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Abstract 
A parametrization of density matrices of d  dimensions in terms of the rais-
ing +J  and lowering −J  angular momentum operators is established to-
gether with an implicit connection with the generalized Bloch-GellMann pa-
rameters. A general expression for the density matrix of the composite system 
of angular momenta 1j  and 2j  is obtained. In this matrix representation 
violations of the Bell-Clauser-Horne-Shimony-Holt inequalities are estab-
lished for the X -states of a qubit-qubit, pure and mixed, composite system, 
as well as for a qubit-qutrit density matrix. In both cases maximal violation of 
the Bell inequalities can be reached, i.e., the Cirel’son limit. A correlation be-
tween the entanglement measure and a strong violation of the Bell factor is 
also given. For the qubit-qutrit composite system a time-dependent convex 
combination of the density matrix of the eigenstates of a two-particle Hamil-
tonian system is used to determine periodic maximal violations of the Bell’s 
inequality. 
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1. Introduction 

The Einstein-Podolsky-Rosen paradox argues that quantum mechanics is not a 
complete theory and that it should be supplemented with additional variables 
called hidden variables [1]. However, Bell showed that measurements carried out 
on two entangled states spatially separated cannot be reproduced using local 
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hidden variables [2] [3]. One must then consider experimental settings of the 
Bohm-Aharonov type, where the state is allowed to change during the flight of the 
particles [4]. A generalization of Bell’s inequalities was given by the works of 
Clauser-Horne-Shimony-Holt (CHSH) [5], which was more suitable for direct ex-
periments. The experiments realized by Freedman and Clauser, and by Aspect et 
al., show agreement with the quantum mechanical predictions, yielding a strong 
violation of Bell’s inequalities and the rejection of realistic local theories, implying 
that nature cannot be described by a local realistic model [6]-[9]. 

The Bell-CHSH inequalities can be used as a criterion for a classical description, 
that is, to quantify the non-locality present in the correlations obtained in exper-
iments by considering local hidden variables. This statement has a deep meaning 
by considering that quantum mechanics is universal and that the classical reality 
can be obtained from the quantum dynamics. The mentioned inequalities are 
bounded by the value of 2 in local hidden-variable models. In particular, for the 
entangled quantum bipartite systems Bell’s inequality has a limit of 2 2  [10]. 
A demonstration of this upper bound is given in [11] [12]. A proof that any non-
product state of two-particle systems violates the Bell inequality is given in [13]. 

The Bell inequalities have been very useful in quantum information theory be-
cause they allow to separate the classical correlations from the quantum correla-
tions, and there are many quantum information protocols that make use of Bell 
states or maximally entangled two-particle states, in particular qubit-qubit, qubit-
qutrit and in general qubit-qudit systems [14]-[16]. Thus one finds many studies 
about the violation of the Bell-CHSH inequality in bipartite systems described by 
pure states (cf. e.g. [17] where they find that it depends strongly on the way the 
observables for Alice and Bob are selected). For a system of two spins of angular 
momentum j  the entanglement and the maximal violation of the CHSH ine-
quality have been studied, in agreement with previous work by Gisin-Peres [18] 
[19]. The contribution of Gisin-Peres shows that the maximum violation of Bell’s 
inequality occurs for arbitrarily large spin particles, implying that the classical 
properties do not always emerge for large quantum systems. A finite violation of 
24% of the times is obtained for arbitrarily large j  spin particles prepared in a 
singlet state; additionally, an optical realization of the singlet j -state was estab-
lished by means of two traveling-wave modes of a quantized field [20] [21]. 

A composite quantum state is classically correlated if it can be written as a con-
vex combination of product states; when this is not possible, the state has been 
called an EPR correlated state. Then, according to Bell’s theorem, a classically cor-
related state can be described by a local hidden-variable theory and satisfies the 
Bell inequality. On the other hand, if a state satisfies the Bell inequality it is not 
always true that it is a classically correlated state [22]. 

In the first decade of this century the so-called X states have been studied in 
quantum information theory because the Bell entangled states and the Werner 
states are subsets of them. The X states have 7 free parameters whose invariance 
algebra is ( ) ( ) ( )2 2 1× ×su su u . It is a subalgebra of ( )4su , the complete 

https://doi.org/10.4236/jmp.2025.161010


J. A. López-Saldívar et al. 
 

 

DOI: 10.4236/jmp.2025.161010 230 Journal of Modern Physics 
 

symmetry of a two-qubit system [23]. Notice that there are 15 different ways to 
generate the subalgebra ( ) ( ) ( )2 2 1× ×su su u  according to the selection of the 
commuting element (the generator of ( )1u ) [24]. Each one of them constitutes 
a Fano plane in the projective geometry PG(3,2). In particular the set of traceless 
operators,  

{
}

1 2 3 2 4

5 6 2 7

, , , ,

, , ,
z z y x z y y

x y z x x

= ⊗ = ⊗ = ⊗ = − ⊗

= ⊗ = ⊗ = ⊗

X X X I X

X X I X

σ σ σ σ σ σ σ

σ σ σ σ σ
      (1) 

has been used in the context of quantum logic gates [25]. 
A review of the parametrization of finite density matrices can be found in [26]. 

There, they discuss the following parametrizations: Bloch-vector, the polarization 
operator basis, the coset, and the Jarlskog, together with density matrices associ-
ated to composite systems. Another relevant review for the possible applications 
of the present contribution is associated to the quantum information theory (cf. 
[27] and references therein). 

