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Abstract 
This paper proposes a new combined model accounting for short memory, 
long memory, heterogeneity, and switching regime to model realized volatili-
ty and forecast future volatility. We apply daily realized volatility series of 
SPX to estimate volatility model parameters of in-sample and full-sample, 
and forecast future daily out-of-sample volatility. The model estimated results 
show the significant impact of long memory, switching regime, heterogeneity 
and jump component. The results of out-of-sample volatility forecast evalua-
tion indicate that MS-LM-HAR outperforms the other fifteen models based 
on the evaluating method of loss function and MCS. Our findings suggest 
that incorporating the property of long memory and switching regime into 
HAR-type models can significantly increase the forecast performance of rea-
lized volatility models. 
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1. Introduction 

The essential feature of financial markets, such as S & P 500 index, is volatile, as 
shown in Figure 1. Volatility in financial market as a measurement of total risk 
plays a vital role in derivatives pricing, asset portfolio and allocation, quantitative  
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Figure 1. Daily price and returns of the S & P 500 index. 

 
investing strategies and risk assessment. Furthermore, volatility forecasting is 
crucial to its applications in quantitative investment and risk assessment. As 
computer technology develops, it is possible that high frequency trading data 
such as intra close price is available. Proposed by [1], realized volatility (RV) 
calculated by intra returns such as five minutes returns are widely used as a 
measuring proxy of daily volatility. With calculated realized volatility, we can 
directly build econometrical volatility models and further forecast future volatil-
ity. During past decades, lots of RV-based econometrical model has been devel-
oped. The earliest type of simple econometric models is the autoregressive (AR) 
model, being able to capture short memory in volatility dynamics. Although it is 
not difficult to estimate the AR model and forecast future values by using code 
packages, few studies directly use it to forecast volatility. In fact, an ARMA-type 
model based on RV may perform well in forecast exercises [2]. 

To improve forecast accuracy, some current literatures have dedicated to ex-
tend the AR model to capture the important properties in volatility. The earliest 
extension is to incorporate the property of long memory by fractional differenc-
ing in AR model, such as the AutoRegressive Fractionally Integration Moving 
Average (ARFIMA) model [3], which is a popular model to capture long mem-
ory of financial time series. Early simulating results examine the superiority of 
ARFIMA model in forecasting long memory time series compared with ARMA 
models [4]. The empirical results in [5] suggest that the AR model can provide 
better forecasting performance than a fractional integrated process. An empirical 
study in [6] shows that ARFIMA model with exogenous variables (ARFIMAX) 
has better forecast accuracy of realized volatility. The work of [7] shows that the 
methods based on fractional integration are superior to alternatives not ac-
counting for long memory. Therefore, there are no consistent conclusions about 
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which model is better. 
Long memory behavior observed in the time series may be real long memory 

described by the fractional integration process, or spurious long memory which 
may be induced by the property of switching regime in volatility. There is still no 
consistent conclusion whether it can be efficiently distinguished between the 
ARFIMA model which can capture long memory and the Markov switching (MS) 
model which can capture switching regime [8]. As an alternative to ARFIMA 
model, it is an appropriate way to model volatility by making the parameter of 
AR model change with transitional probability or by combining fractional inte-
gration and switching regime. The Markov switching AR model (MS-AR) is an 
enhanced AR model with time-varying parameters. Some empirical results show 
that MS-AR model outperforms ARFIMA-based models in a forecast evaluation 
[5]. 

Alternatively, [9] proposed the Heterogeneous AutoRegressive (HAR) model 
to accommodate multiscaling dynamic and long memory. In fact, the standard 
HAR model has a simple autoregressive structure for RV with economical mea-
ningful fixed lagged average RVs (that is, 1, 5, 22, to represent daily, weekly, and 
monthly). It is strongly possible to make extensions from the AR model to im-
prove the ability of volatility forecasting. Some empirical results show that the 
HAR-type model display advantage in forecast compared with the fractional in-
tegrated (FI) model, the fractional integrated generalized autoregressive condi-
tional heteroscedastic (FIGARCH) model and fractional stochastic volatility 
(FSV) model for short horizons [10]. 

In recent years, the extensions of HAR-type with regime switching (MS-HAR) 
have been explored in current literature [11] [12] [13] [14]. Most of these studies 
indicate that MS-HAR type model is significantly better than the benchmark 
HAR model. Moreover, another different extension incorporating the exogenous 
factors into the prevailing HAR model, such as jump component [11] [15], in-
vestor attention [13], and trade tensions [16], can also achieve superior fore-
casting performance under low volatility level. 

Although HAR type model accounts for long memory to some extent, it is not 
enough to capture long memory in volatility. The presence of the long memory 
parameter is often important in addition to the HAR models [17]. According to 
the simulated results of [17], it is necessary to consider long memory and HAR 
term in volatility models to capture volatility dynamic structure, and the combi-
nation of HAR and ARFIMA model (LM-HAR) is a good approximation to de-
scribe the property of long memory. 

