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Abstract 
A magneto-electric field appearing in a laboratory due to moving charges has 
unusual properties. In particular, such a field of kinematical origin does not 
obey the wave equation with a non-relativistic velocity instead of light speed; 
so, its movement resembles that of a rigid body. In this paper the field of a 
uniformly charged sphere moving at constant velocity is considered. Relativ-
istic axiom, implicitly used in the derivation of formulas describing a kine-
matic deformation for the proper spherical field from the point of view of a 
fixed observer, is revealed. A discrepancy was found between the generally 
accepted idea of the configuration of a deformed field and its real geometry. It 
is shown that the correct interpretation of known formulas leads to a logical 
contradiction, which cannot be eliminated within the framework of the the-
ory of relativity. A scheme of a decisive experiment is proposed. 
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1. Introduction 

The Coulomb field of a stationary point charge, which has the simplest spherical 
symmetry with a strength decreasing inversely proportional to the square of the 
distance from the source, undergoes a very exotic deformation, if a charge (or an 
observer) is forced to enter a state of uniform rectilinear motion. It was first 
pointed out by Oliver Heaviside [1]. 

The chronological continuity between the relativistic concept of electromag-
netism and Maxwell’s theory is well known. It was clearly manifested in the 
study of the motion of a point charge, whose field, from the point of view of a 
stationary observer in the laboratory, loses its Coulomb configuration. In this 
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case, the vector field of electric strength E  satisfies the wave equation 
2

2
2 2

1
c t

∂
− =

∂
EE 0∇ . 

As a parameter, it includes the speed of light c. The accompanying mag-
neto-kinematic field of vectors H  is subject to the same equation 

2
2

2 2

1
c t

∂
− =

∂
HH 0∇ . 

Consequently, the displacement of a field in the laboratory space with a veloc-
ity v  has a non-wave nature; rather, it is akin to the motion of a rigid body for 
the non-relativistic case [2] and for the relativistic one [3] as well.  

The following demonstrates the fact that in deriving formulas describing the 
kinematic deformation of a field for a stationary observer, a special relativistic 
axiom is implicitly applied. At the same time, a discrepancy between the gener-
ally accepted idea of the configuration of a deformed field with respect to its real 
geometry is revealed. The field of a uniformly charged sphere moving at a con-
stant speed is considered. It is shown that the correct interpretation of known 
formulae leads to a logical contradiction, which cannot be eliminated within the 
framework of the theory of relativity. A scheme of the experiment is proposed 
which is to confirm or refute the generally accepted formula for a deformed 
electrostatic field of a charge moving at a constant velocity. 

2. Relativistic Derivation of the Expression for the Field of a  
Moving Charge, Based on a Hidden Axiom 

Recall how the expressions for the fields of a moving point charge are derived. 
Using the four-dimensional formalism of the special theory of relativity (STR), 
the authors of the book “Field Theory” [4] come to expressions of the scalar and 
vector potentials, derived by Lienard and Wiechert long before the birth of the 
STR. Using then Maxwell’s electromagnetic theory, in the end, a general formula 
is obtained for the electric and magnetic field vectors of a single point charge 
making a given motion along a path ( )0 t=r r  (Figure 1). 

“According to the formulas for retarded potentials, the field at the point of 
observation ( ), ,P x y z  at time t is determined by the state of motion of the 
charge at the earlier time t′ , for which the time of propagation of the light sig-
nal from the point ( )e t′r , where the charge was located, to the field point P just  
 

 
Figure 1. A point charge moving along a given path. 
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coincides with the difference t t′− . Let ( ) ( )et t= −R r r  be the radius vector 
from the charge e to the point P; like ( )e tr  it is a given function of the time. 
Then the time t′  is determined by the equation 

( )t R t
t

c
′ ′+

= .                           (*) 

For each value of t this equation has just one root t′  ([4], p. 212). This is how 
§63 “Lienard-Wiechert potentials” begins in the book by Landau and Lifshitz. 

“Passing now again to three-dimensional notation, we obtain the following 
expressions for the field potentials of an arbitrarily moving point charge: 

 ,e e

R c R
c c

ϕ = =
⋅ ⋅   − −   

   

vA
v R v R

,                 (**) 

where R  is the radius vector, taken from the point where the charge is located 
to the point of observation P, and all the quantities on the right sides of the 
equations must be evaluated at the time t′  determined from the previous equa-
tion. The potentials of the field, in the form (**), are called the Lienard-Wiechert 
potentials” ([4], p. 213). 