In this contribution a parametrization of the finite density matrices is consid-
ered in terms of the expectation values of the angular momentum operators. First 
we construct the density operator for a qubit using linear powers of the generators 
of the angular momentum algebra; for the qutrit one needs eight independent op-
erators, which can be obtained by considering up to quartic products of the nor-
malized raising and lowering angular momentum operators. For the ququart one 
has to consider up to the sixth (combined) power of these operators. The results 
can be generalized for the case of a qudit, that is, a Hilbert space of d  dimensions 
with 2 1d j= + , which includes the expectation values of the normalized raising 
and lowering operators up to a power equal to 4 j . This representation of the 
density matrix has some advantages over the standard parametrizations. One of 
them is the possibility to write the state in terms of expectation values of observa-
bles (which can be done by expressing the operators ±J  in terms of xJ  and 

yJ ). Another advantage is in the study of the entanglement. 
The general parametrization of a composite system consisting of the tensorial 

product of two qudits, that is associated to the unitary algebras ( )12 1j +su  and 
( )22 1j +su , is here established. The separability properties are given together 

with the corresponding reduced density matrix elements, then the partial trans-
pose criterion is used to determine the quantum correlations of the composite 
system. Since pair-wise entanglement of quantum systems promises to be of ben-
efit to secure quantum information transmission and to quantum computing, and 
this entanglement is measured via the linear and von Neumann entropies calcu-
lated through reduced density matrices, our parametrization allows us to study 
not only the phase diagrams of interacting systems, but the quantum correlations 
between subsystems in a bipartite set-up. 

An interesting example is the evaluation of the Clauser-Horne-Shimony-Holt 
(CHSH) inequality [28], which we do in Section 3 for a two-qubit system and for 
a qubit-qutrit system, for which values reaching the Cirel’son bound are obtained. 

https://doi.org/10.4236/jmp.2025.161010


J. A. López-Saldívar et al. 
 

 

DOI: 10.4236/jmp.2025.161010 231 Journal of Modern Physics 
 

2. Density Matrix Parametrization Using Angular  
Momentum Mean Values 

The density matrix of a general quantum system can be parametrized using the 
mean values of monomial products of the operators ( ), ,x y zκ κ =J . To show this 
we present the cases for 1 2j = , 1j = , and 3 2j = , and with the knowledge 
from these we generalize to any qudit system. 

It is well known that the density matrix of a qubit can be written in terms of the 
expectation values of the Pauli matrices kσ  as  

3 1 2

1 2 3

11 .
12

i
i
λ λ λ

λ λ λ
+ − 

=  + − 
ρ                      (2) 

where ( )Trk k kλ = =ρσ σ . The polarization vector, used in the field of quan-
tum optics, is given by 2P =

� �
J  with 2=

� �J σ  (here, and hereafter we set  
= 1� ). 
This density matrix can describe pure and mixed qubit states, where the prob-

ability of finding the qubit in the state 1  ( 0 ) is given by ( )( )1 31 2 1p λ= +  
( ( )( )0 31 2 1p λ= − ). The non-diagonal terms represent the coherences of the  

transition amplitudes. The purity of the state is given by ( ) ( )( )22 1 2Tr 1 λ= +
�

ρ ,  

i.e., a pure state has 1λ =
�

 and the most mixed state has 0λ =
�

. 
This description has been extended to describe a qudit system in terms of the 

generalized Gell-Mann matrices  
2 1

1

1 1
2

d

d k k
kd

λ
−

=

= + ∑Iρ Λ                        (3) 

which satisfy ( )Tr 0k =Λ , ( )Tr 2j k jkδ=Λ Λ , and where k kλ = Λ . 

We may parametrize the density matrix in terms of the angular momentum 
operators, i.e., the qutrit represented by 1J = , ( 3d = ), the ququart by 3 2J = , 
( 4d = ), and so on. For the qubit, one has enough independent operators by con-
sidering the expectation values of the angular momentum. Rewriting the density  

matrix in terms of the operators x yi± = ±J J J , and using 1
2 z+ − = +J J I J  and 

1
2 z− + = −J J I J  we get  

.+ − −

+ − +

 
=  
 

J J J
J J J

ρ                       (4) 

In this case, the generators of the ( )2su  algebra (the Pauli matrices 1,2,3σ ) 
are proportional to the angular momentum operators as 2k k=J σ . 

For the qutrit, on the other hand, one needs 8 independent operators, which are 
taken from the set  

{ }2 2 2 2 2 2 2 2 2 2 2
3 , , , , , , , , .+ − + − + − − + − + + − − + − − += J J J J J J J J J J J J J J J J J         (5) 

in terms of which the density operator takes the form  
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2 2 2 2

2 2 2

2 2 2 2

2 2 2 2

2 2 2

2 2 2 2

2 2
1 2 2
4

2 2

,

+ − + − −

+ − − + − − +

+ − + − +

+ − + − −

+ − − + − − +

+ − + − +

 
 
 =
 
 
 

 
 
 =
 
 
 

J J J J J

J J J J J J J

J J J J J

ρ

    

      

    

            (6) 

where we have defined : 2± ±= J . This may also be written using the diagonal 
operators  

( ) 2 2: ,z z z + −= − + =F J J J J J J  

( ) 2 2: ,z z z − += − − =G J J J J J J                    (7) 

and powers of the ladder operators, as shown in the Appendix B. 
In the ququart case we have the 15 generalized Gell-Mann matrices 1, ,15�λ . In-

spired by the results for the qutrit case we propose the following set of operators 
with definite projection of angular momentum 

2 3 3 3 3 3 3 2 3 3 2 3
4 = { , , , , , , , ,+ − + − − + − + − + − + + − + − +J J J J J J J J J J J J J J J J J  

3 2 3 3 3 2 3 3 3 3 2 3, , , , , , , }.+ − + − + + − + − + − + − − + − +J J J J J J J J J J J J J J J J J           (8) 

In this case the density matrix can be written as  
3 3 2 3 3 3

3 2 2 3 3 3

3 3 3 2 3 2

3 3 2 3 3 3

,

+ − + − + − −

+ − + − + + − + − +

+ − − + − + − + − +

+ − + − + − +

 
 
 
 =
 
 
 
 

ρ

      

         

         

      

        (9) 

where the operators ( )3 !
3! !

r rr
r± ±

−
= J . 

