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Abstract 
We report progress towards a modern scientific description of thermody-
namic properties of fluids following the discovery (in 2012) of a coexisting 
critical density hiatus and a supercritical mesophase defined by percolation 
transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of 
fluids, e.g. CO2, H2O and argon exhibit a symmetry characterised by the ri-
gidity, ω = (dp/dρ)T, between gaseous and liquid states along any isotherm 
from critical (Tc) to Boyle (TB) temperatures, on either side of the supercriti-
cal mesophase. Here, using experimental data for fluid argon, we investigate 
the low-density cluster physics description of an ideal dilute gas that obeys 
Dalton’s partial pressure law. Cluster expansions in powers of density relate to 
a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρrs(T) = RT) to 
gas phase virial coefficients. We show that it is continuous in all derivatives, 
linear within stable fluid phase, and relates analytically to the Boyle-work line 
(BW) (w = (p/ρ)T = RT), and to percolation lines of gas (PB) and liquid (PA) 
phases by: ρBW(T) = 2ρPA(T) = 3ρPB(T) = 3ρRS(T)/2 for T < TB. These simple 
relationships arise, because the higher virial coefficients (bn, n ≥ 4) cancel due 
to clustering equilibria, or become negligible at all temperatures (0 < T < TB) 

within the gas phase. The Boyle-work line (p/ρBW)T is related exactly at lower 
densities as T → TB, and accurately for liquid densities, by ρBW(T) = −(b2/b3)T. 
The RS line, ω(T) = RT, defines a new liquid-density ground-state physical 
constant (ρRS(0) = (2/3)ρBW(0) for argon). Given the gas-liquid rigidity sym-
metry, the entire thermodynamic state functions below TB are obtainable from 
b2(T). A BW-line ground-state crystal density ρBW(0) can be defined by the 
pair potential minimum. The Ar2 pair potential, φij(rij) determines b2(T) ana-
lytically for all T. This report, therefore, advances the salient objective of liq-
uid-state theory: an argon p(ρ,T) Equation-of-state is obtained from φij(rij) for 
all fluid states, without any adjustable parameters. 
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1. Introduction 

It is over 150 years since the birth of classical thermodynamics, whence J. W. 
Gibbs (Figure 1) published his description of thermodynamic properties and 
transitions between different phases as state functions on 2-dimensional, e.g., 
temperature (T) and pressure (p), surfaces [1]. In the same year, van der Waals 
PhD thesis [2] (Figure 2) introduced the concepts of a theoretical Equation of 
state p(V,T) for pressures of a gas at fixed V (volume) and T, based upon his 
hypothesis that there exists a singularity described by the node of a cubic Equa-
tion. van der Waals’ Equation-of-state defines a hypothetical critical temperature 
Tc, pressure pc, and singular volume Vc at the “critical point”. For all T > Tc and 
all p > pc, there is no delineation between gas and liquid states in van in 
gas-liquid “continuity” theory. 

1.1. Thermodynamic States and State Functions 

In his classic treatise [1], Gibbs introduced the concept of a state function of any 
two state variables, for example pressure (p) as a function of temperature (T) 
and volume (V) as illustrated in Figure 1 p-V-T 3D phase diagram. Given the 
state function heat capacity at constant pressure (Cp), Gibbs defined both en-
thalpy (dU + pdV = CpdT) and entropy (dS = CpdlogeT), that are precise state-
ments of the 1st- and 2nd-laws of classical thermodynamics, respectively [3]. 

 

 

Figure 1. A Gibbs’ p(V,T) surface of thermodynamic equilibrium states 
showing p(V,T) isotherms and phase boundaries as well-defined mathe-
matical lines: the pressure surface is a function of volume (V) and tem-
perature (T), showing some isotherms with Gibbs phases boundaries. A 
hypothetical van der Waals critical point is also shown. 
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Figure 2. Phase diagram hypothesised by van der Waals on 
p-T surface: in his thesis of 1873: he defined a critical point 
when liquid and gas densities became equal with thermo-
dynamic continuity to a supercritical fluid by both gas and 
liquid on the basis of his cubic Equation of state for p(V,T). 

 
Every thermodynamic state point on a Gibbs surface is defined where two 

lines cross and characterised by the number of degrees of freedom (F) in its spe-
cification by Gibbs phase rule. For a one-component system (C = 1) then, for P 
phases in coexistence, F = C − P + 2. All single-phase state points when (F = 2) 
are defined when an isotherm crosses an isobar, i.e., by T, p. A state point in a 
two-phase region (F = 1) is defined when either an isotherm or an isobar crosses 
a coexistence line. The coexistence lines are defined by the intersection of lines 
of chemical potential (μ), on the μ(p,T) surface. The triple point volumes 
(Figure 1) are defined by the intersection of two coexistence lines. There is no 
such consistent thermodynamic definition of the “critical point”, shown in Fig-
ure 1. 

van der Waals assumed that the cubic Equation-of-state 

2

1
kTp a
b

ρ ρ
ρ

= −
−

                           (1) 

has a singularity that confirms the existence of a critical volume to be an estab-
lished scientific truth. The van der Waals interpretation, also depicted as p-T 
phase diagram in Figure 2, was based upon just two near-critical isotherms with 
limited p(V,T) data points for CO2 reported in 1869 by Andrews. The Andrews- 
van der Waals hypothesis gave rise to the earliest predictions of solid-liquid-gas 
phase diagrams. 

