is taken over the surface 1x R= , and the integral over 
y is over the surface 1ρ ρ= , and a b a b b aµ µ µ∂ = ∂ − ∂

�
. This formula is similar 

to (4.1) of reference [3]. 
In order to further proceed we need to find ( )1 yϕ , and ( )2 xϕ . They are the 

quantum mechanical wave functions. To be consistent with our conventions, we 
use the mode expansion (7) together with (55) to compute the wave functions. 
The emission wave function from the Rindler point of view is given by  

( ) ( ) ( ) ( )i i
1 1 i,0 , , 0 N e K e ,M M k y

R ky y b ντ
ννϕ ϕ τ ρ κρ− − ⋅= =†       (40) 

where 

( )

3
2

1 1
2 2

1 eN
2 e 1

ν

ν

π

π −π
= . On the other hand the absorption wave function is  

( ) ( ) ( ) ( )i i
1 1 i,0 , , 0 N e K e ,M M k y

R ky y b ντ
ννϕ ϕ τ ρ κρ ⋅′= =        (41) 

where 

( )

1
2

1 1
2 2

1 eN
2 e 1

ν

ν

π

π

−

′

−π
= . Notice that they have support only on the right 

Rindler wedge. Finally, the Minkowski wave function is simple given by  

( ) ( ) ( )1

i i
2 2,

0

10 0 e N e .
2

M M kx kx
M k kx x a

k
ϕ ϕ − −= = =†        (42) 

We have used the relation  

( )

( ) ( )
1 i
2

0 11

0 0 1

d
2 ,

p pp
p p p

ν ν

δ ν ν
′−∞

−∞

 + ′= − −
π


∫              (43) 

which can be easily proved by the change of variable 0 1

0 1

1 Log
2

p p
z

p p
 +

=  − 
. Al-

though the Rindler wave functions have support only on the right wedge they 
can be written as localized (inside Rindler space) Minkowski wave package (60) 
and (61). 

Let us present the calculation of the emission amplitude. For this we use (40) 
and (42). After some algebra from (39) one arrives at  

( )
( ) ( ) ( )( ) ( ) ( )( )

( )( )
( )

( )

( )

2
1

21 1
1

2 0
0

1

1
1

2i 2 12
1 2 1 i 1 i 1

i
i i2

1 2
1

1 N N e 2 K K
2

ei d e ,

k R
emi

x y k
k y

x

x R

A k k

k
k

ν ρ ρ ν

ντ

ρ ρ

ρ δ κρ κρ

τ
− −∞

−

−∞
=
=

= − ∂ − ∂

× ∂

π

− ∫
 (44) 

recall that 0y  and 1y  are given in (38). 
We shall consider first the case depicted in Figure 2, i.e., 1

1x R ρ= < , which 
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implies that ( )1 1
1 cosh 0x y R ρ τ− = − < , for all τ . Also, an incoming wave 

moving from right to left with ( )2
1 0k < , which represents a particle emitted by 

the accelerated object. Under these considerations (44) reduces to  

( ) ( ) ( )( ) ( )(

( ))
( ) ( )2 21 0
1 0

1

2 2 12
1 2 1 i 1

i i i
i 1

iN N 2 K

K d e ,

emi

k y k y

A k k ν ρ

ντ
ρ ν

ρ ρ

ρ δ κρ

κρ τ
∞

+ −

−∞ =

π= − ∂

− ∂ ∫
           (45) 

where no R dependence appears. Being careful we can analytically extend the 
previous integral, see Appendix B, to get  

( ) ( ) ( )( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 i2 21 2
2 2 12 2 0 12

1 2 1 2 2
0 1

1 2 1 2
i 1 i 1 i 1 i 1

1 iN N 2 e
2

H i H i H i H i ,

emi
k k

A k k
k k

ν
ν

ν ρ ν ρ ν ν

ρ δ

κρ κρ κρ κρ

π−  +
= −   − 

× ∂ − ∂

π π
    (46) 

where ( ) ( )iH a zν , 1,2a = , are the Hankel functions, and we have used the rela-
tion (62). Notice that the expression in the last parenthesis of (46) is the Wrons-
kian involving the Hankel functions. It equals to  