Finally, to obtain a general expression for a qudit system, we make use of the 
angular momentum states for an arbitrary algebra ( )dsu : ,j m , with  

, 1, , 1,m j j j j= − − + −� . These states are related to the canonical basis k  with 
1,2, , 2 1k j= +�  in the following way  

0
1 0

1
0

, , , 1 , , , .0
0

0 1
0

j j j j j j

 
    
    
    = − = − =
    
    
    

 

�
�

�
�

             (10) 

In other words, the k -th element of the canonical basis k  is related to the 
angular momentum state as , 1k j j k= − + . From this association, the projec-
tor k l  can be written as  

, 1 , 1 .k l j j k j j l= − + − +                   (11) 
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Note that a state with arbitrary projection m  can be obtained by the recursive 
application of the ladder operator −J  to the maximum weight state ,j j , or by 
applying the operator +J  recursively to the minimum weight state ,j j−   

( )
( )
( )
( )

2 !
, , , ,

! 2 !

2 !
, , ,

! 2 !

r r

s s

j r
j j r j j j j

r j

j s
j j s j j j j

s j

− −

+ +

−
− = ≡

−
− + = − ≡ −

J

J





             (12) 

where in the cases = 0r  or = 0s  we make the substitution 0
± →J I . 

There are various ways to obtain the projector : klk l = A  which constitute 
the generators of an algebra ( )du  with 2 1d j= + ; here we use (see Appendix 
A for other forms)  

2 1 1, , ,j k l
kl j j j j− + −

+ += −A                      (13) 

where the projector , ,j j j j−  can be obtained from Equation (12). 
As  

( )
2

1 , ,
2 !

j

d j j j j
j
−= − =

JA                      (14) 

we may write, in general,  
2 1 2 1.j k j l

kl
− + −

+ − +=A                          (15) 

From the projectors we can construct the generators for the ( )dsu  algebra 

rΛ  where 21, 2, , 1r d= −� , and which can be grouped into symmetrical, anti-  

symmetrical, and diagonal operators. We have 
( )1

2
d d −

 symmetrical ( ( )s
rΛ ) and 

( )1
2

d d −
 antisymmetrical ( ( )a

rΛ ) operators which are defined as  

( )

( ) ( ) ( )
2 1 2 1 1 2 2 1

1 2 2 1 2 1 2 1

,

,

s j k j l l j j k
r kl lk

a l j j k j k j l
r lk kli i

− + − − − +
+ − + − + −

− − + − + −
− + − + − +

= + = +

= − = −

A A

A A

Λ

Λ

     

     
       (16) 

with , 1, 2, ,k l d= � ; 
( )1

1,2, ,
2

d d
r

−
= � . 

Similarly, there are 1d −  diagonal operators, defined as  

( )

( )

( ) ( )

1 1
1

2 1 2 1 2 2

1

2
1

2 ,
1

r
diag
r kk r r

k

r
j k j k j r j r

k

r
r r

r
r r

+ +
=

− + − −
+ − + + − +

=

 = − +  

 = − +  

∑

∑

A AΛ

     

      (17) 

with 1, , 1r d= −� . The Gell–Mann generators written as in Equations (16) and 
(17) allow us to represent any density matrix, Hermitian operator, or unitary op-
erator, in terms of angular momentum operators and their mean values, by using 
the standard definitions  

( ) ( )
2 21 1

1 1

Tr 1 Tr , exp ,
2

d d

k k k k
k k

i
d

θ
− −

= =

 
= + =   

 
∑ ∑

O
O I O UΛ Λ Λ        (18) 
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where  

( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )

1
2

2
1

1
1

2
1

1
2

1 1.

s
k

a
k d d

k

diag
k d d

d d
k

d d
k d d

d d k d

−
−

− −

−
≤ ≤


 −=  < ≤ −


 − < ≤ −

Λ

Λ Λ

Λ

 

From the previous results for the qubit, qutrit, and ququart, the general density 
matrix for a qudit system takes the form  

2 2 2 1 2 2 2 2 2 2

2 1 2 2 2 2 2 2

2 2 1 2 2 1

2 2

,

j j j j j j j j

j j j j j j

j j j j

j j

− −
+ − + − + − + − −

− −
+ − + + − + + − + − +

− −
+ − + − +

− +

 
 
 
 
 

=  
 
 
 
  
 

�

�

� � � �
� � �

ρ

        

          

    

 

 

(19) 

where klρ  is explicitly written as  

( ) 2 1 2 1Tr .j l j k
kl lkρ − + −

+ − += =Aρ                   (20) 

We note that all the entries of the density matrix can be obtained using the 
following procedure: first we set 2 2

11
j jρ + −=   , and in the successive columns 

we diminish the power of +  by one, while for successive rows, we multiply on 
the right by the operator +  before obtaining the expectation value. 