1.2. Historic Phase Diagrams 

The Gibbs phase rule for all state points on the p-T surface gave rise to various 
conjectures of p-T diagrams showing gas, liquid, and solid regions. In the very 
early days, the solid-liquid transition was believed to be independent of pressure, 
and the gas-liquid coexistence line was reasonably known. Gibbs [4], unaware of 
van der Waals’ thesis at the time also interpreted Andrews’ discovery of a tem-
perature above which a gas could not be liquified by increasing pressure. Gibbs 
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noted that there is also a pressure above which a gas cannot be liquified by re-
ducing the temperature. Gibbs thought there was a second triple point and de-
scribed the region as the “critical phase” as distinct from van der Waals conti-
nuous fluid hypothesis (Figure 3(a)). Hannay [5] also correctly observed that 
the Andrews experiments are indicative of a 1st-order phase transition at Tc. 

Figure 3(b) for CO2, drawn from present NIST thermophysical fluid property 
data [6], shows the definition and determination of the critical p, T point where 
the two percolation lines cross. The Gibbs-Hannay interpretation is closer to the 
modern description of the critical line between coexisting densities at Tc. The 
critical density hiatus and supercritical mesophase are now established science, 
confirmed by computer experiments on minimalist models [7], confirmed by re-
view in depth from the literature experimental measurements covering 150 years 
since Andrew’s [8], and, recently confirmed, inter alia, by the debunked univer-
sality hypothesis [9]. 

 

 
(a) 

 
(b) 

Figure 3. (a) Gibbs [4] (1878)-Hannay [5] (1882) hypothetical 
phase diagram. (b) Present carbon dioxide phase diagram ob-
tained from modern thermodynamic data compilation [(NIST 
2023 [6]) showing percolation loci above Tc (dashed lines) that 
define the supercritical mesophase, and below Tc (dotted lines) 
become the metastable stability limit or “spinodal” lines [8]. 
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Gas and liquid percolation lines, PB and PA, are defined by a change in the 
state function rigidity (ω) when hetero-phase bonded clusters of “liquid” in gas 
(density ρPB) and clusters of “gas” in liquid (density ρPA) have the same T, p and 
G (Gibbs chemical potential) at two different coexisting densities. This condition 
defines a 1st-order phase transition. At the gas-liquid critical point Tc-pc the ri-
gidity of both phases goes to zero, triggering a phase transition that terminates at 
the critical 2-phase coexistence pressure where the percolation lines intersect. 
Figure 2 and Figure 3 show that Gibbs and Hannay were closer to the scientific 
truth than van der Waals and the prevailing universality hypotheses of theoreti-
cal physics, and NIST employees still [6] [7] [8] [9]. 

1.3. State Function Rigidity 

Rigidity is a defining state function that describes the distinction between gas 
states below the Boyle temperature and liquid or solid states. It decreases with 
density for a gas and increases with density for a liquid or solid. It is a reciprocal 
compressibility and related to Gibbs energy and hence also to density fluctua-
tions by the following equalities of classical and statistical thermodynamics. 

( )
,

2

,

d d d d
d d ln d d lnT V TTT T

V T

p V p GV
K V p N

RT N

µω ρ
ρ

      = = − = = =      
      

= ∆
         (2) 

where KT is the isothermal compressibility, G is Gibbs energy, μ is Gibbs chemi-
cal potential and (N/V) is number density. It is the symmetry of the rigidity, ra-
ther than the compressibility, that reveals the connection to percolation transi-
tions that can define the distinction between gaseous states, and liquid or solid 
states below the Boyle temperature. Accurate rigidity data have been used, inter 
alia, to invalidate hypotheses that describe all gas-liquid critical points as being a 
singularity with universal scaling laws [9]. 

2. Rigidity Symmetry 
2.1. Rigidity Symmetry of CO2 

For pure fluids, rigidities can be obtained from the heat capacity data in NIST 
thermophysical web book [6], given the speed of sound (c) values and the heat 
capacity ratio, then 2

p vc C Cω = . The rigidities of isotherms below TB are 
shown in Figure 4 for CO2. 

The Boyle-work (BW) line (w = p/ρBW = RT) [10] is seen to be perfectly linear 
for CO2. A similar line can be defined by the rigidity symmetry (RS) line (ω = 
dp/dρ)T = RT), defined as ρRS(T), connects all state density points on the iso-
therms at a somewhat lower density than ρBW(T) when the ω(ρ,T) state point has 
the same rigidity (ω) as the ideal gas at that temperature. The RS line is also li-
near. In the following sections we will relate the RS line to the BW line. 

An inspection of the ω(T) isotherms in Figure 4 shows a symmetry that is 
consistent with the existence of a supercritical mesophase within which it  
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Figure 4. Isotherms of carbon dioxide showing the percolation loci that define the super-
critical mesophase taken from the NIST thermophysical property databank [6]: the Boyle 
line [10]: (also referred to by others as the zeno line) is also shown (solid black line) from 
the Boyle temperature of the dilute gas to a triple point isotherm: the green and blue dashed 
lines are the gas and liquid phase percolation transition densities referred to in Figure 3 
and previously in reference [7]. 

 
remains constant along any isotherm and decreases from RT at the Boyle tem-
perature (TB: defined as in Figure 4 as isotherm above which there is no mini-
mum in p(ρ)T), to zero within the critical divide for all fluids [7] [8]. 