Let us turn to the case of uniform and rectilinear motion of a point charge 
along the trajectory ( )0 t=r r  with a constant velocity v . We introduce the 
notation ′R  and R  for the vectors ( )t′R  and ( )tR , respectively (Figure 
1). Maxwell formulas are applied to obtain the strengths of the electric and 
magnetic fields: 

1  grad , rot
c t

ϕ∂
=− − =

∂
AE H A ,                   (1) 

which yields the expressions 

[ ]
2 2

3

1 1;v ce R
c R

R
c

−  ′ ′ ′= − =  ′′   ′ − 
 

vE R H R E
R v

.            (2) 

Here, the symbol [ ]..  denotes vector product. 
“Indeed, at constant speed, the difference  

( )R t t
c

′ ′ ′ ′− = − −
vR R v                      (***) 

there is a vector R  from charge to observation point at the very moment of 
observation. It is also easy to verify by checking directly that 

[ ]
2

22
2 2

1 1 1 sin t
vR R R

c c c
θ′ ′− = − = −R v vR ,          (****) 

where tθ  is the angle between R  and v ” ([4], p. 215). 
Now you can substitute the right side of the Formula (***) in the numerator, 

and the right side of the Formula (****) in the denominator of the first term in 
the expression (2): 
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( )
( )
( )( )

2 2

3 23 2 2 2

1

1 sin

v c
e

R v c
θ

θ

−
=

−

R
E . 

We have arrived at a formula that describes the distribution in space of the elec-
tric intensity in a field of a point charge, which moves relative to the observer 
along a straight line at a constant speed. The authors of the book [4] use the 
CGSE system of units, while the entry in the international system of units (SI) 
is 

( )
( )( )

2 2

3 23 2 2 2
0

1

4 1 sin

q v c

r v cε θ

−
=

π −
E r ,                 (3) 

where the designation of the individual charge of an electron is replaced by the 
universal letter q. 

As you can see, in the SRT there is complete continuity in what is concerning 
the terminology of retarded potentials. This way of reasoning leaves behind the 
scene an arbitrary assumption of an incessant outflow of a field from its 
source, the charge. In fact, since the potential propagates from the field source 
at the speed of light “c” regardless of the kind of movement the charge per-
forms, this outflow also takes place when the charge moves with a constant ve-
locity v . And since the speed of light does not depend on v , the outflow of 
potential from the charge remains unchanged when the speed v  tends to zero. 
Therefore, we have to agree that an unceasing extrovert flow from a charged 
source exists in any electrostatic field. This statement should be explicitly in-
troduced into the axiomatic basis, when the SRT is transferred to the realm of 
electromagnetism. 

3. Relativistic Paradox 

The expression (3) can be obtained within the framework of a pure STR, without 
resorting to the Lienard-Wiechert potentials. Section 20 of the textbook [5], 
called “Moving charge field”, Part II, entitled “Theory of Relativity”, deals with 
the Coulomb field of a point charge deformed to a configuration (3) for an ob-
server moving at a constant velocity −v  along with respect to charge. Of 
course, with the same success, we can speak of the charge moving at a velocity 
v  relative to the observer. “In the reference frame K, moving along with the 
charge, there is no magnetic field, and the electric field potential is expressed by 
the formula e rϕ′ ′= .” ([5], p. 254). The following conclusion is based on the 
relativistic formula for the transformation of the scalar potential: 

2

21

x
v A
c
v
c

ϕ
ϕ

′ ′+
=

−

. 

On page 256 we read: “The scalar potential ϕ  has a constant value on the 
surface of the ellipsoid 

https://doi.org/10.4236/jmp.2020.111009


V. A. Leus 
 

 

DOI: 10.4236/jmp.2020.111009 149 Journal of Modern Physics 
 

( ) ( )
2

2 2 2
21 vx vt y z const

c
 

− + − + = 
 

. 

This ellipsoid is obtained from the sphere by compressing it in the direction of 

the x-axis into 
2

21: 1 v
c

−  times”. We apply the formalism used there to the  

field of the conducting sphere of unit radius, over which the charge q is uni-
formly distributed. 