Until now, many studies have empirically compared the forecasting perfor-
mance among volatility models with the properties of short memory, long 
memory, heterogeneity and switching regime, respectively. However, few study 
combine these properties to construct a hybrid realized volatility model, and to 
examine its estimating and forecasting performance. There is still no uniform 
conclusion whether combination of long memory, heterogeneity and switching 
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regime in a framework can improve the out-of-sample forecasting ability. Based 
on current literature, we wonder whether it is necessary and valuable to incor-
porate these properties in the modelling and forecast of realized volatility. This 
paper will explore this topic and provide corresponding empirical results. On the 
one hand, we further confirm the current findings, such as that accounting for 
long memory can significantly improve the volatility performance [7]. On the 
other hand, we provide different findings, such as that there is no significant 
improvement for induction of jump component, which is different from the 
conclusion in [15]. Moreover, this paper gets the new empirical findings of the 
new combined model which is still not explored in current literature. 

We firstly step by step incorporates the long memory, heterogeneity and 
switching regime into simple AR model to construct LM-AR, HAR and MS-AR. 
Secondly, we combine these properties with each other to construct new LM- 
HAR, MS-LM-AR and MS-HAR models. Finally, three properties are incorpo-
rated into AR model to construct a new hybrid model called MS-LM-HAR. Ad-
ditionally, the daily lagged jump component is added into all the above models 
to test whether jump has significantly impact on volatility and the robust results 
of out-of-sample volatility forecast performance improvement. The constructed 
AR-based models are shown in Figure 2. 

To evaluate the several models’ performance, we use the daily realized volatil-
ity series of S & P 500 stock index (SPX) to estimate sixteen models and adopt 
the recursive method to obtain the out-of-sample forecast for volatility. The 
main findings are as follows. We firstly find that the estimated model parame-
ters are significant, which means that the properties of long memory, Markov 
switching and heterogeneity may impact the the realized volatility process. And 
moreover, according to the evaluating results of out-of-sample volatility forecast, 
the MS-LM-HAR model performs best compared with other fifteen models. Se-
condly, although jump component may have significant impact on the realized 
volatility process, there is almost no further improvement for forecasting future 
volatility. 

The academic contributions of this paper are threefold. Firstly, this is the first  
 

 
Figure 2. AR-based volatility models in this paper. 
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study to accommodate the long memory and switching regime in HAR frame-
work and propose a new combination MS-LM-HAR model. Secondly, we dem-
onstrate the forecast superiority of MS-LM-HAR over MS-HAR, LM-HAR and 
HAR model from empirical evidence of S & P 500 realized volatility. Thirdly, 
this paper demonstrates that the introducing daily jump component into HAR- 
type models cannot improve the out-of-sample volatility forecast accuracy. Fi-
nally, this paper provides the new findings about the significance of importance 
components in combined realized volatility model and the volatility forecasting 
performance. 

The structure of our paper includes four sections. Section 2 provides the in-
dividual and combined specifications of econometric models for realized vola-
tility including AR, LM-AR, MS-AR, MS-LM-AR, HAR, LM-HAR, MS-HAR, 
MS-LM-HAR, AR-J, LM-AR-J, MS-AR-J, MS-LM-AR-J, HAR-J, LM-HAR-J, 
MS-HAR-J and MS-LM-HAR-J. Section 3 reports the empirical findings includ-
ing the data sample, the results of descriptive analysis, the in-sample and full- 
sample estimation results, and the out-of-sample forecasting performance for 
sixteen models. Loss function and MCS method are used to evaluate the forecast 
performance. The final section presents conclusions and some remarks. 

2. Specifications of New Combined Volatility Models 
2.1. The Original HAR Model 

With intraday high-frequency data which is available under the fast develop-
ment of computer technology, it is feasible to observe the daily volatility via 
several proxies of the realized volatility, including the realized variance [1], the 
realized bi-power variation [18], the realized range-based volatility [19], and 
the median-based volatility [20]. The realized variance (hereafter RV) can be 
used to measure the volatility at specific term with high frequency trading da-
ta. Specifically, the squared intraday returns are summed to calculate realized 
daily volatility: 

 2
,1t t jj

MRV r
=

= ∑  (1) 

where tRV  denotes realized variance at day t, , , , 1t j t j t jr p p −= −  denotes the 

j-th intraday return based on log-prices on day t, 1M  =  ∆ 
 denotes integer 

part of 1
∆

, Δ denotes sampling frequency. 