The percolation transition lines shown in Figure 4 are manifested as third- 
and higher-order discontinuities in the Gibbs energy p-T derivatives that depend 
upon density fluctuations. As the coexisting densities of liquid and gas densities 
become closer with T < Tc, the fluctuations increasingly reflect a symmetric he-
tero-phase presence in both phases. The experimental evidence for heterophase 
fluctuations is reproducible and well documented: see e.g., the review of Yukalov 
[11]. The role of heterophase fluctuations in gas-liquid criticality by percolation 
of the phase volume has been established. This implies changes of state in com-
position of the system, but still in-keeping with Gibbs definition of a “phase”, i.e., 
with two degrees of freedom, T and p as originally observed by Gibbs for “criti-
cal phases” [4]. The symmetry seen for CO2 appears to be a characteristic prop-
erty of all pure atomic and molecular liquids regardless of the Hamiltonian 
complexity, even for water. 

2.2. Rigidity Symmetry of Water 

The observations regarding CO2 also apply to complex liquids, and in particular 
the critical coexistence properties for steam and water [12]. Notwithstanding the 
known complexities of the steam-water molecule, and the quantum effects of the 
H-bonds in cluster and solid structures, the thermodynamic Equation-of-state 
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for water reveals a near perfect steam-water rigidity symmetry, and hence also a 
linear ρRS(T) line. The data, illustrated in Figure 5, can be obtained from NIST 
tabulations [6] which has been calculated from the Wagner-Pruss Equation-of- 
state [13]. For water, the NIST Equation-of-state [6] [13] contains upwards of 
100 arbitrary adjustable parameters to represent the experimental thermophysi-
cal fluid data to within an accuracy that it has been measured. 

Given the correct scientific description of the phase transitions, the percola-
tion lines PB and PA, and the BW and RS lines, this number of adjustable para-
meters can be reduced to zero, without loss of precision, provided we can deduce 
the correct science to determine the necessary physical constants. We illustrate 
this plausible objective briefly here, with just one supercritical isotherm (673 K 
or 400˚C), and a point on the RS line (Figure 5) i.e. density ρrs = 35.5 mol/l cor-
responding to the rigidity ω = 5.65 kJ/mol of the ideal gas steam limit 0ρ → . 

From Figure 5 we infer the following: 
1) The thermodynamic state functions, e.g. p(ρ,T), of steam along any iso-

therm below TB, for all densities below the percolation transition density ρPB(T), 
will be continuous in all derivatives, and represented by a virial expansion in 
powers of density. 

2) Given the rigidity symmetry seen in Figure 5, p(ρ,T) for water can be ob-
tained from the same expansion coefficients used to describe steam isotherms at 
the higher densities above ρPA(T) and for densities below the RS line on any iso-
therm in an expansion in powers of the density difference ΔρRS = (ρ − ρRS)T. 

3) The function p(ρ)T and p(ΔρRS)T are empirically quadratic. If that is the 
 

 

Figure 5. Rigidity, (dp/dρ)T, of a supercritical isotherm of steam and water at 400˚C (673 
K: T/Tc = 1.04) taken from the NIST thermophysical property databank [6]: at a density 
of 32.5 mol/l, supercritical water has the same rigidity as its corresponding state ideal di-
lute gas, i.e., steam, at 673 K and 155 MPa. 
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general case, the same two virial coefficients that describe the gas phase for den-
sities below the PB line can be used to represent the p(ρ,T) data for the super-
critical liquid region between Tc and TB for densities between the PA and RS 
lines at, and above the PA line, i.e. ρPA(T). 

4) The RS line shown has a pressure of 155 MPa at 673 K. The whole isotherm, 
experimentally, extends to higher temperatures, up to TB (= 1250 K) for steam, 
and pressures to 1000 MPa [13]. This region is amenable to an expansion around 
the BW line ρBW(T) along the same isotherm. 

5) The steam section, including the mesophase, requires only the first 2 or 3 
coefficients in an expansion in powers of density, the two physical constant den-
sities ρPB and ρPA, and the Boyle temperature TB, for accurate representation of 
ω(T = 673), over the whole measured pressure range up to 1000 MPa of its exis-
tence for densities below and above ρPB and ρPA respectively. 

6) The same coefficients that describe the steam density expansion could also 
describe an expansion about density point ρRS on the water phase in powers of 
the density difference Δρ = (ρRS − ρ)water along the same isotherm, and below Tc 
by the difference Δρ = (ρBW − ρ)water to the triple point. 

All other high-density liquid-side thermodynamic properties could be obtained 
from the rigidity isotherms, via the equalities in Equation (2) for all temperatures, 
including Gibbs energies and two-phase regions and coexistence lines. Other 
thermodynamic state functions, e.g. Gibbs energies that determine phase coexis-
tence boundaries thermodynamic properties can likewise be prescribed in terms 
of the various physical constants for water at temperatures up to TB and 1000 
MPa. In the following sections of this report, however, we will focus on the ri-
gidity symmetry of argon, as the exemplary simple liquid, and its relationship to 
the percolation lines PA and PB, and the Boyle line. 