This sphere has a centre at the origin ( ), ,x y z′ ′ ′  of a primed IRF' (Inertial 
Reference Frame), moving in a straight line with a constant speed ( ),0,0v=v  
relative to the non-primed (laboratory) IRF with coordinate axes ( )0 ,0 ,0x y z  
parallel to corresponding axes of the primed coordinate system. For the origin of 
time, the moment is taken when the origins of spatial coordinate systems coin-
cide; therefore, the position of the centre of the sphere in the non-primed IRF is 
the point with coordinates , 0, 0x vt y z= = = . The scalar potential outside the 
sphere in its own IRF' coincides with the Coulomb potential (in this section, 
formulas are written in the Gaussian system of units)  

q
r

ϕ′ =
′

. 

On the sphere itself and inside it, it has a constant value 0 1qϕ′ = . According 
to the Lorentz transformations for electromagnetic fields, the scalar potential in 
a non-primed system is  

q
r

ϕ γϕ γ′= =
′

,                          (4) 

since the vector potential here is zero. The Lorentz transformations for coordi-
nates give the expression of the primed radius-vector from the point of view of 
the non-primed IRF in the form ( )22 2 2r x vt y zγ′ = − + + . Substitute this ex-
pression in (4): 

( ) ( ) ( )
22 2 2 2 2 2

2
1

q q

x vt y z x vt y z
ϕ γ

γ
γ

= =
− + + − + +

. 

Hence, the surface of level a constϕ = =  is described by the equation  

( ) ( )
2

2 2 2
2 2

1 qx vt y z
aγ

− + + = .                     (5) 

Here it is logical to investigate the question on the deformation of the charge 
carrier—the conducting sphere of a unit radius—upon transition to a non-primed 
IRF. From the point of view of the non-primed IRF, the carrier of the moving 
charge loses its spherical shape. Consider the section of the sphere by the plane 

0z =  (Figure 2). Let at the moment t′  of the own time in the primed IRF' the 
x′ -coordinates at the ends of the chord, parallel to the x-axis, be measured. We 
have two events ( )1, ,x y t′ ′ ′  and ( )2 , ,x y t′ ′ ′ , where y′  is the ordinate of the 
chord. We translate them by the transformations of Lorentz into a non-primed 
IRF: 
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Figure 2. Deformation of the surface of a charged sphere. 

 

( )1 1 1 1 12, , ;vx x vt y y t t x
c

γ γ  ′ ′ ′ ′ ′= + = = + 
 

 

( )2 2 2 2 22, , .vx x vt y y t t x
c

γ γ  ′ ′ ′ ′ ′= + = = + 
 

 

For the time interval ( )2 1 2 1 2 12 2 2

v v vt t x x x x
c c c

γ γ ′ ′ ′ ′− = − = − 
 

 the second end 

of the chord managed to drive off at a speed v to a distance ( )
2

2 12

v x x
c

γ ′ ′− , 

which should be subtracted from the abscissa difference 2 1x x−  to get chord 
length in non-primed IRF:  

( ) ( )

( ) ( )

( )

2

2 1 2 12

2

2 1 2 12

2

2 121

vl x x x x
c

vx x x x
c

v lx x
c

γ

γ γ

γ
γ

 
 


′ ′= − − −

′ ′ ′ ′= − − −

′
′ ′− − =


=

 

By virtue of the arbitrariness in the choice of the chord and in the choice of 
the section by the plane passing through the abscissa axis, we conclude that the 
entire sphere undergoes longitudinal compression by γ  times and turns into 
an ellipsoid of rotation. The half-axis 0A turns out to be γ  times shorter than 
the radius of the sphere, that is, its length is 1 γ . Just the same deformation is 
mentioned in the cited above excerpt from the textbook [5] with respect to the 
equipotential surface (a surface of the potential equivalency).  