Based on heterogeneous market hypothesis (HMH), [9] introduced the hete-
rogeneous autoregressive model to model realized volatility, which is called HAR 
model. The specification of HAR model is expressed as follows, 

 0
W M
t tt h D t W M t hRV RV RV RVφ φ φ φ ε+ += + + + +  (2) 

where t hRV +  denotes the RV series at day t + h, tRV  denotes the historical 

value of past daily RV at day t, 4
0

1
5

W
t t iiRV RV −=
= ∑  denotes the average value 
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of past weekly RV series between day t − 4 and day t, 21
0

1
22

M
t t iiRV RV −=
= ∑  

denotes the average value of past monthly RV series between day t − 21 to day t, 
t hε +  is the disturbance term. h = 1, 5, and 22 corresponds to the cumulative vo-

latilities of 1 day, 5 days, and 22 days. 
When the weekly RV term and monthly RV term are deleted from the HAR 

model, the HAR model is simplified to the AR model with the lag order h, that is, 

 t h D t t hRV RVµ φ ε+ += + +  (3) 

We introduce the jump component to HAR model as 

 ,t h D t J D t t hRV RV Jµ φ φ ε+ += + + +  (4) 

where ,D tJ  is the daily jump component of realized volatility at day t, which is 
calculated as 

 ,D t t tJ RV BPV= −  (5) 

where tRV  is the realized variance at day t, tBPV  is the bipower variation at 
day t, which can be estimated by the following realized proxy [18]: 

 1
, , 11

M
t t j t jjRBV r r−

+=
= ∑  (6) 

2.2. The Long-Memory HAR (LM-HAR) Model 

The HAR model is a simpler model than ARFIMA model, and can be estimated 
through OLS method. To be suitable to more general situations, some versions 
of the basic HAR model have been extended in the literatures, for example, 
jumps [21] [22], leverage effect [23], implied volatility [24], unit root [25]. The 
HAR model has been shown to have more accurate forecast in out-of-sample 
period than ARMA and ARFIMA model [9] [25]. 

Some empirical results demonstrate that there is significant long memory in 
realized volatility series [26]. Therefore, the ARFIMA model is widely used to 
describe long memory for realized volatility by using a fractional difference op-
erator [27] [28] [29]. The specification of the LM-AR(p) model for realized vola-
tility is expressed as the following specification: 

 ( )( )1 d
t t pL L RV µ ε +− = +Φ  (7) 

where tRV  denotes the daily realized volatility, 1, ,t T=  , ( )0,1d ∈  denotes 
the fractional differencing parameter, ( ) 11 p

pL L Lφ φ= − − −Φ  is the autore-
gressive lag operator polynomial of order p, µ  is a constant, tε  is the white 
noise, ( )2~ i.i.d. 0,t εε σ , 2

εσ < ∞ , ( )1 dL−  denotes a fractional difference op-
erator, for any real number d, which can be expanded via binomial expansion 
based on Gamma function: 

 
( ) ( ) ( )( )

( ) ( )
( ) ( )

2 3

0 0

1 1 2
1 1

2! 3!

1
1

d

k k k
k k

d d d d d
L dL L L

k dd
L L

k k d
∞ ∞

= =

− − −
− = − + − −

Γ − 
= − =  Γ + Γ − 
∑ ∑



 (8) 
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where ( )Γ ⋅  is the Gamma function, 
( )
( )

a bk a
k

k b
−Γ +

→
Γ +

, ( ) 1
0

e dtt tαα − −∞
Γ = ∫ , 

( )1 k
k

d
k

λ
 

− 
 

= . 

The specification of the LM-HAR model for realized volatility is expressed as 
the following specification: 

 ( )( )1 d W M
t tt h W M tL L RV RV RVµ φ φ ε+− = + + +Φ  (9) 

where tRV  denotes the daily realized volatility, 1, ,t T=  , ( )0,1d ∈  denotes 
the fractional differencing parameter, ( ) 11 p

pL L Lφ φ= − − −Φ  is the autore-
gressive lag operator polynomial of order p, µ  is a constant, tε  is the white 
noise, ( )2~ i.i.d. 0,t εε σ , 2

εσ < ∞ . The combined LM-HAR model shown in 
formula (9) is constructed based on the incorporation of the long memory de-
noted by a fractional difference operator ( )1 dL−  into the formula (2). When 
( ) 1 h

DL Lφ= −Φ  and d = 0, then the LM-HAR model is simplified as the HAR 
model. When ( ) 1 h

DL Lφ= −Φ  and d = 0, then the LM-HAR model is simpli-
fied as the HAR model shown in Model (2). When the weekly RV term and 
monthly RV term are deleted from the LM-HAR model, the model is simplified 
to the LM-AR model shown in Model (7). 