This representation of the density matrix has some advantages over the stand-
ard parametrizations. One of them is the possibility to write the state in terms of 
expectation values of observables (which can be done by expressing the operators 

±  in terms of x  and y ). Note that this form of the density matrix may 
be applied to any state in the representation of angular momentum. Another ad-
vantage is in the study of entanglement, as we do in what follows. 

3. Bipartite Entanglement Properties 

We will consider two interacting subsystems associated to the unitary algebras 
( )12 1j +su  and ( )22 1j +su  respectively. The generators 

1 1 2 2k l k l⊗A A  can be 
written in terms of the corresponding angular momentum generators (cf. Equation 
(15))  

( ) ( )1 1 1 1 2 2 2 2
1 1 2 2

2 1 2 1 2 1 2 1 ,j k j l j k j l
k l k l

− + − − + −
+ − + + − +⊗ = ⊗A A              (21) 

where 1 1 1, 1, 2, ,k l d= � , 2 2 2, 1, 2, ,k l d= � , with 1 12 1d j= +  and 2 22 1d j= +  
representing the dimensions of the two subsystems. This allows us to write the 
bipartite density matrix elements as the following expectation values  

( ) ( ) ( )1 1 1 1 2 2 2 2
1 1 2 2

2 1 2 1 2 1 2 1Tr ,j l j k j l j k
l k l kklρ − + − − + −

+ − + + − += ⊗ = ⊗�� A Aρ         (22) 

where ( )2 1 21k d k k= − +�  and ( )2 1 21l d l l= − +� , with 1 2, 1, ,k l d d=� � � . 
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In the case of a separable density matrix expressed as a direct product  

1 2= ⊗ρ ρ ρ , the expression in Equation (22) will also correspond to the direct 
product of the expectation values  

( ) ( ) ( )1 1 1 1 2 2 2 2
1 1 2 2

2 1 2 1 2 1 2 1
1 2Tr Tr .sep j l j k j l j k

l k l kklρ − + − − + −
+ − + + − += =�� A Aρ ρ       (23) 

In order to study the entanglement properties, we construct the reduced density 
matrices for each subsystem and the partial-transform density matrix elements. 
The reduced density matrices take the form  

( ) ( ) ( )
( ) ( ) ( )

2
1 1 1 1 2 2 2 2

1 1
2

1
1 1 1 1 2 2 2 2

2 2
1

1 2 1 2 1 2 1 2 1

1

2 2 1 2 1 2 1 2 1
,

1

,

,

d
j l j k j k j k

k l
k

d
j k j k j l j k

k l
k

ρ

ρ

− + − − + −
+ − + + − +

=

− + − − + −
+ − + + − +

=

= ⊗

= ⊗

∑

∑

     

     
    (24) 

and the partial transposed density matrix elements are  

( ) ( )1 2
1 1 2 2 1 1 2 2

Tr , TrT T
k l l k l k k lkl klρ ρ= ⊗ = ⊗�� ��A A A Aρ ρ            (25) 

These expressions allow us to study both subsystems and the entanglement be-
tween them. An interesting example is the evaluation of the Clauser-Horne-Shi-
mony-Holt (CHSH) inequality, which we do in the next Subsection for a two-
qubit system and for a qubit-qutrit system. 

3.1. CHSH Inequality for Two-Qubit Entanglement 

In the case of a two–qubit system one can express the total density matrix as the 
tensor product ( ) ( )1 2= ⊗ρ ρ ρ  in the following way  

,

+ − + − + − − − + − − −

+ − + + − − + − + − − +

+ + − + − − + + − − + −

+ + + − + − + + − + − +

 ⊗ ⊗ ⊗ ⊗ 
 ⊗ ⊗ ⊗ ⊗ =  ⊗ ⊗ ⊗ ⊗
  ⊗ ⊗ ⊗ ⊗ 

σ σ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ σ σ σ

ρ
σ σ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ σ σ σ

 (26) 

where ( ) 2x yi± = ±σ σ σ  and in this case =  σ . This expression may be 
used to evaluate the entanglement between the two subsystems. To this effect, one 
can use any measurement such as the logarithmic negativity [29] or the CHSH 
inequality [5]. In this work we explicitly present some violations of this inequality. 

Given two different measurements by observers Alice and Bob performed by 
dichotomic observables A�  and B�  ( 1,2=� ), respectively, one can construct 
the Clauser-Horne-Shimony-Holt (CHSH) inequality as  

( ) ( ) ( ) ( )1 1 1 2 2 1 2 2: , , , , 2,BF E A B E A B E A B E A B= + − + ≤         (27) 

with ( ) ( )( )1 2 1 2
, TrE A B = ⊗� � � �A Bρ , and BF  stands for the “Bell parameter”. 

Choosing  

1 2 1 2, , , =
2 2

x z x z
z x

+ −
= = =A A B Bσ σ σ σσ σ           (28) 

and the two-qubit density matrix in terms of angular momentum operators given 
above, one arrives at  
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2

2,
+ − − + − + − − + + − +

− + − + + − − + − − + +

⊗ + ⊗ + ⊗ + ⊗

− ⊗ − ⊗ − ⊗ − ⊗ ≤

σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ
    (29) 

which may be evaluated experimentally on a quantum system where the angular 
momentum degrees of freedom are dominant. 