2.3. Gas-Liquid Symmetry of Argon 

All phase transition lines, and 2-phase coexistence regions, on a Gibbs p-T sur-
face, for example, are determined by the Gibbs energy state function; two dis-
tinct states of different density (or molar volume) have the same T, p and molar 
Gibbs energy (chemical potential). Van der Waals critical point hypothesis can 
be tested simply by comparing theory, i.e., van der Waals Equation Gibbs energy, 
with experimental, i.e. Gibbs energy along the critical isotherm (151 K) for argon 
from NIST thermophysical property web book that uses TSW Equation-of-state 
[6] [14] (Figure 4). The van der Waals Gibbs energy from Equations (1) and (2) 

* 2ln 1b b aG RT
b V V V
  = − − −  −   

                     (3) 

in which *G  is the excess Gibbs energy relative to the ideal gas at the same T, p. 
ΔG/RT for the critical isotherm of argon, referenced to the critical line con-

stant value Gc, is shown in Figure 6, between the maximum coexisting gas den-
sity and minimum coexisting liquid densities at Tc for the NIST [6] critical iso-
therm (151 K). This accurate experimental description of the critical isotherm 
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can be compared with van der Waals singularity prediction in the most favoura-
ble comparison, i.e. when the two constants a and b are exactly fitted to correctly 
predict the critical state point Tc − Pc. Then we obtain the van der Waals Vc for 
argon that corresponds to a singular critical density ρc of 11.0 mol/l, i.e. slightly 
below the maximum coexisting gas density 

The van der Waals hypothesis completely misses the essential physics of criti-
cal point (T − p) thermodynamics [7] [8]. The hard-sphere reference model im-
plicitly determines the structure in mean-field and perturbation theories. Since 
the original van der Waals’ hypothesis, countless generic variations have also 
failed. All such theories of simple liquids neglect an essential symmetry between 
gas and liquid states, arising from the cluster physics description, especially in 
the vicinity of the critical point Tc, pc. 

Near-critical coexistence properties involve hetero-phase fluctuations and the 
supercritical mesophase, determined by clustering effects and manifested as per-
colation transitions with discontinuities in density fluctuations or rigidity as given 
by Equation (2). Mean-field and first-order perturbation theories are only quan-
titatively successful nearer to the triple point where hetero-phase fluctuations are 
minimal. Sedunov [15] has investigated the importance of molecular clustering 
equilibria in atomic (argon), and molecular (CO2 and H2O) gases, and reported 
that these effects play an important part of the description of thermodynamic 
properties of all real gases, and hence also gas-liquid phase transitions. Gibbs 
energy differences are the driving force for all first-order phase transitions. Fig-
ure 6 shows that van der Waals Equation (1) gets the science of critical coexis-
tence completely wrong. 

 

 
Figure 6. The experimental Gibbs energy of argon along the critical isotherm (151 K), 
referenced to the value at the critical T, p, compared to the prediction of van der Waals 
Equation in its most favorable interpretation when the two parameters a and b are fitted 
to the critical point Tc and pc, respectively. 
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A more significant observation from the experimental Gibbs energy critical 
isotherm in Figure 6, is that the symmetry between states below the maximum 
coexisting gas density, and states above the minimum coexisting liquid density 
applies to Gibbs energies. Between these two physical constant state points, de-
termined by the intersection of percolation lines, Tc, pc, and Gc (Gibbs chemical 
potential) are all constant. At the critical line, the rigidity is zero as the density 
fluctuations in Equation (2) diverge. We can see from Equation (2) that this sym-
metry in G(p,T) relates to the state function rigidity (ω) and to the same density 
fluctuations in both gas and liquid phases at Tc. 

Rigidity symmetry has its origins in the statistical cluster physics of real gases 
that is mirrored by the cluster physics of voids or vacancies, i.e. available volume, 
in liquids. The van der Waals mean-field approximation in Equation (1) and all 
similar mean-field theories of liquids, and perturbation theories of hard sphere 
fluid reference state [16] all neglect this essential physics that determines the 
thermodynamic state functions and Equation-of-state of both gases and liquids 
[9]. Real gases are composed of clusters of atoms or molecules, even at very low 
finite densities, to some extent, for all temperatures below TB. 

3. Cluster Physics of the Gas Phase 
3.1. Equilibrium Constants 

Any real gas below TB is a multicomponent mixture of monomers, dimers, tri-
mers etc. [15]. Each species obeys the ideal gas law of partial pressures at a suffi-
cient low density. The equilibrium constants kn for multiple molecular clusters, 
e.g., (H2O)n or (CO2)n or atomic clusters, e.g., argon (Ar)n, denoted generally by 
An, can be expressed as sequence of gas phase chemical reactions according to 
the equilibria: nA ⇔  An. The equilibrium constants can be expressed as a se-
ries in which [A1] is the monomer density fraction and [An] fraction of cluster 
size n. 