2.3. The Markov Switching HAR (MS-HAR) Model 

On the estimation view, the Markov switching (hereafter MS) model should be-
have more like a short memory process. However, as shown by the previous stu-
dies, the MS model seemingly also induces to long memory observed in the 
many fields. Commonly, spectral estimators such as local Whittle type may view 
the MS process as long memory [30]. Regime switching dynamics in the MS 
model are driven by state variable, which has the general assumption of being 
stationary Markov Chain with a matrix of transition probability. Thus, the MS 
model may happen to have some important features, such as long memory. For 
empirical perspective, the MS model has been applied to quantitatively describe 
the different dynamic behavior under each state, such as the bubble series of 
crude oil price [31]. 

The form of the autoregressive model with Markov switching regime (hereaf-
ter MS-AR) can be specified as follows: 

 ,1t t tt S k S t
p

k S tky yµ ϕ σ ε−=
= + +∑  (10) 

where ty  is the original series at time t, tS  denotes the state variable at time t 
for ty . At regime tS  and time t, 

tSµ  denotes the intercept, , tk Sϕ  denotes 
autoregressive coefficient, and 

tSσ  denotes standard deviation. tε  denotes the 
residual series with ( )~ IIDN 0,1tε . 

This paper set the number of switching state as 2, that is, 1tS =  for the first 
state, otherwise, 2tS =  for the second state. For the original series { } 1

T
t t

y
=

, we 
can obtain a state series { } 1

T
t t

S
=

, which can be assumed to be a stationary and 
irreducible Markov process. Let { }1 |ij t tp P S j S i+= = =  denotes a switching 
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probability from state i at time t to state j at time t + 1, where i, j = 1, 2. Then, the 
state transition probability matrix for series { } 1

T
t t

y
=

 can be expressed as: 

 11 12

21 22

p p
P

p p
 

=  
 

 (11) 

Therefore, the intercept, autoregressive coefficient and variance are switching 
states with respect to an indicator variable. In detailed, 1µ  and 2µ  denote the 
mean of state 1 and 2, respectively, ,1kϕ  and ,2kϕ  denotes the autoregressive 
coefficient for state 1 and 2, respectively, and 2

1σ  and 2
2σ  denote the variance 

for state 1 and 2, respectively. 
For realized volatility in our study, when autoregressive coefficient is Markov 

switching with two switching states and one lag order, the specification of 
MS-HAR model is expressed as follows, 

 0 , t

W M
t tt h D S t W M t hRV RV RV RVφ φ φ φ ε+ += + + + +  (12) 

where tS  denotes the state variable at time t for tRV . When the weekly RV 
term and monthly RV term are deleted from the MS-HAR model, the model is 
simplified to the MS-AR model with the following specification: 

 0 , tt h D S t t hRV RVφ φ ε+ += + +  (13) 

2.4. The Markov Regime Long Memory HAR (MS-LM-HAR) Model 

Inspired by existing literature, we propose an Markov switching long memory 
HAR (MS-LM-HAR) model to capture long memory and switching regime in 
realized volatility. To capture the property of long memory in realized volatility, 
we integrate a fractional difference operator ( )1 dL−  into the MS-HAR model 
shown in Model (12). The corresponding specification of MS-LM-HAR model 
can be expressed as: 

 ( )( ),1 1
t

d W Mh
t tD S t h W M t hL L RV RV RVφ µ φ φ ε+ +− − = + + +  (14) 

where , tD Sφ  denotes the autoregressive coefficient of tRV , which is Markov 
switching with two switching states. When the weekly RV term and monthly RV 
term are canceled from the MS-LM-HAR model, the model is simplified to the 
MS-LM-AR model with the following specification: 

 ( )( ),1 1
t

dh
D S t h t hL L RVφ µ ε+ +− − = +  (15) 

In a word, the combined model called MS-LM-HAR shown in (14) can be 
constructed based on the following steps. The first step is to use realized variance 
RV to build the standard HAR model shown in (2), the second step is to add a 
fractional difference operator ( )1 dL−  in HAR model to formulate the LM- 
HAR model shown in (9), and finally the third step is to make the autoregressive 
coefficient of tRV  be Markov switching with two switching states to formulate 
the combined MS-LM-HAR model shown in (14). 

The proposed new combined model could synchronously capture the impor-
tant properties of long memory, heterogeneity and switching regime, which can 
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make up for some shortcoming of the traditional AR model, and improve the 
forecast performance of realized volatility. 

3. Empirical Results 
3.1. Data Sample and Statistical Analysis 

The 5-minute close price of the Standard & Poor’s 500 index (hereafter SPX) is 
chosen as data sample. The daily close price and realized variance calculated by 
the squared sum of 5-minute close return calculated from the Thomson Reuters 
DataScope Tick History database is downloaded from the Oxford-Man Institute 
(its website is https://oxford-man.ox.ac.uk/). To calculate the SPX daily realized 
volatility, the 5-minute intra return is first calculated by the following definition 
of log return as follows, 

 ( )1logt t tr P P−=  (16) 

where tP  denotes close price at day t, and log(∙) is the logarithm function. 
Adopting the methodology of [1], the SPX daily realized volatility used in this 

paper is taken as the daily volatility proxy calculated as follows, 

 2
,1t t jj

MRV r
=

= ∑  (17) 

where ,t jr  denotes the j-th close return which is defined as Equation (16), M 
denotes the number of 5-minute close return on the day t. To avoid the impact 
of COVD-2019 on the volatility process, the period of the SPX daily realized vo-
latility sample ranges from January 05, 2000 to December 31, 2019. 