Notice that the inequality in (29) may be studied for a general quantum state 
written in terms of the four two-qubit Bell states  

( ) ( )1 1, .
2 2

φ ψ± ±= + + ± − − = + − ± − +          (30) 

A general pure state of the form  

,α φ β φ γ ψ δ ψ+ − − +Ψ = + + +                (31) 

with 
2 2 2 2 1α β γ δ+ + + = , yields a CHSH inequality (29) of the form  

4 2 2,αγ ≤                          (32) 

which can indicate non-classical correlations when 
1

2 2
αγ > , and leads to a  

maximal violation of the CHSH inequality when 1 2αγ = . For the latter to be 
the case we have,  

( )1 ,
2

φ ψ± + −Ψ = ±                     (33) 

and ±± Ψ  correspond to the maximal Bell number 2 2BF = . Even though 
the optimal violation of the CHSH inequality for a pure state is already known 
[30], in Figure 1 (left) we show contour plots for the inequality (29) in terms of 
α  and γ , for all states of the form Ψ  in Equation (31) and for the chosen 
observables (28). The region of classical correlations, with 2BF ≤  is bounded by 
(red) dashed lines; beyond these boundaries the Bell parameter is > 2BF . The 
four (black) dots correspond to the maximum value of 2 2  obtained for the 
states ±Ψ  (first and fourth quadrants) and ±± Ψ  (second and third quad-
rants), respectively. Figure 1 (right) shows the entanglement of formation for the 
same states Ψ , defined, in terms of the concurrence C , by  

( ) ( ) ( )2 2log logFE x x x xρ + + − −= − −                (34) 

where ( )21 1 2x C± = ± −  [31]. The states on the periphery (red) correspond  

with the states of maximum violation of the CHSH inequality; here, the probabil-
ity of finding the system in the states φ−  and ψ+  vanishes. The central re-
gion, where the contribution of φ−  and ψ+  is greater, shows also a maxi-
mum value for the entanglement of formation. Furthermore, the plot of the 
Schlienz-Mahler β  parameter [32] as a function of α  and γ  has the same 
shape as that of the entanglement of formation; the solid black line at the external 
border shows the region where these two are equal. 

The entanglement of formation of real linear combinations of Bell states has 
been studied together with its relevance in quantum correction codes and in  

https://doi.org/10.4236/jmp.2025.161010


J. A. López-Saldívar et al. 
 

 

DOI: 10.4236/jmp.2025.161010 237 Journal of Modern Physics 
 

 

Figure 1. Left: Contour plots for the Inequality (29) are shown in terms of the parameters α  and γ  which define the state Ψ  

in Equation (31), for the chosen observables (28). The region of classical correlations, with 2BF ≤  is bounded by (red) dashed 
lines; beyond these boundaries the Bell parameter is 2BF > . The four (black) dots correspond to states for which the maximum 

value of 2 2  is obtained. Right: Corresponding entanglement of formation for the same states (see text), and region (black, solid 
line) where it coincides with the Schlienz-Mahler β  parameter. The (red) line along the periphery corresponds to states with 
maximum violation of the CHSH inequality. , ,α β γ  and δ  have taken to be real, and the normalization of the state has been 
taken into account. 

 
entanglement purification protocols. In particular, the entanglement properties 
cannot change by making local rotations in the basis states [33]. Here, working in 
the Bell basis amounts to a rotation with respect to the computational basis; Fig-
ure 1 remains the same but now the axes would be α β+  and γ δ−  and the 
Bell factor takes the form ( )( )4 2BF α β γ δ= + − . 

Notice that the commuting element 1X  (cf. Equation (1)) can be used to gen-
erate the most general X-state from the density matrix of two qubits  

( )

11 14

22 23
1 1

32 33

41 44

0 0
0 01 ,
0 02

0 0

X

ρ ρ
ρ ρ
ρ ρ

ρ ρ

 
 
 = + =
 
 
 

X Xρ ρ ρ            (35) 

with jkρ  the matrix elements of ρ . 
For this X-state we select the operators  

1 2 1 2, , , ,
2 2

x z x z
y x

+ −
= = = =A A B Bσ σ σ σσ σ          (36) 

and the Bell factor takes the form  

14 14 23 232 2 sin sin ,BF r rφ φ= +                  (37) 

where we define  
14

14 14: e ,ir φρ + += ⊗ =σ σ  

23
23 23: e .ir φρ + −= ⊗ =σ σ  
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Figure 2 shows (left) a contour plot of the Bell parameter as a function of the 
imaginary part of the expectation values of 14ρ  and 23ρ , which appear in the 
expression for BF , respectively 14 14sinr φ  and 23 23sinr φ ; and (right) the corre-
sponding three dimensional plot. In both cases the regions where BF  is smaller 
than or equal to 2, and where it is greater than 2 are clearly indicated. The 
Cirel’son limit 2 2BF =  is also reached for a set of values of ( )14 23,r r .  

 

 
Figure 2. Left: Contour plot of the Bell parameter as a function of 14 14sinr φ  and 23 23sinr φ  for the X-state (35) with observables 
(36). The regions indicate where the CHSH inequality is satisfied or violated. Along the boundary the Cirel’son limit is attained. 
Right: 3-dimensional plot of the same. The boundary value 2BF =  is indicated by a horizontal (green) plane. 