On the unit sphere itself, the potential is 0 1qϕ′ = , and this spherical surface 
of level 1a q=  becomes, according to [5], an ellipsoid with the equation  

( ) ( )2 2 2
2

1 1x vt y z
γ

− + + =                    (6) 

in terms of the non-primed IRF. If you believe the textbook’s statement [5] that 
“This ellipsoid is obtained from a sphere by compressing it along the x-axis by  

2

21: 1 v
c

− : times”, then there is nothing better to desire. Indeed, the quantity 
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2

21: 1 v times
c

− =  and, as we found out, namely by γ times that the sphere—a  

carrier of charge is compressed. Thus, the potential of a charged sphere promises 
to be an invariant of Lorentz transformations. But, alas, it appears to be too good 
to be true. The ideal is “only a dream” for us, and the desired harmony does not 
withstand the “checking up with algebra”! 

To put it mildly, strange misunderstandings are associated with the field con-
figuration of a uniformly moving charge. For example, on the behaviour of vec-
tors E we read in ([4], p. 126): “It can be said visually about the electric field of a 
moving charge as though it is ‘compressed’ in the direction of motion”. In fact, 
the deformation also contains transverse dilatation, and the lines of the constant 
module E const=  have a rather complicated guitar-like shape (see [6]).  

As for the picture of the equipotential surfaces, we are faced with fata mor-
gana, which for decades has been unconditionally accepted by all readers for an 
objective reality (“When there is no real life, they live in mirages. Still, better 
than nothing.” A.P. Chekhov). The fact is that the notorious equation in the 
quotation from ([5], p. 256) pertains to the ellipsoid, which is obtained from the 
sphere when it is stretched in directions orthogonal to the x-axis by γ  times. 
The elimination of the traditional ghost has fatal consequences for the relativistic 
interpretation of the field of a uniformly moving charge. When transforming to 
IRF, the equipotential surface of the charged sphere is converted not into a 
sphere compressed to an ellipsoid, but into an ellipsoid stretched across the ve-
locity. Whereas into the ellipsoid—the charge carrier—the sphere of radius 

1r′ =  is converted so that this ellipsoid proves to be situated in the internal cav-
ity of the equipotential ellipsoid.  

In Figure 3 the section by the plane 0z =  is present where two ellipsoids are 
shown. One is being a result of the longitudinal compression of the “unit” sphere 
by a factor of γ , and another is being a result of the transverse dilatation of this 
sphere by a factor of γ . The first of them is a charge carrier such as it exists in 
the IRF where it is described by the equation 

( )22 2 2 1.x vt y zγ − + + =  

 

 
Figure 3. Separation of equipotential surface from charged ellipsoid. 
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The second is the equipotential surface 0 1qϕ =  of the electrostatic field, 
objectively existing in the same IRF, with Equation (6). The second ellipsoid en-
closes the first, and between them is a layer of variable thickness. In the longitu-
dinal direction, the layer thickness is ( )1γ γ− , and in the transverse direction, 
the thickness is ( )1γ − , so that with increasing speed v , the longitudinal 
thickness approaches unity, while the transverse one increases without limit. 

What lies within this layer? In accordance with the relativistic tradition, an el-
lipsoidal charge carrier retains a spherical potential, and in the layer under con-
sideration everywhere we have 

1 grad ,
c t

ϕ∂
= − − =

∂
AE 0  

because the scalar potential 1q constϕ = =  in a finite region, on the boundary 
of which it is constant, and the vector potential ϕ=A v , as a result, is also con-
stant in this region and the partial derivative with respect to time is zero. It turns 
out that the charged ellipsoidal shell is paradoxically immersed in a volume free of 
the electrostatic field, and only from the outer boundary of this volume does the 
space, penetrated by the field (3) with equipotential surfaces of type (5), is starting.  

The Ostrogradsky-Gauss theorem does not work in the resulting bizarre elec-
trostatic field. This becomes apparent when the test closed surface surrounding 
the charge carrier is selected entirely inside the neutral layer. The flux of vector 
E  through this surface is zero, while the integral charge inside is non-zero. 