The full sample of daily return and realized volatility for SPX is shown in the 
left and right of Figure 3, respectively. The results of statistical analysis for daily  

 

 
Figure 3. Daily realized volatility of S & P 500 index. 
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return and realized volatility for SPX in all sample periods are provided in Table 
1, respectively. It is shown from the results of skewness, kurtosis, JB, KS and sta-
ble index α of stable distribution that all the daily return and volatility series are 
characterized by leptokurtic distribution. All the significant test results of Ljung- 
Box (LB) and ADF statistic indicate that the daily return and volatility expe-
rience short memory and they are not unit root process, however, from the es-
timate results of fractional differencing parameter (d) and Hurst exponent (H), 
the daily return doesn’t have long memory, but the daily volatility has significant 
long memory and are most likely nonstationary. Therefore, all of volatility series 
appear the important properties, including long memory, time-varying, right 
skewed, fat tail, and short memory. 

3.2. Estimated Results of Volatility Models 

The in-sample and full-sample of realized volatility series are separately used to 
estimate the following 16 realized volatility models: AR, LM-AR, MS-AR, 
MS-LM-AR, HAR, LM-HAR, MS-HAR, MS-LM-HAR, AR-J, LM-AR-J, MS-AR-J,  

 
Table 1. Statistical analysis of return and realized volatility for SPX. 

Statistic 
Full-Sample In-Sample Out-of-Sample 

Return Volatility Return Volatility Return Volatility 

N 5016 5016 4767 4767 249 249 

Min −0.0969 1.2181 × 10−6 −0.0969 1.2181 × 10−6 −0.0303 1.9708 × 10−6 

Max 0.1064 0.0077 0.1064 0.0077 0.0337 2.5871 × 10−4 

μ 1.5910 × 10−4 1.0526 × 10−4 1.1426 × 10−4 1.0884 × 10−4 0.0010 3.6659 × 10−5 

σ 0.0118 2.4015 × 10−4 0.0120 2.4565 × 10−4 0.0079 3.8859 × 10−5 

Skewness −0.2173 12.0305 −0.2038 11.7845 −0.6046 2.7570 

Kurtosis 11.2466 262.77 11.1181 251.83 6.0256 12.4982 

JB 1.4253 × 105*** 1.4224 × 108*** 1.3123 × 105*** 1.2409 × 108*** 110.14*** 1.2514 × 104*** 

KS 0.4793*** 0.5000*** 0.4792*** 0.5000*** 0.4879*** 0.5000*** 

Q (5) 50.1340*** 9.2241 × 104*** 47.0111*** 8.7228 × 104*** 3.3610** 182.50*** 

Q (10) 55.7820*** 1.5645 × 105*** 53.7640*** 1.4783 × 105*** 11.4565** 223.58*** 

ADF −75.8574*** −28.0728*** −73.9543*** −27.3700*** −16.7672*** −6.1913*** 

H 0.4426 0.8218 0.4303 0.8007 0.5052 0.9093 

d −0.0334 0.4941 −0.0326 0.4963 −0.0096 0.6719 

α 1.5068 0.8247 1.5041 0.8342 1.7081 0.9878 

Notes: Full-sample is from January 1, 2000 to December 31, 2019, in-sample is January 1, 2000 to December 31, 2018, out- 
of-sample is from January 1, 2019 to December 31, 2019. JB, KS, ADF and Q(m) denots the Jarque Bera, Kolmogorov-Smirnov, 
Augument Dickey-Fuller and Ljung Box statistic at the order m. d denotes the fractional differencing order estimated by ELW 
[32], H is the Hurst index estimated by R/S_Com [26], α is the stable parameter of stable distribution. *, ** and *** show signifi-
cant at nominal level 10%, 5% and 1% for JB, KS, Q (5), Q (10), and ADF, respectively. Only the estimate results are shown for N, 
Min, Max, μ, σ, Skewness, Kurtosis, H, d and α. 
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MS-LM-AR-J, HAR-J, LM-HAR-J, MS-HAR-J and MS-LM-HAR-J. There is new 
challenge of parameter estimation for the combined model. The Quasi maxi-
mum likelihood method which assumes that innovation distribution is normal 
distribution is used to estimate the model parameters. Table 2 and Table 3  

 
Table 2. In-sample estimated results of HAR-type models for SPX daily realized volatility. 