3.2. CHSH Inequality and Qubit-Qutrit Entanglement 

In a qubit-qutrit interaction, by using the angular momentum representation of 
the density matrix the state is given by a 6 6×  matrix which can be expressed as 

2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

+ − + − + − + − + − − − + − − + − − −

+ − + − + − − + − + − − + − + − − − + − − − +

+ − + + − − + + − − + − + − − + − − +

+ + − + + − + − − + + − −

⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗
=

⊗ ⊗ ⊗ ⊗

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ
ρ

σ σ σ σ σ σ

         

             

         

       2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2

,
+ + − − + −

+ + − + − + − + − + − + + − − + − + − − + − +

+ + + − + + − + − + + − + − + − + − +

 
 
 
 
 
 
 ⊗ ⊗ 
 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ 
  ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ 

σ σ σ

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

  

             

         

 

(38) 

where 2± ±= J . 
For a quantum system of two particles with angular momenta 1j  and 2j  as 

the main degrees of freedom, the Hamiltonian is given by  

0 1 2 12 ,zH ω ω= ⋅ −J J J                       (39) 

with 1 2z z z= +J J J  and 1 0,ω ω  denote the frequency parameter strengths, with 

1 0ω ω� . The energy spectrum can be obtained in the representation in which the 
total angular momentum 2J  and its component zJ  as well as 2

1J  and 2
2J  

are diagonal with eigenvalues j  and m . This coupled representation 1 2, ;j j jm  
is connected with the uncoupled representation 1 1 2 2, ,j m j m  by a unitary 
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transformation, where the elements of the transformation 1 1 2 1, , , ,j m j m m j m−  
are the Clebsch-Gordan coefficients [34] [35]. 

Thus, the energy of the system is given by,  

( ) ( ) ( ) ( ){ }1 2 0 1 1 2 2 1, , , 1 1 1 ,E j j j m j j j j j j mω ω= + − + − + −        (40) 

where , 1, ,m j j j= − − + � , and the state function is  

( )
1 2

1
1 1 2 1 1 1 2 1, , , , e , , .i t

j j jm
m

t j m j m m j m j m j m mϕ −= − −∑ H       (41) 

When, as here, the case of two particles with angular momenta 1 1 2j =  and 

2 1j =  is considered, the coupled total angular momentum can take the values 
1 2,3 2j = ; in this case the eigenstates can be written in terms of the computa-

tional (uncoupled) basis as follows,  

( ) ( )10

3
T2

1 2,1;3 2,3 2 e e 1,0,0,0,0,0 ,
i ti tt
ωωϕ −=  

( ) ( )10

1 T
2

1 2,1;3 2,1 2 e e 0, 2 3,0, 1 3,0,0 ,
i ti tt
ωωϕ −=  

( ) ( )10

1 T
2

1 2,1;3 2, 1 2 e e 0,0, 1 3,0, 2 3,0 ,
i ti tt
ωωϕ

−−
− =  

( ) ( )10

3
T2

1 2,1;3 2, 3 2 e e 0,0,0,0,0,1 ,
i ti tt
ωωϕ

−−
− =  

( ) ( )10

1 T2 2
1 2,1;1 2,1 2 e e 0, 1 3,0, 2 3,0,0 ,

i ti tt
ωωϕ = −  

( ) ( )10

1 T2 2
1 2,1;1 2, 1 2 e e 0,0, 2 3,0, 1 3,0 .

i ti tt
ωωϕ

−

− = −          (42) 

In order to study the behavior of the Bell inequality, linear combinations of the 
eigenstates are used and we may omit global phases; using a dimensionless time 
parameter 1tτ ω= , we have  

( )
T3 3

2 2
1 1 1e cos ,0,0,0,0,e sin ,

i iτ τ
τ θ θ

− 
Ψ =   

 
 

( )
T1 1 1 1

2 2 2 2
2 2 2 2 20,e 1 3 cos ,e 2 3 sin , e 2 3 cos , e 1 3 sin ,0 ,

i i i iτ τ τ τ
τ θ θ θ θ

− − 
Ψ = − −  

 
 

( )
T1 1 1 1

2 2 2 2
3 3 3 3 30,e 2 3 cos ,e 1 3 sin ,e 1 3 cos ,e 2 3 sin ,0 .

i i i iτ τ τ τ
τ θ θ θ θ

− − 
Ψ =   

 
 (43) 

Next we consider a convex sum of the corresponding density matrices of the 
pure states kΨ  with 1,2,3k = , giving a density operator state  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 3 3 3 ,p p pρ τ τ τ τ τ τ τ= Ψ Ψ + Ψ Ψ + Ψ Ψ   (44) 

where kp  denotes the probability to measure the corresponding pure state  
( )k τΨ  with 1,2,3k = , under the condition 1 2 3 1p p p+ + = . 

To determine the entanglement properties of ρ  in the computational basis, 
we evaluate the Schlienz-Mahler β  parameter of entanglement for a qubit-
qutrit system [32]. This takes the values 0 1β≤ ≤ . It is plotted in Figure 3 (top 
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left) as a function of the probabilities 1p  and 2p  mentioned above, for 0τ =  
in the density operator state (44). Notice that the maximum entanglement takes 
place at the borders 1 1p ≈  and 2 1p ≈ . As can be seen, the case 1 2 0p p= ≈  
also represents an entangled state, though with a smaller β  value than for the 
previous cases. From here onwards we consider the cases 1 1p =  or 2 1p = . 

