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Abstract 
According to quantum mechanics, the commutation property of the energy 
Hamiltonian with the momentum operator should give the definite values not 
only for energy but also for the momentum quantum levels. A difficulty pro-
vided by the standing-like boundary conditions of the electron gas is that the 
Hamiltonian eigenfunctions are different than eigenfunctions of the momen-
tum operator. In results the electron momenta are obtained from the corres-
pondence rule between the classical and quantum mechanics given by Landau 
and Lifshits. As a consequence the statistics of solutions representing not only 
the energy values but also the electron momenta should be taken into ac-
count. In the Heisenberg picture of quantum mechanics, the momenta are 
easily obtained because the electron oscillators are there directly considered. 
In fact, the Hamiltonian entering the Heisenberg method can be defined in 
two different ways each giving the set of the electron energies known from 
the Schrödinger’s approach. 
 

Keywords 
Fundamentals of the Modern Quantum Theory, Heisenberg Picture, Its  
Momentum Results and the Energy Matrix, Schrödinger Picture and Its 
Energy Results 

 

1. Introduction 

Historically we had a competition of the Schrödinger and Heisenberg formal-
isms in their approach to develop the modern quantum mechanics. Certainly, 
the Schrödinger method [1] [2] [3] [4] occurred to be more practical in calcu-
lating the physical properties of numerous electron systems. But, on the other 
hand, Heisenberg was the first one who presented foundations of the idea of the 
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observables and operators belonging to them [5] [6]. 
Nevertheless, a practical background of the Heisenberg theory remained ra-

ther poor. In fact only the oscillators of different kinds and their properties, es-
pecially those concerning the behaviour of the matrix elements, are dominating 
in the Heisenberg approach. 

Our idea is to compare the Heisenberg and Schrödinger methods in examining a 
very simple system represented by the electrons enclosed in a one-dimensional 
potential box. To the author’s knowledge this comparison seems to have never 
been done before. A wave-mechanical treatment of such a system performed ac-
cording to the Schrödinger method occurred to be very simple. On the other hand, 
the oscillating character and properties of the system remained fully neglected. 

An alternative method, suitable for the oscillatory examination, became the 
Heisenberg theory and an approach to it presented in [7]. The both methods of 
quantum mechanics could be examined for a non-interacting electron gas case. 
Physically they indicate a different behaviour of electrons in each kind of the 
examined theory, as well as in course of their application in statistics. 

We note that the Schrödinger’s approach to the one-dimensional electron gas 
can be done in a unique way. On the other hand, the Heisenberg theory could be 
applied to the same gas in two different ways, each basing on a different Hamilto-
nian formula used for the same gas object. In consequence the statistics leading to 
the states occupation by the electrons in the Schrödinger theory should be also 
slightly changed respectively to the examined Heisenberg’s Hamiltonian case. 

This is so because of the boundary conditions imposed on electrons entering 
the Schrödinger model. In effect the electron wave functions represent the 
standing waves and they are not the eigenfunctions of the momentum operator, 
contrary to situation due to the Bloch’s boundary conditions applied usually to 
solids. In this second case, however, the requirement of a finite and strictly 
one-dimensional gas model cannot be satisfied. 

A difficulty with the boundary conditions entering the Schrödinger method 
can be removed when the correspondence rule due to Landau and Lifshits [8] 
concerning the classical and quantum approaches to the mechanics of electron 
motion is applied. Because the free-electron Hamiltonian commutes with the 
operator of the electron momentum, the stationary states of energy should be 
accompanied by the stationary states of momentum. This is easily obtained on 
a semi-classical way when the Landau-Lifshits rule is assumed to hold. In ef-
fect we should obtain the electron momenta corresponding to the quantum 
energy levels given by the Schrödinger method, on condition the quantum 
number n of energy is large. In fact the electron momenta obtained with the 
aid of the Heisenberg method are found identical with those deduced with the 
aid of the Schrödinger model also for the low quantum numbers n; see Sec. 5. 
This imposes a question of statistics with which both the energy and momenta 
of free-electron particles can be satisfactorily considered. 