1

4i .
ρ

−
π

                          (47) 

Plugging (47) in (46) we see that 1ρ  cancels out and after a few steps we get  

( )
( ) ( )

1 i
2 2 20 1

1
2 0 102

e 1 2 ,
e 1

emi
k k

A k k
k kk

νν

ν

δ
π

π

′ ′ + ′= − ′
π

′−′  −
        (48) 

which numerically matches (26). Proceeding in the same way for the absorption 
amplitude we can obtain similar results. 

Instead of explicitly compute the amplitudes, alternatively, one can Figure out 
the thermal nature of the radiation by making on (39) a more elegant analysis, as 
presented in [3] for a black hole and, more recently, in [19] in the context of the 
Unruh effect. However, by proceeding with this analysis, we could miss some 
distinctive aspects of the non-thermal character of the particles detected by the 
Minkowski observer (the screen). In the subsequent discussion, we focus on 
these distinctive features of the radiation. 

We have computed the emission amplitude using the flux of probabilities, and 
we have got the expected result, similar to (26) and (27), and we can conclude 
that the radiation is thermal. So far, there are no new hints in this calculation 
leading to experimental confirmation of this process. Detecting the flux of mat-
ter particles radiated from the accelerated detector is almost impossible since the 
temperature is extremely low (31) for the reachable accelerations in the lab. Al-
though, we stress that now we have a better picture of how and where we could 
detect these radiated particles. 

These amplitudes are independent of R and 1ρ  as long as the screen is placed 
to the left of 1ρ . Another experimental option we have would be to place the 
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screen, as depicted in Figure 3. In this case, there could be detection inside the 
right Rindler wedge and in both faces of the screen. 

The amplitudes for this case have a different behavior; this is mainly because 
of now, the accelerated particle intersects the screen. For instance, the left face 
perceives the process of emission and absorption of the accelerated detector 
happening in a finite time. It is worth emphasizing that, unlike for black holes 
where the spherical detector is placed outside the horizon, here we have the 
freedom of placing the screen in several positions relative to the accelerated de-
tector. So, some of the results we present in the subsequent discussion are inhe-
rent to accelerated objects and do not have any analogous in black holes. 

Let us sketch the calculation of the amplitude related to the experimental se-
tup in Figure 3. Suppose we prepare the screen in such a way there is no inter-
ference of the incoming waves with opposite momenta at the screen. We find it 
convenient to work under this assumption because we can treat left and right 
moving waves and amplitudes independently. 

The amplitudes of detecting particles at the screen associated to the emission 
by a Rindler observer are  

( )0 2
1d d JemiA x x x

∞ ∞

− −
−∞ −∞

= ∫ ∫  

( )0 2
1d d JemiA x x x

∞ ∞

+ +
−∞ −∞

= ∫ ∫  

where the subscripts ±  indicate the direction of the incoming wave Figure 3. 
Under similar considerations as in our previous calculation, using (44), we get4  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )2 21 0
1 0

1

2 2 12
1 2 1 i 1 i 1

i i i

iN N 2 K K

d d e ,
R

R

emi

k y k y

A k k ν ρ ρ ν

τ
ντ

τ ρ ρ

ρ δ κρ κρ

τ τ

−

− ∞
+ −

−∞ − =

= − ∂ − ∂

 
× + 


π




∫ ∫
 (49) 

with ( )2
1 0k < , and  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )2 21 0
1 0

1

2 2 12
1 2 1 i 1 i 1

i i i

iN N 2 K K

d e ,
R

R

emi

k y k y

A k k ν ρ ρ ν

τ
ντ

τ ρ ρ

ρ δ κρ κρ

τ

+

+ −

− =

= − − ∂ − ∂π

× ∫
(50) 

with ( )2
1 0k > , where Rτ , is the time where the accelerated particle meets the 

screen, 
1

arccoshR
Rτ
ρ

 
=  

 
. Notice that none combination of the integrals in (49) 

and (50) reproduces (45). We also have similar results for the absorption ampli-
tudes. 