We shall consider then the case 1 1p =  for the qubit-qutrit interaction, which 
yields an X-state of the form [from Equation (38)]  

2 3
1 1 1

3 2
1 1 1

cos 0 0 0 0 e cos sin
0 0 0 0 0 0
0 0 0 0 0 0

.
0 0 0 0 0 0
0 0 0 0 0 0

e cos sin 0 0 0 0 sin

i

i

τ

τ

θ θ θ

θ θ θ−

 
 
 
 

=  
 
 
  
 

ρ         (45) 

 

 
Figure 3. Top left: β  entanglement measure as function of 1p  and 2p  for the ρ -state given in Equation (44). Top right: the 
corresponding violation of Bell’s inequality as a function of τ  and 1θ  when 1 1p = , where the β  parameter is maximum. The 
plane 2BF =  is shown as reference. Bottom left: In the special case 1 3 2θ = π  the Bell parameter BF  is constant. A slight varia-

tion of 310−±  in 1θ  produces large variations in BF . Bottom right: Both BF  and the β -parameter are shown as functions of 

1θ , for τ = π  and the parameters given in (48). β  varies in the interval [ ]0,1  and its maxima coincide with the maxima and 

minima of BF , which overflows above the Bell boundary of 2. 
 

The observables for Alice and Bob are chosen as  
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( )† † †
1 1 1 1 2 2 1 2 1 3 2 2 2 1, , 1 , ,z z z z= = = − − =A u u A u u B I J J B UB Uσ σ   (46) 

where the unitary transformations 1 2,u u  and U  are given by  

( ) ( )1 1 2 1 3 1 4 1 5 1 2 21 2
1 2e , e , e e .z y z y x xzi i iiα α α α α ββ+ + +
= = = JJu u Uσ σ σ σ σ      (47) 

We have 7 free parameters available to fit the value of BF . For the following 
set of parameters  

1 2 3 4 5 1 2
1 9 17 4, , 5, , 1, , .
2 2 4 3 2

α α α α α β β= = = = =
π

= =         (48) 

one gets a violation of Bell’s inequality with = 2.23503BF  (see plots on the right 
in Figure 3). 

In Figure 3 the regions where the violation of Bell’s inequality takes place are 
also shown as a function of τ  and 1θ , which are indicated above the plane 

2BF = . The bottom plots show (left) the special case 1 3 2θ = π  for which Bell 
parameter BF  is constant. Slightly varying 3

1 23 10θ −π= ±  in 1θ  produces 
variations in BF . When BF  and the β -parameter are plotted as functions of 

1θ , for τ = π  and the parameters given in (48) we see that β  reaches its max-
ima at the maxima and minima of BF , which overflows above the Bell boundary 
of 2. 

The top-left and bottom-right subfigures show that the result is robust, in the 
sense that slightly varying the values of ( )1,2,3ip i =  one maintains values for 

BF  strictly greater than 2, and an entanglement measure greater than zero. Fig-
ure 4 shows the results obtained for probabilities ( ) ( )1 2 3, , 0.95,0.05,0p p p =  
and = 0τ , yielding, upon maximization, 2.12733BF = , as well as its time evo-
lution (left); and for ( ) ( )1 2 3, , 0.95,0.04,0.01p p p =  and 1τ = , yielding, upon 
maximization, 2.10271BF = , as well as its time evolution. 

 

 

Figure 4. Time evolution of the Bell parameter BF  for the occupation probabilities ( ) ( )1 2 3, , 0.95,0.05,0p p p =  yielding  

max
2.12733BF =  (left); and for ( ) ( )1 2 3, , 0.95,0.04,0.01p p p =  giving maxima 

max
2.10271BF =  (right). 

 
It is possible to obtain a larger violation of the CHSH inequality by using the 

same density matrix (45), if we take observables for Alice and Bob given by,  

1 2

cos sin cos sin
, ,

sin cos sin cos
c c
c c

α α
α α

− −   
= =   − − − −   

A A  
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( ) ( ) ( )
6

†
1 2

1
Diag 1, 1, 1 , Diag 1,1,1 , exp ,k k

k
ib

=

= − − = − =∏B B U U U Λ  (49) 

where U  is a unitary transformation with kΛ  ( 1,2, ,6k = � ) denoting the 
non-diagonal generators of ( )3su . In this case we have 8 free parameters to find 
maximum values for the Bell factor. Using the Bell correlations and maximizing 
the Bell factor BF  we obtain  

1 2 3 4 5 6
3 3 3, , , , 0, , , ,

4 4 30 2 4 5 40
c b b b b b bα π π π π π

= = π = − = = = = π =   (50) 

yielding  

( )42 2 5.58 10 , for 3 ,4BF θ−≈ = π− ×              (51) 

i.e., 0.9998 times the maximum value of 2 2  corresponding to Cirel’son limit 
[36]. By slightly varying the given values of the parameters, we may obtain the 
maximum violation. 

As another example, for the state (44) with 1 2 30, 1, 0p p p= = = , and parame-
ters  

1 2 1 3 4 5 6
3 7 3, , , , , , , ,

4 4 125 2 8 5 10
c b b b b b b bα π π π π π π π

= = = − = − = = = = −   (52) 

yields 2.739BF = , i.e., 0.968 times the Cirel’son limit. Figure 5 shows the behav-
iour of BF  as a function of τ  when 1 3 4θ = π , for the X-state of Equation (45) 
with 1 1p =  (left). For the case 2 1p =  the Bell parameter is independent of τ ; 
it is here displayed (right) as a function of 2θ . Both cases show strong violations 
of Bell’s inequality, close to the maximum limit established by Cirel’son’s limit. 
The upper bound and the maxima where BF  is attained are also shown. 

 

 
Figure 5. Left: Bell parameter as a function of τ  when 1 3 4θ = π , for the X-state of Equation (45) with 1 1p = . Right: For the case 

2 1p =  the Bell parameter is independent of τ ; it is here plotted as a function of 2θ . Both cases show strong violations of Bell’s 
inequality, close to the maximum limit established by Cirel’son’s limit. In both cases the dashed lines mark the region where the 
inequality is violated. 