We will try to get away from this electric monster by allowing the scalar po-
tential 1ϕ  of the ellipsoidal charge carrier to be different from 0ϕ : 1 1qϕ <  or 

1 1qϕ > . In this case, we are faced with another paradox. Suppose there are two 
identical and equally charged conductive spheres uniformly moving in the labo-
ratory IRF to meet one another. Own IRF' of the first sphere moves with velocity 
v  and own IRF'' of the second sphere moves with velocity ( −v ), relative to the 
non-primed IRF. At the zero moment of time ( 0t t t′ ′′= = = ), when the origins 
of all three IRFs coincide, the charge carriers touch each other by the top and 
bottom limit points respectively. From the point of view of the laboratory IRF, 
both ellipsoids have the same values of scalar potentials 1 2 1qϕ ϕ= ≠  and the 
voltage between them is zero. But in the IRF' the picture is devoid of such sym-
metry, because the first sphere has the potential 1 1qϕ′ = , whereas the second 
sphere, compressed into an ellipsoid, has the potential 2 1qϕ′ ≠ . Between them 
there is a voltage 2 1 0U ϕ ϕ′ ′= − ≠ , causing a discharge. An electrical discharge 
occurs also in IRF'', but only with oppositely directed current. The pulsed cur-
rent arising from the discharge becomes a source of electromagnetic wave, and 
its objective existence does not depend on the inertial reference frame. Conse-
quently, the EM-wave should also appear in the laboratory IRF, where there is 
no current at all, that is, radiation arises from literally nothing! A sceptic who 
doubts the “promptness” of conduction electrons can be calmed by a metal tape 
longitudinally stretched in IRF , which will sufficiently prolong the contact 
time of charged spheres (ellipsoids). 
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4. The Possibility of Experimental Verification 

So, contrary to the generally accepted opinion of the complete compatibility of the 
SRT with Maxwellian electrodynamics, the field of a uniformly moving charge 
throws to physicists in general, and to experimenters especially, a serious chal-
lenge. Indeed, since the time of Heaviside’s guess, that is, for more than 130 years, 
the “relativistic” configuration of such a field has not been confirmed by experi-
ence. In [6], the idea of a decisive experiment was proposed, promising to establish 
whether the prevailing view really corresponds to the natural state of affairs.  

Suppose there is a high-ampere electron beam supported in a rectilinear vac-
uum tube with a length of 2s (x-axis in Figure 4). At the point (0, h), the beam 
element dx generates an electric field with intensity d ′E , and a beam element 
symmetric to it generates a field with intensity d ′′E . The sum d d d′ ′′+ =E E E  
is directed along the y axis and has an absolute value 

( )
( )( )

( )
( )

2 2

3 3
2 2 2 20 2 2 22 2

0

1 sin 1 d2 dd
4

1 sin 2 1

xxE
x h x h

β θ σ βσ
ε

β θ ε β

− −
= =

π
 + − π + − 

 

according to Formula (3). Here the letter σ  denotes the linear charge density, 
2 2sin h x hθ = + , and v cβ = . The total electrical intensity is obtained by 

integrating over the length of the beam: 

( )
( ) ( )

2

3 10 0
0 02 2 2 2 2 22 2

1 dd
2 2

1 1

s s x sE E
x h h s h

σ β σ
ε ε

β β

−
= = = ⋅

π π
   + − + −   

∫ ∫ . 

Expressing the charge density through the electron velocity in the beam and 
the current strength in it I vσ= , we get 

( )
( ) ( )2 2 2 2 2 2

0 0

, , ,
2 1 2 1

Is IsE h s I
vh s h ch s h

β
ε β ε β β

= =
π + − π + −

.   (7) 

If the electric field of a moving point charge remains Coulomb at any speed, 
then the dependence of E on β  will be different: 

( )0 2 2
02

IsE
ch s h

β
ε β

=
π +

.                     (8) 

 

 
Figure 4. Experiment in a rectilinear vacuum tube. 
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The well-known experiment on the detection of the electric field around a su-
perconducting ring with current [7] is extremely difficult to perform, since it is 
necessary to detect the effect of the second order of smallness with respect to the 
ratio v c β= . The difference between the electro-kinematic field created by the 
moving conduction electrons and the electrostatic field of the stationary ions of 
the conductor crystal lattice leads to it. The letter v refers here to the drift veloc-
ity of conduction electrons, which no snail would envy. Moreover, as was shown 
later, the result of the experiment cannot be interpreted unambiguously: “the 
experiment performed by Edwards et al. is not a test of Maxwell’s equations in 
the most general case, but a test of these equations in the particular case of the 
superconducting state” [8]. 