In brief, an alternative method to Schrödinger’s—much suitable for the oscil-
latory examination—is that of Heisenberg; see e.g. [7] [9]. 
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2. Schrödinger’s Approach to the Free-Electron Particles   

This approach represents an elementary Schrödinger quantization process and 
its parameters; see e.g. [10]. 

Within a one-dimensional potential box of length L we have the free electrons 
whose energies are defined by the eigenvalues of the Hamiltonian operator:  

2 2 2

2

ˆdˆ ;
2 d 2

x

e e

pH
m x m

= − =
                        (1) 

ˆ xp  is the electron momentum operator, em  is the electron mass. In effect we 
have the eigenequation:  

 ( ) ( )ˆ .n n nH x E xψ ψ=                        (2) 

The wave functions ( )n xψ  satisfy the following boundary conditions at the box 
ends, viz.  

 ( ) ( )0 0.n nx x Lψ ψ= = = =                    (3) 

Suitable ( )n xψ  are easily verified to be  

 ( ) 2 sin ,n
nx x

L L
ψ π =  

 
                     (4) 

the eigenenergies are (see e.g. [10]):  

 
2 2

2 ;
8n

e

n hE
m L

=                          (5) 

Because of (3) the wave functions (4) are called the standing-like wave functions 
in the potential box.  

3. Oscillating Character of Electrons Described by nψ  and  

nE   

Free electrons should satisfy the equation  

 2

2
e

n n
mE v=                           (6) 

where the absolute value of the electron velocity nv  is  

 
1 2 1 22 2

2 2
2 .

4 2
n

n
e e e

E n h nhv
m m L m L

   
= = =   
   

               (7) 

This value of the velocity is expected to be dominating in course of the electron 
oscillation within the interval  

0 .x L< <                            (8) 

Evidently the electron motion is going from 0x =  to x L=  and vice versa. 
The time period nT  of the oscillation satisfies the formula  

 2 ,n
n

L v
T

=                               (9) 

so  
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22 2 42 .e e

n
n

L m L m LT L
v nh nh

= = × =                    (10) 

The motion frequency ν  due to nT  is  

 2
1 .

4n
n e

nh
T m L

ν = =                          (11) 

In effect the energy provided by nν  becomes  

 
2

24
osc
n n n

e

nhE h
m L

ν ω= = =                      (12) 

so  

 
2

2 2
1

4 2n
e e

nh nh
m L m L

ω π
= =



                     (13) 

and its reversal is  

 
21 2 e

n

m L
nhω

=
π

                         (14) 

Now our idea is to match results of Sec. 2 with those of Sec. 3. 
Before we do such comparison let us note that parameters Tn and vn satisfy the 

original Heisenberg relation [5]: 

( ) 2
e

d dnh h m x dt
dn dn

= = ∫ 



                         (14a) 

For, from (10) and because of nx v=  given in (9), we obtain for (14a): 

( )
22 2 4

e e n n e e
n e

d d d L d nhm x dt m v T m m h
dn dn dn T dn m

   
= = = =   

   
∫ 



      (14b) 

which is identical to the result in [8] and (14a). 
In the same way we have 

( )2
2

2

2
2 4 .

4e e n e e
n e

L nhpdq m xdx m v L m m L nh
T m L

= = = = =∫ ∫ 

 

      (14c) 

If the result in (14c) is considered as the action J, it becomes evident that the 
derivative of energy in (5) done with respect to J provides us with the electron 
oscillation frequency (11). 

4. Heisenberg Approach Applied to the Electron Oscillators  

In the first step of the Heisenberg approach to the electron gas enclosed in a po-
tential box we consider the Hamiltonian of an oscillator moving in direction of 
the axis x [7]:  

 

01 10
2 2

01 10 12 212 2

12 21 23 32

0 0
0 0ˆˆ
0 02 2

x e
e

e

x x
x x x xp mH x m

x x x xm
ω ω

+
= + =

+







   

 (15) 

where  

 01 10 ,
2 e

x x
m ω

=
                           (16) 
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 12 21 2 ,
2 e

x x
m ω

=
                       (16a) 

 23 32 3 ,
2 e

x x
m ω

=
                      (16b) 

 34 43 4 ,
2 e

x x
m ω

=
                      (16c) 

  

The mnx  are the matrix elements of x calculated between the oscillator states m 
and n, the frequencies ω  are those calculated in (13) taken for 1n = . 