From this result, we can conclude that when the screen is placed to the right 

 

 

4Note that the operator ( )( )1

2
1i

x
k∂ −  acting on the function ( ) ( )( )21

1 1d exp i coshx kτ ρ τ
∞

−∞

− −∫  se-

lects the τ  intervals according to the sign of ( )( )1
1 coshx ρ τ− , and the sign of ( )2

1k . 
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of 1
1x ρ= , Figure 3 we can find deviation from thermality. From the Minkows-

ki perspective, the thermal character of the radiation emitted by the accelerated 
object depends upon where this radiation is collected. It is the reason why we 
mentioned in the introduction that, strictly speaking, it could be called “a 
non-thermal detection.” It is a new result that can not be derived from the direct 
calculation of the amplitude as in (26) and (27), and can not be found in any of 
the detector models in the literature, see [10] and references therein for a discus-
sion related to detector models. 

We would like to stress that we are discussing the detection of matter particles 
emitted by the accelerated detector, but the previous results also hold for elec-
tromagnetic radiation. To our knowledge, this kind of experimental setups, and 
results have not been presented before in the literature. 

Let us now briefly present the third experimental option, the screen placed at 
a very large positive R, or for mathematical purposes R →∞ . This limit can be 
taken on expressions (49) and (50). When R →∞ , Rτ → ∞ . The two integrals 
of (49) vanish, while (50) coincides with (45) and hence (48). So, when the screen 
is placed at R →∞  we recover the thermal behaviour of the radiation. 

One crucial feature of (45) is that the integral involved needs regularization, 
see Appendix B. However, the integral (50) can be highly oscillating, but for fi-
nite Rτ , it is finite. Taking this into consideration in the next subsection, we 
shall numerically explore the amplitudes emiA + , and absA + , and their associated 
probabilities. Could this deviation from thermality open a window for detecting 
more easily the radiated particles? The answer to the previous question can be 
found in the next section. 

3.2. Non-Thermal Radiance 

The amplitude of detecting particles at the screen related to ( )1J x+ , Figure 3, is 
given by (50). Similarly for absA + . The probability of detection follows the same 
rules as in (28). 

Lest us first present the plot for different values of ( )2
1k , with ( ) ( )2 2

2 3 0k k= = , 
of the probability of detection from the Minkowski perspective, i.e., the screen, 
associated to the emission and absorption of a Rindler mode by the accelerated 
detector Figure 4 and Figure 5. The probability takes its maximum value when 

( ) ( )2 2
2 3 0k k= = . For ( )2

2 0k ≠ , and ( )2
3 0k ≠ , the amplitude rapidly falls to zero.  

From Figure 4 and Figure 5 we can see the oscillatory behavior of the non- 
thermal probabilities. We have used natural units c 1Bk= = = =� a . By restor-
ing the constants, we see that the probability is still insignificant. What is re-
markable is that for certain values of the frequency ν , the non-thermal proba-
bility of detection is greater than the thermal. Perhaps in this setup, we could 
enhance the probability of detection by considering several accelerated particles, 
i.e., several Rindler and Minkowski modes in the initial and final state, respec-
tively. 

We are referring to this result as “non-thermal’’; however, so far, we do not 
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know whether it is associated with a thermal process or not. We only know that 
the amplitudes do not correspond to those associated with a thermal process. An 
excellent test to diagnose the thermal nature of a given process comes from the 

ratio abs

emi

P
P

. 