Then 

[ ] [ ]22 2 1k A A= ; [ ] [ ]33 3 1k A A= ; [ ] [ ]1
n

n nk A A=             (4) 

At low density, the partial pressures of [An] from Dalton’s law can be summed 
as a series for the cluster density species (ρp) at total pressure (p), then 

[ ] [ ] [ ]2
1 2 1 1

n
p np RT A k A k Aρ= = + + + +                 (5) 

[ ] [ ] [ ]2
1 2 1 12 n

nRT A k A nk Aρ = + + + +                  (6) 

substituting from Equation (6) in Mayer expansion for pressure in terms of the 
atom density powers, ρ(n−1) that define the virial coefficients bn [16] 

( )2
2 31 n

np RT b b bρ ρ ρ ρ= + + + + +                   (7) 

by combining terms, we obtain the relationships between coefficients bn and Kn 

2 2b k= −                                   (8) 
2

3 2 34b k k= −                                 (9) 
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3
4 2 3 2 418 20 3b k k k k= − −                        (10) 

These relationships hold for all the bn(T) and kn(T) for all T < TB. Since all the 
kn(T) are everywhere positive, there must be a significant cancellation, to some 
unknown extent, of the higher virial terms in the Mayer cluster expansion Equa-
tion (7). Only b2(T) and b3(T), of argon for example, are required to represent 
accurate gas pressures in the range from TB > T > 0 at densities below the perco-
lation line ρPB and for all isotherms below Tc for all densities below the gas-liquid 
and gas-solid coexistence lines down to zero K. The cancellation of b4 is already 
evident for all T > Tc (151 K) as seen in Figure 7. 

 

 
 

 
 

 

Figure 7. Argon virial coefficients b2, b3 and b4 in units 
of (l/mol)n/103(n−1). 
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3.2. Virial Coefficients 

Accurate experimental values of b2(T) and b3(T) (Figure 7) have recently been 
reported for argon from sound velocity (c) measurements in the temperature 
range 100 to 500 K [17]. Using known b2 and b3 values, we can obtain b4(T) in 
the same T-range given also the NIST experimental heat capacity and sound ve-
locity data for argon. By plotting [ω/(RT) − (1 + 2b2ρ + 3b3ρ2)] versus ρ3 we ob-
tain the b4(T) values also shown in Figure 7. 

The Mayer virial series [16], Equation (7), is a Taylor expansion for pressure 
derivatives in powers about zero density, whence ‘bond’ lengths within clusters 
that determine kn become negligible compared to divergent correlation lengths 
between clusters that determine the density in Equation (5). Hence, the concept 
of rigidity symmetry [18] means that the liquid properties can all be determined 
from the corresponding-state gas phase given only the lower virial coefficients. 
We can now proceed to specify the thermodynamic state functions, notably, the 
Boyle and critical and triple point temperatures, BW and/or RS lines, and the 
coexisting percolation densities at Tc. 

We note that b3(T) and b2(T) appear to be linearly related for T > Tc. and 
contain information on Tc. b3(T) shows a maximum at Tc whereas b4 goes to zero 
for all T > Tc. All the higher virial coefficients n > 4 either cancel similarly or will 
become negligible at the low densities below the ρPB line. Hence, we can deter-
mine physical constants and thermodynamic Equations-of-state from only the 
lower virial coefficients b2 and b3 for the gas phase. 

Both the BW and RS lines extend to hypothetical amorphous and crystalline 
solid states, i.e. insofar as they would obey classical statistical mechanics at the 
lower temperatures. The neglect to a large extent of the higher terms bn ≥ b4 in 
the virial expansion can be justified by an analysis of the expansion of the gas 
pressure in terms of equilibrium constants defined in the low-density limit ob-
edience to Dalton’s law of partial pressures for argon. We do not yet know 
whether this is also the case for more complex molecular liquids CO2 or water, 
probably not. 

3.3. Coexisting Gas and Liquid Densities at Tc 

The percolation pressures, of bound clusters in the gas, and of gaseous voids in 
the liquid, with decreasing T, intersect to trigger a critical point coexistence line 
at Tc and a supercritical mesophase with linear hybrid properties (Figure 3(b)). 
The percolation transitions are higher-order phase transitions that delineate the 
gas phase below the Boyle temperature when the clusters of “liquid-in-gas” di-
verge to percolate the phase volume. There are no phase transitions for all gas 
densities below the PB-line density of gaseous bonded clusters ρPB. The gas phase 
Equation-of-state is given by the Mayer virial expansion, for given T and for ρ < 
ρPB we have the following, formally exact up to the first thermodynamic discon-
tinuity, Mayer cluster expansions [16] 
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The Boyle work ratio for the critical isotherm (151 K) of argon is plotted in 
Figure 8. Both work (w) and rigidity (ω) decrease with increasing density for a 
gas and mesophase densities below PA; both increase with density for the liquid 
phase above a minimum very slightly greater than ρPA(Tc). The rigidity, ω = RT, 
however, is more convenient reference point in describing Equations-of-state 
and Gibbs energies for phase transitions. Its derivative, solidity σ, Equation (13) 
is −ve for a gas, zero in the mesophase, and +ve for liquid phase. We can use 
these Equations to show that there must exist a maximum coexisting gas-phase 
density along the percolation line PB, at state point whereupon both ω and σ go 
to zero at Tc [7] [8]. 