When the results in the (16) formulae are substituted to (15) they give the fol-
lowing diagonal elements for the matrix presented in (15):  

 
2

01 10 2 ,
2
Lx x =
π

                        (17) 

 ( )
2 2

01 10 12 21 2 2
31 2 ,

2 2
L Lx x x x+ = + =
π π

             (17a) 

 ( )
2 2

12 21 23 32 2 2
52 3 ,

2 2
L Lx x x x+ = + =
π π

             (17b) 

 ( )
2 2

23 32 34 43 2 2
73 4 ,

2 2
L Lx x x x+ = + =
π π

             (17c) 

  

which give the following result for (15):  

 

2

2

2

2

2 2

2

2

2

0 0 0
2

30 0 0
2

ˆ 50 0 0
2

70 0 0
2

e

L

L

H m L

L

ω

π

π
=

π

π









    

           (18) 

Because of 1ω ω=  calculated in (13), the diagonal matrix elements in (18) give 
the oscillator energies  

 ( ) ( ) ( )
22 2 2

2
2 2 2 22 1 2 1 2 1

2 2 2 8
osc
m e e

e e

L h L hE m m m m m
m L m L

ω
 π

= + = + = + π π 
 (19) 

where  
 0,1,2,3,m =                        (19a) 

Let us note that the oscillator frequency ω  in [7] is considered as a known 
parameter. In our calculations this frequency is deduced from the electron mo-
tion in the potential box; see Sec. 3. 

This feature enables us to present the matrix elements entering the oscillator 
energy in terms of the matrix elements dependent on the properties characteris 
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tic for the motion in the potential box. Typically for the Heisenberg’s treatment 
of an oscillator we choose only a single oscillation frequency ω  for calculating 
all quantum states. In the Schrödinger picture this frequency is associated with 
the lowest quantum state 1n = ; see (13). 

A passage to the particle energy in the box is very simple. We note that the sums 
entering the partial traces of the diagonal matrix elements given in (19), viz.  

 ( )
1

0
2 1 ,

m n

m
m

= −

=

+∑                        (20) 

give respectively  

 

2 2

2 2

2 2

2 2

2 2

1 for 1,
1 3 2 for 2,
1 3 5 3 for 3,
1 3 5 7 4 for 4,
1 3 5 7 9 5 for 5,

n n
n n
n n
n n
n n

= =

= + = =

= + + = =

= + + + = =

= + + + + = =


                (21) 

In effect the (21)—combined with the factor entering the last term in 
(19)—provide us with the Schrödinger energy results presented in (5). 

5. An alternative Heisenberg Treatment of Free Electrons in  
the Potential Box  

In this case we apply the Hamiltonian different than in the oscillator case ex-
amined in Sec. 4. This kind of treatment takes into account only the kinetic part of 
the Hamiltonian and neglects the whole of the x-dependent (potential) part in the 
first row of (15):  

 
2ˆˆ .

2
x

e

pH
m

=                           (22) 

Certainly the constant parameters become different than those applied in the 
Hamiltonian case of Sec. 4. 

The first of the diagonal terms of 2
xp  belonging to the energy matrix 

representing the Hamiltonian in (22) is:  

 
2

2 2 2 2
01 10 01 10 2 22 2 2 .

2 2 2 2 4e e e e
e e

h h hp p x x m m m m
m m L L

ω ω ω
ω

π
= = = = =

π
   (23) 

In fact  

 01 1 2 2e e
e

h hp m v m
m L L

= = =                     (24) 

if we note that 1v  entering (24) and  

 
2

1 01 10 2
1

2 8e e

hE p p
m m L

= =                      (25) 

calculated from (23) are equal respectively to 1v  and 1E  obtained in the 
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Schrödinger theory; see Sec. 3. 
The next diagonal element of the matrix 2ˆ xp  is  

 

2 2 2 2
02 20 12 21

2

2 2

22 2
2 2

33 2 3 .
2 42

e e
e e

e e
e

p p x x m m
m m

h h hm m
m L L

ω ω
ω ω

ω

 
= = + 

 
π

= = =
π

 



           (26) 

When divided by 2 em  the expression (26) becomes  

 
2

02 20 2
1 3 .