In Figure 6, we present a comparison between the ratio 2eabs

emi

P
P

ν− π=  for a 

thermal detection and the same ratio but related only to ( )1J x+ .  
 

 

Figure 4. Probability of detection at the screen associated to the emission by the accelerated object. In blue the thermal probability. 
In black the non thermal probability for 10R =  and 1 1ρ = . 
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Figure 5. Probability of detection at the screen associated to the absorption by the accelerated object. In blue the thermal 
probability. In black the non thermal probability for 10R =  and 1 1ρ = . 

 
From Figure 6 we can see that from the Minkowski perspective, under the 

conditions of the experiment, the process looks completely non-thermal. In this 
case, we can not associate a temperature to this radiation. 

For the sake of completeness we present the plot of the ratio between the 
probabilities when ( )2

2 0k ≠ , and ( )2
3 0k ≠  in Figure 7. We do not present the 

probabilities associated to the emission and absorption independently because 
they are difficult to appreciate in the Figure.  

From Figure 7 we can see that for the intervals, we are considering for the 
momentum ( )2

1k  and the frequency ν ; there are values where we can find large 
deviations from the thermal behavior. 
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Figure 6. Ratio between the probabilities associated to emission and absorption by the accelerated object. In blue the thermal ratio. 
In black the non thermal ratio for 10R =  and 1 1ρ = . 

4. Conclusions 

In these notes, we have proposed a new phenomenon that we have called Rindler 
observer sublimation. We have followed the logical arguments in reference [3], 
where similar calculations have been presented by Hartle and Hawking for a 
black hole, to conclude that this process is possible. The critical assumption here 
is that an accelerated detector made of given particles might probe the quantum 
vacuum of the same kind of particles the detector is made. 
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Figure 7. Ratio between the probabilities associated to emission and 
absorption. In blue the thermal ratio. In black the non thermal ratio. 

10R = , 1 1ρ =  and ( )( ) ( )( )2 22 2
2 3 0.6k k+ = .  

 
To make the presentation more pedagogical, in Section 2, we reviewed the 

quantization of a massive scalar field in Rindler space, highlighting that different 
boundary conditions can be used. This section is complemented with Appendix 
A, where the ordinary quantization of the massive scalar field has been pre-
sented, and can be contrasted with Section 2. In Section 3, we computed in two 
different ways the amplitudes of emission and absorption of an accelerated de-
tector. We have made a parallel discussion between our calculation and refer-
ence [3], where a similar calculation has been presented for a black hole. Our 
calculation shows that in the context of accelerated detectors, one gets similar 
results to the amplitudes one gets for a black hole. Three experimental setups 
have been presented. In particular, one of them shows that under certain cir-
cumstances, one can get a non-thermal outcome. The non-thermal probability 
has been numerically explored. The graphics of the comparison between the 
thermal and no-thermal amplitudes has been presented at the end of section 3. 

Finding that the amplitude (39) is non-vanishing for the process we are con-
sidering is an irrefutable evidence that a Rindler observer may sublimate (or 
evaporate). The calculation of the emission and absorption amplitudes from the 
Minkowski perspective in Section 3 leads us to conclude that a screen placed in 
the neighborhood of a uniformly accelerated particle could detect some thermal 
radiation made of matter particles. Besides, we have found that when the un-
iformly accelerated particle intersects the screen, the collected radiation does not 
have a thermal distribution. This new result does not have analogous in black 
holes. 

We find in this deviation from thermality a small window for confirmation of 
this process. Also, if confirmation is achieved, it would shed some light on the 
Unruh effect. The fact that we cannot associate a temperature to the radiation in 
this particular case, and that for some values of the frequency ν  the flux of de-
tected particles could be greater than the flux when the radiation is thermal Fig-
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ure 4 and Figure 5, make confirmation plausible. 
We have presented two different ways for computing the amplitude, (26) and 

(27) and, (33) (or (39)). Although they are quantitatively equal, we have to stress 
that they also are qualitatively different. The interpretation is clear, (26), and (27) 
gives us the transition amplitude between two states defined over two spacelike 
surfaces. While (33) (or (39)) gives us the amplitude of detection at some par-
ticle detector, in our case, the screen. Note that the integrals (33) (or (39)) are 
taken over timelike surfaces. 