All points on the gas-phase percolation line PB, including the maximum coex-
isting gas density at Tc, occur when the solidity (σ) is set to zero in Equation (13) 
and all terms n > 3 neglected, then we have 

( ) ( )2 33
cPB c T

T b bρ = −                        (14) 

 

 
Figure 8. The experimental Boyle work ratio along the critical isotherm 
(Tc = 151 K): data from reference [6]: the percolation transition PB (gas 
clusters) and PA (liquid voids) correspond to the maximum coexisting 
gas density (ρPB) and minimum coexisting liquid density (ρPA), respec-
tively, as indicated by the arrows. 
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i.e. a very simple Equation for the maximum coexisting gas density at Tc that can 
be shown to be very close to experimental reality. The ratio −(b2/b3)T (Figure 9) 
is plotted from the data of Estrada-Alexanders et al. (shown in Figure 4 above) 
and seen to be linear in a 200 K temperature range beyond which it passes through 
zero at TB and goes negative. Over this temperature range, it can be represented 
by a single ground-state density constant that determines −(b2/b3)T in using the 

0T →  ground-state constant from the linear region that BT T→  as illustrated 
in Figure 9. If the value at Tc is used, a slightly higher ground-state density is 
obtained. 

Thus, if the terms bn > 3 in Equations (13) and (14) are negligible for the gas 
phase below the PB line, the result can be used to confirm the experimental ob-
servation that the ω goes to a constant and that the solidity goes to zero at 
−(b2/3b3)T. The ratio is obtained from Figure 9 at the zero-density intercept 
−(b2/b3)0 = −0.1162T + 47.34 mol/l with regression (R2) for the range 300 - 403 K 
= 0.9979. This result corresponds to a maximum coexisting gas density at Tc of 
10.1. This is slightly lower, but of the same order as the maximum reported ex-
perimental coexisting gas density 11.4 mol/l by Michels et al. [19] or 11.8 mol/l 
by Gilgen et al. [20]. 

Likewise, Equation (11) for the BW line can be used to obtain the minimum 
coexisting liquid density, again, from Figure 8, Boyle work w(ρ)T goes to a 
minimum at the density ρPA(Tc). Then, b2 + 2b3ρPA = 0 at Tc, resulting in the 
simple equality again that the minimum coexisting liquid density at Tc is given  

by ( ) ( )2 3
1
2 cPA c T

T b bρ = − . Using the ground-state constant 47.34 mol/l to define  

the TB asymptotic slope of −(b2/b3)T data in Figure 9, we obtain a value ρPA(Tc) = 
14.7 mol/l. This result is reassuringly close to the value obtained from NIST [6] 

 

 

Figure 9. The ratio (−b2/b3)T from the data shown in Figure 5 (reference 
[16]) it goes to zero at the Boyle temperature (403 K): the density corres-
ponding to the critical temperature (151) as indicated is around 35 i.e. 3 
times the experimental maximum coexisting gas density as indicated in 
Figure 4 and Figure 6, and is consistent with Equation (14). 
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(Figure 4) ~14.9 mol/l and near to the minimum recorded coexisting liquid 
densities of Michels et al. (15.35 mol/l) [19] and Gilgen et al. (15.07 mol/l) [20]. 

4. Equations-of-State 
4.1. Relationship between BW and RS Lines 

The condition p/ρB = RT defines the BW line that connects all these state points 
of both the super- and sub-critical liquid along any isotherm below TB. If we de-
note the density of the Boyle-work line ρBW(T), the linearity can be explained by 
considering the form of a rigidity symmetry line, which we will denote by ρRS(T). 
Now, we have a relationship between these two lines that turns out to be quite 
simple for argon. 

The RS line, defined by the equality [18] 
(dp/dρ)T = RT                         (15) 

has its origins in the symmetry of gas and liquid density fluctuations which are 
equivalent to ideal gas density variance along this line (Equation (2). Again, 
from the rigidity virial expansion Equation (6) we see a simple prediction. If the 
isotherm were to be perfectly symmetric, then the virial expansion that defines 
the rigidity for the gas below PB-line can be applied for liquid-state densities be-
tween the PA-percolation line and the rigidity symmetry line ρRS(T). Then, the 
rigidity for 

PA RSρ ρ ρ< <  

( )2 1
2 31 2 Δ 3 Δ Δ n

nRT b b nbω ρ ρ ρ −= + + + +            (16) 

where Δρ = (ρRS −ρ)T. The RS line ρRS(T), when Δρ = zero, decreases linearly with 
T. Along any isotherm the symmetry can be shown to extend to the BW line 
density ρBW(T). Since for all densities beyond ρPA(T) there are no phase transi-
tions of any order, both the Boyle work ratio w(T) and rigidity ω(T) are conti-
nuous in all their density derivatives along the respective lines to the first-order 
phase transitions on condensation. If all the higher terms n ≥ 4 in the Equations 
(11)-(13) are negligible by cancellation for densities below ρPB, then, for the BW 
line 

( )2
2 31 Δ Δw RT b bρ ρ= + +                       (17) 

when Δρ = (ρBW − ρ)T. Then from (16) and (17), neglecting all bn terms n > 3, 
( ) ( )2 3RS BWT Tρ ρ=                         (18) 

It follows from Equation (18) that the BW line (p/ρB = RT) will relate to the 
RS line, dp/dρRS = RT, for all supercritical liquid-side states essentially exactly for 
lower densities above Tc. In the following sections, we establish empirically that 
the relationship is accurate over the whole T-range for argon from TB to the hy-
pothetical ground-states of BW and RS lines at 0T → . 