Parameter AR LM-AR MS-AR MS-LM-AR HAR LM-HAR MS-HAR MS-LM-HAR 

μ 
0.0109*** 
(0.0008) 

0.0129** 
(0.0136) 

0.2474*** 
(0.0334) 

−0.0108** 
(0.0071) 

0.0014* 
(0.0007) 

0.0220** 
(0.0148) 

0.0013** 
(0.0006) 

0.0301*** 
(0.0020) 

Dφ  
0.6752*** 
(0.1115) 

−0.2122* 
(0.1203) 

−0.3303*** 
(0.1260) 

/0.9991*** 
(0.0006) 

23.5067*** 
(1.4247) 

/−0.1186** 
(0.0854) 

0.2751** 
(0.1191) 

−0.2579** 
(0.1172) 

0.2614** 
(0.1067) 

/3.6831*** 
(0.3317) 

−0.2421*** 
(0.0833) 

/−75.4524*** 
(0.8314) 

Wφ      
0.4093*** 
(0.1360) 

−0.1027** 
(0.1029) 

0.3525*** 
(0.1118) 

−0.1713** 
(0.0823) 

Mφ      
0.2262** 
(0.1007) 

0.0751** 
(0.0975) 

0.2240*** 
(0.0726) 

0.1147** 
(0.0779) 

d  
0.5448*** 
(0.1224) 

 
0.4332*** 
(0.0089) 

 
0.6107*** 
(0.1303) 

 
0.6031*** 
(0.0008) 

LLF 12288.40 12749.40 13393.50 14188.00 12692.30 12751.90 14161.40 13647.60 

P11/P22   
0.6617 
/0.9985 

0.0000 
/0.9976 

  
0.9854 
/0.0000 

0.9991 
/0.0000 

Parameter AR−J LM−AR−J MS−AR−J MS−LM−AR−J HAR−J LM−HAR−J MS−HAR−J MS−LM−HAR−J 

μ 
0.0254** 
(0.0170) 

0.1582** 
(0.1892) 

0.0044** 
(0.0031) 

−0.0050** 
(0.0100) 

0.0022** 
(0.0009) 

0.0168** 
(0.0242) 

0.0015** 
(0.0007) 

0.0260** 
(0.0348) 

Dφ  
0.8624*** 
(0.1235) 

−0.2133* 
(0.1174) 

0.7604*** 
(0.1109) 

/4.2173*** 
(0.3131) 

−0.0401** 
(0.0892) 

/25.0896*** 
(1.5332) 

0.4597*** 
(0.1431) 

−0.2311* 
(0.1244) 

0.3829*** 
(0.1196) 

/3.7245*** 
(0.3149) 

−0.1378* 
(0.0800) 

/−93.5260* 
(195.8920) 

Wφ      
0.3728*** 
(0.1394) 

−0.0659** 
(0.1055) 

0.3312*** 
(0.1200) 

−0.0777** 
(0.0998) 

Mφ      
0.2011* 
(0.1046) 

0.1488** 
(0.1084) 

0.2103*** 
(0.0730) 

0.1125** 
(0.0880) 

DJ  
−0.9500*** 

(0.2805) 
−0.6443*** 

(0.1754) 
−0.6177*** 

(0.1658) 
−0.3872*** 

(0.1200) 
−0.7430*** 

(0.2619) 
−0.7669*** 

(0.2725) 
−0.4909*** 

(0.1520) 
−0.5414*** 

(0.1335) 

d  
0.6952*** 
(0.1675) 

 
0.4433*** 
(0.0078) 

 
0.7511*** 
(0.2096) 

 
0.5934*** 
(0.0714) 

LLF 12489.00 12888.40 13646.70 14290.20 12831.80 12908.10 14280.00 13766.40 

P11/P22   
0.9762 
/0.0000 

0.9977 
/0.0000 

  
0.9848 
/0.0000 

0.9993 
/0.0000 

Notes: The results are for RV5 * 100 defined in Eq. (17) estimated and calculated by TSM 4.50 and Python. The order of AR part is 
p = 1. We use the Quasi maximum likelihood method to estimate model parameters. *, ** and *** show significant at level 10%, 
5% and 1% except for LLF and P11/P22, respectively. The standard error of the estimated parameters is presented in the parenthesis. 
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Table 3. Full-sample estimated results of HAR-type models for SPX daily realized volatility. 