In this work, for simplicity, we did not consider the backreaction due to sub-
limation. To our purpose, proving that the process involved has a non-vanishing 
amplitude was sufficient. We have implicitly assumed that the accelerated de-
tector is heavy enough. In this way, losing a few electrons does not affect its tra-
jectory. 

The kind of accelerated detector we have presented in this work is that accele-
rated box with particles within it we mentioned in the introduction. The details 
of the confining potential are not relevant in the calculation presented here. 
They would show up only in an overall factor in front of the amplitudes, and for 
simplicity, we have decided to omit it. 

The next step in this project could be to engineer a detector model that takes 
into account the backreaction. This way, we could make more precise statements 
at any stage of the sublimation. Namely, we could track at any time the whole 
process in more realistic systems. In this model, the details of the confining po-
tential would be relevant. 

We want to stress one more time that we have focused on the sublimation 
process for matter particles, but all the formalism presented here applies to elec-
tromagnetic radiation too. Of course, for electromagnetic radiation does not 
make any sense to talk about sublimation. In particular, the results presented in 
Section 3.2 regarding the non-thermal character of the radiation works for (mass-
less scalar fields) electromagnetic fields as well. So instead of designing an expe-
riment to confirm the sublimation of an accelerated object, one could design an 
experiment to confirm the results of Section 3.2 related with the non-thermal 
character for the electromagnetic radiation. 

Although we have presented some evidence that the sublimation of Rindler 
observers is possible, this is a minuscule effect, and like for black hole evapora-
tion, much more study is needed before establishing that it can occur in nature. 
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Appendix A: Bogoliubov Coefficients, Canonical  
Quantization  

In the canonical quantization in Rindler space instead of imposing the boundary 
condition (1), we impose.  

( ) ( ) ( )( )0 1, , , , , , ,R Mx x x xϕ τ ρ ϕ τ ρ τ ρ=  

( ) ( ) ( )( )0 1, , , , , , ,R Mx x x xτ τϕ τ ρ ϕ τ ρ τ ρ∂ = ∂            (51) 

at some initial Rindler time τ . 
In this case we have the equations  

( ) ( ) ( ) ( ) ( )
1

,i i 2 i2
, ,

0

e e 2 d d e , , ,k x
Mk kb b x xν κντ ντ

ν ν

ψ ρ
ν ρ ϕ τ ρ

ρ

∞ ∞
− − ⋅

−
−∞

+ = ∫ ∫†    (52) 

and  

( ) ( )
( ) ( ) ( )

1
2 ,i i 2 i

, ,
0

2
e e i d d e , , .k x

Mk kb b x xν κντ ντ
τν ν

ψ ρν
ρ ϕ τ ρ

ν ρ

∞ ∞
− − ⋅

−
−∞

− = ∂∫ ∫†  (53) 

Solving for ),( kb ν , we get  

( ) ( ) ( ) ( )
1

,i 2 i2
,

0

1 ie 2 1 d d e , , .
2

k x
Mkb x xν κντ

τν

ψ ρ
ν ρ ϕ τ ρ

ν ρ

∞ ∞
⋅

−∞

 = + ∂ 
  ∫ ∫    (54) 

Now we can use the result (18) in Equation (54) to finally obtain (21). We 
stress that the boundary conditions in the canonical quantization are different to 
the ones used in section 2, but certainly they are equivalent. Using (19) and (20), 
(21) can be written as  

( )
( )

( ) ( )( )1 1

1 i
2

†0 11
1, , ,

2 0 102

d1 1 e ,
2

e 1
k p k p k

p ppb a a
p pp

ν
ν

ν
ν

−∞

−
−

π

π ∞

 +
= + −π −

∫    (55) 

where 2 2
0 1p p κ= + , (8). 