4.2. Ground-State Densities 

A selection of ω(T) isotherms for argon from NIST web book [6] is shown in 
Figure 10 for the temperature range Tc to TB. The densities corresponding to 
ω(T) and w(T) can be obtained very accurately at the points ρRS(T) and ρBW(T)  
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Figure 10. Rigidity isotherms for argon: the Boyle-work and rigidity symmetry 
lines for argon showing an extrapolation beyond intermediate hypothetical 
unstable states that define ground state solid density physical constants; the 
Boyle temperature and critical isotherms are shown as red lines; the green and 
blue dashed lines are the percolation loci PB and PA respectively, that bound 
the supercritical mesophase as shown. 

 
and are seen to be linear. The Boyle line is perfectly linear over the entire range 
with a slope that is consistent with the result in Equation (14). The BW ρBW(T) is 
essentially the same as −b2/b3(T) in Figure 9, with the same constant ground- 
state of 47.0 ± 0.5 mol/l. This is a remarkable equality: ρBW(T) = −(b2/b3)T relat-
ing the BW line to only the lower virial coefficients for Tc < T < TB. 

The BW line ρB(T) is empirically found to be near perfectly linear for argon 
from NIST data [6]. When an EXCEL trendline is fitted to the intersections 
whence p/ρB = RT below TB, as shown in Figure 10, we obtain the linear tren-
dline 

8.5881 403.26T Kρ= +    ( regression 2 0.9996R = ) 

to estimate the Boyle temperature (403.3 ± 0.5 K) and ground-state “crystal” con-
stant (46.96 ± 0.05 mol/l). 

The Boyle line describes a line of states for which all the virial coefficients in 
Equation (4) cancel. Since a straight line is continuous with all its higher deriva-
tives zero, it is not surprising that although the BW line describes unstable states 
(within 2-phase regions) below about 91 K when it hits the liquid-to-FCC freez-
ing transition, it terminates at a perfect classical close-packed crystal ground 
state characteristic density determined by the pair-potential Hamiltonian. 

The intercept of the rigidity symmetry line at T = 0 (32.5 mol/l) is closer to a 
frozen liquid state of amorphous packing of argon atoms in the liquid density 
range. Random close packed (RCP) density 2/π (0.6366) would correspond to a 
hard-sphere bond diameter of the argon dimer 0.3915 nm. The ρRS ground-state 
density constant for argon, however, is closer to triple-point liquid random loose 
packing, with a packing fraction around 50%, calculated from the experimental 
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Ar2 dimer bond length, and 1/3 of maximum crystal packing (74%). 
An analytical theory of simple liquids, without adjustable parameters, seems 

now within reach: i.e. to relate the Ar2 pair-potential Hamilton to the p(ρ,T) Eq-
uations-of-state in the regions of the phase diagram delineated by the lines PB, 
PA, RS and BW all of which are now defined by b2(T) and the linear ratio 
−b2/b3(T), obtainable from BW-line, of the phase diagram, over the whole den-
sity-temperature range. 

4.3. Argon Dimer Pair Potential 

The fundamental objective of the theory of simple liquids [16] is to relate the in-
termolecular or interatomic forces that define the Hamiltonian of the system, to 
the p(ρ,T) Equation-of-state. The pair potential for argon has been extensively 
studied, probably more so than any other exemplary fluid, and is known quite 
accurately both from original experiment [19] [20] [21] and more recently, ab 
initio quantum theory [22]. It is characterized, often only by 2 parameters e.g., 
Lennard-Jones, i.e. by the range of the minimum energy at the distance r0 of zero 
force. The experimental value is r0(Ar2) = 0.3704 ± 0.005 nm, based upon the 
more accurate functional representative of Boyes [21]. 

Assuming that the argon BW-line ground state is a perfect FCC or HCP 
close-packed lattice of spheres in the BW-crystal structure, we can calculate the 

( )0BW Tρ →  constant from the reduced maximum packing density of spheres 
* 3

0
1 22Nr Vρ = = . Substituting the argon dimer bond length, we obtain a pre-

diction of the ( )0 46.21BW Tρ → =  mol/l. 
It appears that the cluster analysis in section 2 above contains information on 

the maximum packing of argon atoms. This is understandable from the cluster 
physics analysis in section 2. If all the equilibrium constants kn were to be known, 
they would reveal this limiting, hypothetical, close-packed crystal density con-
stant. The virial expansion, evidently, has its first pole at the maximum packing 
density of minimum energy. 

This density obtained from the pair potential agrees well with the constant 
obtained from Figure 9, −(b2/b3)T ratio, and with the interpolation in Figure 10 
of the BW line to 0T →  (ρB0 = 46.96 mol/l). It is still, however, somewhat greater 
than the experimental HCP-argon crystal value 44.43 mol/l [23]. A small differ-
ence between the Boyle line hypothetical ground state physical constant could 
arise zero-point energy quantum effects in real crystal states. Argon undergoes 
an equilibrium FCC to HCP phase transition at a temperature around 35 K 
along its equilibrium experimental (p/ρB)T BW line [23]. 