Parameter AR LM-AR MS-AR MS-LM-AR HAR LM-HAR MS-HAR MS-LM-HAR 

μ 
0.0105*** 
(0.0008) 

0.0121** 
(0.0135) 

0.0049*** 
(0.0010) 

−0.0034** 
(0.0032) 

0.0013* 
(0.0007) 

0.0220** 
(0.0148) 

0.2732*** 
(0.0251) 

0.0203** 
(0.0161) 

Dφ  
0.6764*** 
(0.1112) 

−0.2121* 
(0.1201) 

0.5619*** 
(0.0902) 

/2.5301*** 
(0.4693) 

0.1043** 
(0.0949) 

/10.1308*** 
(1.1090) 

0.2753** 
(0.1190) 

−0.2577** 
(0.1168) 

−0.2769** 
(0.1246) 

/0.9959*** 
(0.0011) 

−0.2266** 
(0.0936) 

/−144.6910** 
(216.1530) 

Wφ      
0.4107*** 
(0.1355) 

−0.1013** 
(0.1022) 

−0.1827*** 
(0.0664) 

−0.1617* 
(0.0854) 

Mφ      
0.2247** 
(0.1001) 

0.0729** 
(0.0969) 

0.0783** 
(0.0594) 

0.1091** 
(0.0779) 

d  
0.5450*** 
(0.1223) 

 
0.2603*** 
(0.0136) 

 
0.6106*** 
(0.1297) 

 
0.5822*** 
(0.0335) 

LLF 13054.80 13541.30 14380.00 15063.60 13481.00 13544.00 14274.10 14484.20 

P11/P22   
0.9004 
/0.0312 

0.9927 
/0.0000 

  
0.5750 
/0.9984 

0.9992 
/0.0000 

Parameter AR−J LM−AR−J MS−AR−J MS−LM−AR−J HAR−J LM−HAR−J MS−HAR−J MS−LM−HAR−J 

μ 
0.0244** 
(0.0163) 

0.0170** 
(0.0241) 

0.0042*** 
(0.0014) 

−0.0015** 
(0.0041) 

0.0021** 
(0.0009) 

0.0170** 
(0.0241) 

0.0015** 
(0.0007) 

0.0257*** 
(0.0060) 

Dφ  
0.8630*** 
(0.1232) 

−0.2306* 
(0.1242) 

2.7311*** 
(0.4819) 

/0.7353*** 
(0.0982) 

10.1353*** 
(1.1546) 
/0.1676** 
(0.1107) 

0.4591*** 
(0.1429) 

−0.2306* 
(0.1242) 

3.7222*** 
(0.3151) 

/0.3828*** 
(0.1195) 

−0.1373* 
(0.0817) 

/−96.1012*** 
(34.0814) 

Wφ   
−0.0644** 
(0.1050) 

  
0.3745*** 
(0.1388) 

−0.0644** 
(0.1050) 

0.3324*** 
(0.1197) 

−0.0758** 
(0.0859) 

Mφ   
0.1461** 
(0.1080) 

  
0.1999* 
(0.1039) 

0.1461** 
(0.1080) 

0.2088*** 
(0.0726) 

0.1097** 
(0.0778) 

DJ  
−0.9466*** 

(0.2798) 
−0.7648*** 

(0.2718) 
−0.7855*** 

(0.1945) 
−0.2390** 
(0.1492) 

−0.7403*** 
(0.2612) 

−0.7648*** 
(0.2718) 

−0.4891*** 
(0.1517) 

−0.5398*** 
(0.1281) 

d  
0.7501*** 
(0.2091) 

 
0.2596*** 
(0.0146) 

 
0.7501*** 
(0.2091) 

 
0.5924*** 
(0.0118) 

LLF 13264.20 13707.50 14625.30 15099.40 13626.70 13707.50 15153.50 14609.80 

P11/P22   
0.0188 
/0.9035 

0.0000 
/0.9930 

  
0.0000 
/0.9851 

0.9993 
/0.0000 

 
provided the model estimated results for in-sample and full-sample, respectively. 

From the results, we can get the following empirical findings. Firstly, the rea-
lized volatility series experience distinct long memory. All the test results 
whether fractional differencing order is not significantly identical to zero are 
significant at the level 1%, and the minimum and maximum values are 0.2696 
and 0.7501, respectively. Moreover, the estimated value for the long memory 
models without Markov switching regime is bigger than the one for the same 
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specification of long memory models with Markov switching. For example, the 
estimated fractional differencing order for LM-AR is 0.6107 and 0.6106 for 
in-sample and full-sample, respectively, but the corresponding estimate for 
MS-LM-AR is 0.6031 and 0.5822 for in-sample and full-sample, respectively. 
This indicates that considering the Markov switching regime in the long memo-
ry model could reduce the extent of long memory, but the estimated results are 
still significant. 

Secondly, there is distinct switching regime in realized volatility series. From 
the estimated results, we can see that all the autoregressive coefficients are sig-
nificant. For example, the estimated values of Dφ  in MS-HAR model are 0.2614 
and 3.6831 for state 1 and 2, respectively. The similar results are shown from es-
timated results for full-sample. Therefore, the property of switching regime 
should be considered in the realized volatility model. 