2 8e e

hp p
m m L

=                        (27) 

This result added to that obtained in (25) gives  

 
2 2 2

01 10 02 20 2 2
1 1 4 2

2 2 8 8e e e e

h hp p p p
m m m L m L

+ = =               (28) 

which is precisely the next Schrödinger value for the free-electron energy, i.e. it 
is corresponding to the quantum level 2n = . 

If we take the next diagonal term for the matrix of 2ˆ xp  which is  

 
( )2

03 30

2

2 2

3 32 1 2
2 2

5 52 5 ,
2 2 2 4

e e
e e

e e
e

p p m m
m m

h h hm m
m L L

ω ω
ω ω

ω

   = + = +   
  

π
= = =

π

 





         (29) 

it gives, when multiplied by 1
2 em

, the result  

 
2

03 30 2
1 5 .

2 8e e

hp p
m m L

=                       (30) 

The sum of terms (25), (27) and (30) becomes  

 ( )
2 2

2
01 10 02 20 03 30 2 2

1 1 3 5 3
2 8 8e e e

hp p p p p p h
m m L m L

+ +
+ + = =       (31) 

which is the Schrödinger energy of a free electron on the level 3n = . 
The procedure can be readily extended to an arbitrary quantum level n. 

6. Some Special Statistical Behaviour of the Electron Energy  
Quanta Present in a One-Dimensional Potential Box  

Till the present point of our considerations we neglected the properties of the 
electron statistics applied to the electron gas. In fact the problem of the electron 
spin, and the Pauli exclusion principle connected with it, were not developed 
enough at the time of an early competition of the Heisenberg and Schrödinger 
theories. In principle both the boson and fermion statistics seem to be here ap-
plicable, first because of the electron oscillation waves considered in the Heisen-
berg picture, next because of the double spin-dependent occupation of the ener-
gy levels connected with the Schrödinger electron gas state. The fermion-like 
behaviour of electrons seems however to predominate and our task is to make 
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only a supplementary insight into the Fermi statistical distribution considered 
before. 

Our point concerns the question whether the highest occupied Fermi level 

maxn  in the one-dimensional gas should be considered as identical with the 
Fermi energy, or it does represent a distinct energy value. By assuming the 
second point of view, the Fermi energy—in accordance with former investiga-
tions [11] [12]—should be considered as an inflexion point on the Fermi distri-
bution function ( )F E  plotted as a function of the electron energy E. 

The function ( )F E —as it is well known—depends also on the absolute 
temperature parameter T:  

 ( ) 1 .
e 1E kTF E −=

+
                        (32) 

Let us assume E to be an abbreviation of a small value of the difference be-
tween the Fermi energy FE  and the electron energy on the highest occupied 
level maxn  in the gas which is  

 ( )
2 2

max
max 28 e

h nE n
m L

=                         (33) 

so  

 ( ) ( ) ( ) ( )1 1 1
max 0.FE E E E n= ∆ = − >                   (34) 

The superscript (1) indicates that—for simplicity—only the gas having a single 
electron on each of its energy levels is considered. In principle we assume that E 
in (34) is a small number. 

The first derivative of ( )F E  in (32) calculated with respect to the energy E 
gives  

 
( ) ( )2 2

d 1 1 e 1e ,
d e 1 1

E kT
E kT

E kT E kT

F
E kT kTe

−
−

− −

−  = − = 
 + +

         (35) 

whereas the second derivative of ( )F E  is represented by the derivative of the 
result obtained in (35):  

 

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

2 2

2 2 3 22

2 3

2 3

d 1 d e 1 2e e
d d e 1 e 1 e 1

1 1 2e e e 1
e 1

1 e 2 e 1 .
e 1

E kT E kT E kT

E kT E kT E kT

E kT E kT E kT

E kT

E kT
E kT

E kT

F
E kT E kT

kT

kT

− − −

− − −

− − −

−

−
−

−

   
   = = −
   + + +   

 = − + +

 = − − 
+

 (36) 

The E in the inflexion point should make (36) equal to zero. To attain that it is 
enough to require the square-bracket to be vanishing  

 e 1 0E kT− − =                          (37) 

which for small E kT  gives the equation  
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21 11 1 1 0.