The experimental scheme proposed here is completely free from the main ob-
stacle facing the authors of the work [7]. At a current of one ampere at a distance 
of half a meter from the middle of the beam one meter in length, the electric in-
tensities calculated by Formulas (7) and (8), respectively, are equal to 287 V/m 
and 281 V/m with 0.3β = . When 0.99β = , the values of 119 V/m and 85 
V/m are obtained. The point is now small: prepare the equipment and take 
measurements. The equipment required for the experiment is rather modest, 
especially in comparison with the giant modern particle accelerators. The elec-
tron, accelerated to just an energy of 10 Mev, has a speed close to 0.99c, so the 
outcome would be worth investment. 

5. Conclusion 

In the paper [9], an example of an irreconcilable contradiction between the spe-
cial theory of relativity on the one hand and the general theory of relativity on 
the other, arising in a mechanical system of a cyclic type, is sorted out. The sub-
ject of the present work is a strange situation emerged in the doctrine of elec-
tromagnetism based on the relativistic approach. First, it is the presence of an 
implicit axiom about the constant expiration of the potential with the speed of 
light in an electrostatic field from its source—a point charge. For an accelerated 
charge, the role of carriers can be assigned to the emitted photons. However, in 
the case of a charge moving without acceleration, it remains an unsolved mys-
tery: what kind of “superfine matter” constantly transports the potential in an 
electrostatic field? Secondly, the type of deformation of the Coulomb field of a 
point charge is observed in uniform motion with a constant velocity const=v . 
The correct interpretation of the geometry arising in this way leads to the un-
avoidable inconsistency in the picture of the equipotential surfaces in the electro-
static field of the charged sphere. Third, it is the nature of the movement of static 
fields when moving their carriers. These psychological invisibilities, surprisingly 
escaping the attention of physicists for a whole century, caused a distorted view of 
physical reality, in which there is no room for electro-magneto-kinematics. The 
absence to this day of experimental confirmation of the deformed configuration 
of the field of a point charge, moving with a constant velocity v , presents a se-
rious challenge for experimenters. 

https://doi.org/10.4236/jmp.2020.111009


V. A. Leus 
 

 

DOI: 10.4236/jmp.2020.111009 155 Journal of Modern Physics 
 

Acknowledgements 

The author sincerely thanks Mr Michael Kyle for his valuable help while pre-
paring this paper. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Heaviside, O. (1888) The Electrician, 22, 147-148.  

[2] Leus, V.A. (2013) Progress in Electromagnetics Research M, 32, 27-41.  
https://doi.org/10.2528/PIERM13043008 

[3] Leus, V.A. and Taylor, S. (2018) International Journal of Applied Mathematics and 
Theoretical Physics, 4, 91-97.  

[4] Landau, L.D. and Lifshitz, E.M. (1967) Teorija Polja [Field Theory]. 5th Edition, 
Nauka, Moscow. (In Russian) 

[5] Levich, V.G. (1962) Kurs teoreticheskoj fiziki [Course of Theoretical Physics]. Vol. 
1, Fizmatgiz, Moscow. (In Russian) 

[6] Leus, V.A. (2018) Science and Engineering Investigations, 7, 30-36.  
http://www.ijsei.com/papers/ijsei-77918-03.pdf 

[7] Edwards, W.F., Kenyon, C.S. and Lemon, D.K. (1976) Physical Review D, 14, 
922-938. https://doi.org/10.1103/PhysRevD.14.922 

[8] Bonnet, G. (1981) Physics Letters, 82A, 465-467.  
https://doi.org/10.1016/0375-9601(81)90282-6 

[9] Leus, V.A. (2018) Journal of Modern Physics, 9, 1043-1051.  
https://doi.org/10.4236/jmp.2018.95066 
 

 
 

https://doi.org/10.4236/jmp.2020.111009
https://doi.org/10.2528/PIERM13043008
http://www.ijsei.com/papers/ijsei-77918-03.pdf
https://doi.org/10.1103/PhysRevD.14.922
https://doi.org/10.1016/0375-9601(81)90282-6
https://doi.org/10.4236/jmp.2018.95066

	Relativistic Paradox of a Uniformly Charged Sphere Moving with Constant Velocity
	Abstract
	Keywords
	1. Introduction
	2. Relativistic Derivation of the Expression for the Field of a Moving Charge, Based on a Hidden Axiom
	3. Relativistic Paradox
	4. The Possibility of Experimental Verification
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