Appendix B: Integral Representation of the Hankel  
Functions 

The integral representation of the Hankel functions can be found in [20]. Here 
we present the integral representation of ( ) ( )

1
2 2 2 2H zν ζ
 

− 
 

, in connection with 
the Amplitude calculation and the wave function in the Rindler wedge. 

This function can be represented as  

( ) ( ) ( ) ( )

1
11 2i2 i cosh i sinh2 2 22 1 e d e ,

i
zzH z

z

ν
ν τ ζ τ ντ

ν
ζζ τ
ζ

− ∞
− − −

−∞

π   +
− = −   −  π

∫   (56) 

where , ,zν ζ ∈ , and ( )Im 0z ζ± < . 
The integral in (45) can be rewritten as  

( ) ( ) ( ) ( )2 2
1 0i cosh i sinh i

d e .
k kρ τ ρ τ ντ

τ
∞    − − − − −   

   

−∞
∫                (57) 

Now, the analytical extension of (57) is defined as  
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( )
( ) ( )

( ) ( )
( ) ( )( ) ( )( )

1 i2 21 2 2 22 2 21 02
i 1 02 2

1 0

i e .
k k

H k k
k k

ν
ν

ν ρ
π    +

− −    −   
π          (58) 

The on shell condition ( )( ) ( )( )2 22 2 2
0 1 0k k κ− − =  reduces the integral (57) to  

( )
( ) ( )

( ) ( )
( ) ( )

1 i2 21 2
21 02

i2 2
1 0

i e i ,
k k

H
k k

ν
ν

ν κρ
π  +

−   − 
π                 (59) 

which is the result we have used in (46). 
We can also use the integral representation of the Hankel function to relate 

the one particle wave functions (40) and (41) in Rindler space with a wave pack-
age in Minkowski space. They are related as: for the emission wave function  

( ) ( )0 1
0 1

1 i1 2 ii 0 112
i

0 0 1

d1e K e e ,
2

k x k xk kk
k k k

ν
νντ

ν κρ
∞

− +−

∞

π

−

 +
=  − 

∫          (60) 

for the absorption wave function  

( ) ( )0 1
0 1

1 i1 2 ii 0 112
i

0 0 1

d1e K e e .
2

k x k xk kk
k k k

ν
νντ

ν κρ
−∞− +π

−∞

 +
=  − 

∫          (61) 

Here we have followed three steps. First, we have performed the change of va-
riables  

1 0

1 0

1 Log ,
2

x x
x x

τ
 +

=  
− 

 

( ) ( )2 21 0 ,x xρ = −  

which is the inverse transformation of (2). Second, we have used the relation  

( ) ( ) ( ) ( )i 1 1
i iK i H i ,

2
z zν

ν ν
+π

=                    (62) 

and the integral representation of ( ) ( )1
iH izν , see [20]. Finally, the change of va-

riables  

( )0 cosh ,k tκ=  

( )1 sinh ,k tκ=  

brings the wave functions to the desired form. 
It is worth to emphasize that (60) and (61), are valid only on the overlap be-

tween Rindler and Minkowski space. With this, we can conclude that the Rindler 
one-particle wave function can be seen as a fully localized (inside the Rindler 
wedge) wave package from the Minkowski perspective. 

 

https://doi.org/10.4236/jmp.2020.119086

	Rindler Observer Sublimation
	Abstract
	Keywords
	1. Introduction
	2. Quantization
	3. Rindler Observer Sublimation
	3.1. Amplitudes and Thermal Radiance
	3.2. Non-Thermal Radiance

	4. Conclusions
	Acknowledgements
	Conflicts of Interest
	References
	Appendix A: Bogoliubov Coefficients, Canonical Quantization 
	Appendix B: Integral Representation of the Hankel Functions