2! 2!
E E E E
kT kT kT kT

   − + − ≅ − =   
   

             (38) 

The last equation is satisfied when  

 ( )1 2! ,E E kT= ∆ =                         (39) 

so in this case [see (32)]  

 ( )( )1

2

12 1 1
e

F E E kT= ∆ = ≅
+

                   (40) 

is obtained at the inflexion point. 
In the next step we consider a double occupation of the energy levels in the 

gas by the electrons having an opposite spin. By assuming that  

 ( ) ( )2 12F FE E=                             (41) 

and putting for E in (32) the expression  

 ( ) ( )2 12 ,E E E= ∆ = ∆                         (42) 

we obtain the energy E twice as large as ( )1E E= ∆ . 
A substitution of ( )12E E= ∆  instead of ( )1E E= ∆  into Equation (38) gives:  

 
( ) ( )1 11 2 21 0

2!
E E

kT kT
 ∆ ∆
− =  

 
                    (43) 

so  

 ( ) ( )2 12 2 .E E kT∆ = ∆ =                      (44) 

Therefore the result (44) obtained for a double occupation of the quantum states 
implies a reduction of ( )1E∆  defined in (39) to a single kT . 

Both results for ( )1E∆  and ( )2E∆  vanish at 0T =  giving respectively  

 ( ) ( )1
maxFE E n=                          (45) 

and  

 ( ) ( )2
max2 .FE E n=                        (45a) 

7. Possible Duality of Statistics Applied to the Electron  
Quantum Levels  

A duality of the boson and fermion statistics which can be applied to the elec-
tron levels can be detected by examining the energy of the level ensembles ob-
tained in two different ways. For the electron-gas case a better insight seems to 
be provided by the Schrödinger’s method because of its simplicity. 

The eigenvalues of the free-electron Hamiltonian considered by Schrödinger 
(see Sec. 2) are:  

 
2 2

28n
e

n hE
m L

=                            (46) 
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where  

 1,2,3,n =                            (46a) 

giving the results identical to those obtained in (5). These results can be suc-
cessfully considered with aid of the Fermi-Dirac statistics. 

But another approach than that in (46) and (46a) can be obtained for the elec-
trons in a one-dimensional box when instead of the stationary states of the 
energy Hamiltonian in (1) a spectrum of energies due to the electron oscillations 
within the potential box is considered. 

Because of a free-electron character of the particles we obtain from (11) and 
(12):  

 
2

osc
2 .

4n
e

nhE
m L

=                           (47) 

Clasically the electron having the velocity nv  undergoes the way 2L along the 
box in course of the time period nT ; see (9) and (10). 

Evidently the energy in (47) is by a factor of  

 2n                               (48) 

smaller than the energy obtained in (5) and (46). This means that 2n  oscilla-
tors are required to provide the energy equal to a single eigenenergy state labeled 
by a given n indicating a large degeneracy of the oscillator energies necessary for 
any large n. 

In effect the energy of a one-dimensional electron gas can be considered also 
as a superposition of a large number of the boson energy quanta due solely to the 
electron oscillations. 

8. Summary  

The paper compares two approaches to the energy levels of a free-electron 
one-dimensional gas done respectively from the point of view of the Heisenberg 
and Schrödinger quantum theory. This comparison seems to be absent in the li-
terature. 

As a starting point we take into account the Schrödinger wave-mechanical cal-
culation which is very simple. In the next step the electrons are considered as os-
cillators and the Heisenberg matrices are applied. In fact two different kinds of the 
Heisenberg’s Hamiltonian can be examined for free electrons on condition the 
constant parameters entering the matrices are suitably modified. 

A short calculation concerning the position of the Fermi level in the gas as a 
function of the absolute temperature has been added. It should be noted that the 
statistics of quantum energy levels presented in both Heisenberg and Schrödin-
ger theories can be different from that valid for the fermions alone. 
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