4.4. Fluid Phase Diagram 

Using the experimental co-existence envelope data from NIST, for the present, 
we can construct an accurate phase diagram that enables the bounds of the p(ρ,T) 
Equations-of-state to be quantified. There are no arbitrary parameters other 
than the virial coefficients b2(T) and b3(T) and the physical constants that they 
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determine. The Boyle temperature TB is determined by b2(T): when it changes 
sign from −ve to +ve. The BW line ground state density is then equivalent to the 
(−b2/b3)T line, linear from T = TB. The value obtained in Figure 5 for the scaling 
ground-state constant is 47.34 mol/l. This compares favorably with the Kihara 
pair-potential value for the minimum energy of the FCC or HCP crystal 46.21 
mol/l. The experimental constant obtained from BW-line isotherms is 46.96 
mol/l (Figure 10). 

This ground-state constant, determined also from the virial coefficients, can 
be used to sketch an accurate phase diagram (Figure 11) using the various sim-
ple equalities derived above. The ratio −(b2/b3)T, below TB, determines the BW 
line ground-state constant for argon. Given the simple relationships between PA, 
PB, RS, and BW(T), we can determine the critical temperature Tc (whence ω(T) 
→ zero at ρPA(T) or ρPB(T), and then fill in the isotherms of p(T), w(T), or ω(T) 
over the temperature range from the triple point to the BW line and beyond, to 
the state points above the BW line below TB. 

The second observation from the argon phase diagram is that the equilibrium 
regions of the BW and RS lines completely exist only within a single Gibbs su-
percritical “liquid” phase with P = 1. Whereas the percolation transitions deli-
neate the supercritical gas and liquid regions by higher-order phase transitions, 
the BW and RS lines have no phase transitions and are therefore continuous in 
all their derivatives. Thus, both lines are defined by their ground state physical 
constant hypothetical densities obtained in linear interpolation limit that 

0T → . 
 

 

Figure 11. Temperature-density phase diagram of fluid argon 
states: the equilibrium mesophase defined by the percolation loci 
PB and PA, ρPB(T) and ρPA(T), are shown as green and blue solid 
lines respectively: both Boyle-work ρBW(T) and rigidity symmetry 
ρRS(T) are linear in the stable one-phase supercritical region in 
accord with Equations (16)-(18): the dashed arrows show the RS 
and BW ground-state constants. 

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

T(K)

Density (mol/l)

GAS
LIQUIDMESO

https://doi.org/10.4236/jmp.2024.155029


L. V. Woodcock 
 

 

DOI: 10.4236/jmp.2024.155029 631 Journal of Modern Physics 
 

5. Conclusions 

A line of thermodynamic symmetry between gaseous and condensed (liquid or 
solid) state densities on the Gibbs T-ρ surface is perfectly well-defined by the 
phenomenological equality between the rigidity (ω − dp/dρ)T of liquid states and 
the properties of the low-density ideal gas, ( )0 RTω ρ → = , the RS line ρRS(T). 
Because of the cancellation of the higher virial coefficients for simple liquids like 
argon, the RS line is seen to be linearly related to the BW line by (ρRS/ρBW)T = 2/3 
along any isotherm in the whole range of its equilibrium existence. 

Knowledge of the RS line for simple and more complex molecular liquids can 
lead to accurate physical constant Equations-of-state for all fluid states below the 
Boyle temperature in the spirit of van der Waals. Such progress requires the cor-
rect phase-transition science, without resort to any arbitrary or adjustable para-
meters, given the temperature-dependent lower virial coefficients and some phys-
ical constants that can define percolation lines and coexistence lines on the phase 
diagram. For regions of the extended liquid phase, and for all densities below the 
rigidity symmetry line, the thermodynamic properties can be accurately pre-
dicted from the properties of the gas phase below TB given the 2nd virial coeffi-
cient b2 and either the ratio −(b2/b3)T for the range Tc < T < TB, or equivalently 
just the BW line ground state constant ρBW(0). 

Finally, there is a discrepancy between our result for the BW ground-state 
solid density constant in this analysis (ρBW(0) = 46.96 mol/l whereas the experi-
mental close-packed HCP (same density as FCC) at minimum energy 0 KT →  
for argon: 44.20 mol/l [23]. One expects a small difference from the quantum 
zero-point energy of the real crystal, but not of the order 10%. Our symmetry 
analysis, however, assumes that the relationship between the virial coefficients bn 
and equilibrium constants kn (Equations 8-10) are analytic. This result may only 
apply exactly to pairwise additive Hamiltonians. If a “true” Ar2 Kihara pair po-
tential [24] obtained only from the second virial coefficient is used, the maxi-
mum ground-state density (46.21 mol/l), corresponding to minimum energy, is 
closer to our ρBW(0) than to the experimental value of crystalline argon. 

In conclusion, there are non-negligible non-pairwise additive terms in the real 
argon Hamiltonian. The contribution of 3-body triple-dipole potential disper-
sion force depends upon the size and shape of the rij, rik, rjk triangle. The energy 
is positive for all acute triangles, and those up to 117˚, and negative for all other 
obtuse triangles. The net effect of 3-body terms in dense fluid media has been 
known since 1970 [25] (quote: “…it is found that the effect of three-body forces 
is to expand the liquid by approximately 8%”). This explains the ground-state 
discrepancy: ρBW(0)/1.08 ~ ρ(Ar-expt.)(0). Non-additivity does not, however, vitiate 
the “holy grail” of “Theory of Simple Liquids” [16], i.e. deriving a p(ρ,T) Equa-
tion-of-state, without any fitted parameters, from a pairwise Hamiltonian. 
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