4. Summary and Concluding Remarks 

The parametrization of the density matrix for any finite system was obtained by 
representing the generalized Gell-Mann matrices in terms of products of the 
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angular momentum operators ±J . 
This representation of the density matrix has some advantages over the stand-

ard parametrizations. One of them is the possibility to write the state in terms of 
expectation values of observables (which can be done by expressing the operators 

±J  in terms of xJ  and yJ ). Another advantage is in the study of the entangle-
ment between different systems. The parametrization obtained in this work, al-
lowed us to study the entanglement between subsystems in a bipartite set-up. In-
teresting examples given were the evaluation of the CHSH inequality for a two-
qubit system and for a qubit-qutrit system. In both cases values for the saturation 
of the non-classical correlations, described by Cirel’son bound, were obtained and 
briefly discussed. 

One may also consider the singlet state for a qutrit-qutrit system, and perform 
( )3SU  transformations for both observers, Alice and Bob. Maximizing for the 

free observable parameters yields values for the Bell parameter of 7 3BF = . At 
least for the state being considered, the Cirel’son bound cannot be reached, sug-
gesting that for a more general state a more detailed study would be required. 

Since pair-wise entanglement of quantum systems promises to be of benefit to 
secure quantum information transmission and to quantum computing, and this 
entanglement is measured via the linear and von Neumann entropies calculated 
through reduced density matrices, our parametrization allows us to study not only 
the phase diagrams of interacting systems, but the quantum correlations between 
subsystems in a bipartite set-up. 

Applications of the angular momentum representation for bipartite composite 
systems, or for even more that two subsystems, can have relevance in the study of 
entanglement measures, purification procedures, and in general quantum infor-
mation and quantum computation protocols. 
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Appendix A 

Some other possible parametrizations of the density matrix can be obtained by 
writing the projectors of the system Equation (15) in a different way. For example, 
one can have 

( )
( ) ( )
( ) ( )

1 2 12 1 ! 1 !1 , , ,
2 ! 2 1 ! 1 !

k j lj k l
k l j j j j

j j l k
− − +

− −

− + −
= −

− + −
J J       (53) 

where the projector , ,j j j j−  can be written in operator form from Equation 
(12), giving  

( )
2

0 0 1
0 0 0

, , ,
2 !

0 0

j

j j j j
j
+

 
 
 − = =
 
 
 

�
�

� � � �
� �

J               (54) 

which allows us to finally write  

( )( )
( ) ( )
( ) ( )

1 2 2 1
2

2 1 ! 1 !1 .
2 1 ! 1 !2 !

k j j lj k l
k l

j l kj
− − +

− + −

− + −
=

− + −
J J J          (55) 

On the other hand one can express the projectors of the system as  

( )
( ) ( )

( ) ( )
2 1 2 11 ! 1 !1 , , .

2 ! 2 1 ! 2 1 !
j k j lk l

k l j j j j
j j k j l

− + − +
+ −

− −
= − −

− + − +
J J    (56) 

where the projector , ,j j j j− −  can be identified by using Equation (12) for 
2r s j= = , resulting in the following angular momentum operator  

( )( )
2 2

2

0 0 0
1, , ,

0 0 2 !
0 0 1

j jj j j j
j

− +

 
 
 − − = =
 
 
 

�
� � � �
� �
�

J J          (57) 

and in this case the projectors can be obtained as  

( )( )
( ) ( )

( ) ( )
2 1 2 2 2 1

3

1 ! 1 !1 .
2 1 ! 2 1 !2 !

j k j j j lk l
k l

j k j lj
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+ − + −

− −
=

− + − +
J J J J      (58) 

Appendix B 

In terms of the functional operators  

( )
( )

2 2

2 2

: ,

: ,
z z z

z z z

+ −

− +

= − + =

= − − =

F J J J J J J

G J J J J J J
                  (59) 

and, furthermore, writing ( )z kk− =F J I F  and ( )z kk+ =G J I G , the ladder op-
erators and their powers may be written as shown in Table B1. 

Using  

1 1
,

m m
m m m m

m s m s
s s

+ − − − + −
= =

= =∏ ∏J J F J J G                (60) 
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Table B1. Ladder angular momentum operators and their powers in terms of the functional 
operators kF  and kG . As it stands, the entries in table should be read as (row × column). 

 −J  2
−J  3

−J  

+J  0F  0 −F J  2
0 −F J  

2
+J  1 +F J  1 0F F  1 0 −F F J  
3
+J  2

2 +F J  2 1 +F F J  2 1 0F F F  

 
 +J  2

+J  3
+J  

−J  0G  0 +G J  2
0 +G J  

2
−J  1 −G J  1 0G G  1 0 +G G J  
3
−J  2

2 −G J  2 1 −G G J  2 1 0G G G  

 
we can write the general expression for any combination of powers as follows:  

1
:

k
k m m k

k s
s

m k −
+ − − −
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≥ =∏J J F J  

1
:

m
k m k m

k s
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+ − − +
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and  

1
:

k
k m m k

k s
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m k −
− + − +

=

≥ =∏J J G J  

1
: .

m
k m k m

k s
s

m k −
− + − −

=

< =∏J J G J  

As an example, the density matrix for the ququart in terms of these functional 
operators takes the form  

2 3
2 1 0 1 0 0

2
2 1 1 0 0 0 1 2

2
2 0 1 0 1 0 2 1

3 2
0 1 0 2 1 0

.

− − −

+ − −

+ + −
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