Secondly, the estimated coefficients for weekly and monthly term in HAR, 
HAR-J, MS-HAR and MS-HAR-J are almost significant. This further demon-
strates that realized volatility series have distinct long memory. Furthermore, in-
troducing long memory into HAR model makes the regression coefficients change 
for weekly and monthly term. For example, 0.4093Wφ =  and 0.2262Mφ =  for 
HAR model are significant, but 5 0.1027φ = −  and 22 0.0751φ =  for LM-HAR 
model. The results indicate that there is common information between hetero-
geneity and long memory for volatility series. 

Thirdly, at level 1%, the impact of jump on realized volatility is significantly 
negative. These findings are in agreement with those in current literature, for 
example [33]. For in-sample, the coefficients of daily jump in the models with 
jump components including AR-J, LM-AR-J, MS-AR-J, MS-LM-AR-J, HAR-J, 
LM-HAR-J, MS-HAR-J and MS-LM-HAR-J are −0.9500, −0.6443, −0.6177, 
−0.3872, −0.7430, −0.7669, −0.4909 and −0.5414, respectively. Similarly, all the 
coefficients of daily jump for full-sample are also negative. The negative coeffi-
cient suggests that past daily negative jumps can result in higher future volatility 
than positive jumps, which is called the leverage effect of jumps. 

3.3. Loss Function Comparison Results of Out-of-Sample Volatility 
Forecast 

Although the in-sample estimation of a model can provide the useful informa-
tion for describing the relationship between variables, we face with the problems 
that the model which is in-sample overfitting has bad forecast performance. 
Therefore, in contrast to the in-sample estimation, as a more efficient way to 
evaluate the model performance, the out-of-sample forecast concerns about the 
ability of models to forecast future volatility and should be paid more attention 
to in the applications. This section provides the evaluating results of volatility 
forecast performance in out-of-sample. 

To get volatility forecast in out-of-sample, we consider the recursive method 
to obtain the future forecast. In details, we select the period from January 1, 2000 
to December 31, 2018 as the first sample for estimating, and get the first forecast 
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for four steps of 1, 5, 10, 22 ahead. Then, the model contained in the same set-
tings is re-estimated in the second estimating sample which is expanded by add 
the first observation in the out-of-sample, and the second forecast is obtained. 
The model estimation and forecast are repeated until all the forecast for 
out-of-sample is obtained. The number of out-of-sample volatility forecast in 
this paper is totally 249. 

After all the forecasts have been obtained, loss function can be calculated to 
directly assess the performance of out-of-sample volatility forecast for the com-
peting models. According to [34] and [35], we choose popular robust loss func-
tions, that is, the mean squared error (hereafter MSE) and the mean absolute 
error (hereafter MAE), which are respectively defined as, 

 ( )22 2
1

1 ˆMSE t
n

ttn
σ σ

=
= −∑  (18) 

 2 2
1

1 ˆMAE tt
n

tn
σ σ

=
= −∑  (19) 

where n is the number of forecasting volatilities, 2ˆtσ  denotes the variance fore-
cast at day t, and 2

tσ  denotes the true variance at day t or conditionally un-
biased volatility proxy. In fact, since the real latent volatility is not observed, it is 
difficult to evaluate the out-of-sample volatility forecast performance of volatility 
models. A practical solution is to substitute the true variance with a volatility 
proxy, and evaluate the models by comparing its forecast volatility series to the 
volatility proxy series. 

Table 4 gives the calculated results of loss function MSE and MAE of out- 
of-sample volatility forecast for 16 models. The evaluating results verify that 
long memory models, especially LM-AR, significantly outperform short memory 
model and Markov switching model. Moreover, the introduction of daily jump 
into the models cannot improve the out-of-sample forecast accuracy, and a 
combination of long memory, Markov switching and daily jump doesn’t make 
out-of-sample forecast better. It is possibly caused that there is common infor-
mation or interactive impact among them. Some empirical results show that 
long memory or structural break (jump) could be induced by each other. Long 
memory induced by the short memory process contaminated by structural break 
or jump is spurious long memory, and structural break induced by long memory 
is spurious structural break. 

3.4. MCS Test Results of Out-of-Sample Volatility Forecast 

According to previous studies, the evaluated results based on loss functions may 
be not robust. It cannot be concluded about the forecast performance of vola-
tility models only using a single loss function. Therefore, it is necessary to 
re-evaluate the performance by using other methods. Several evaluation proce-
dures have been proposed for this purpose, such the MSFE t-statistic introduced 
in [36] and [37], the superior predictive ability (hereafter SPA) proposed by [34], 
and the model confidence set (hereafter MCS) constructed by [38]. Since the  
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Table 4. Loss function calculated results of out-of-sample forecast for SPX daily realized volatility. 

Model 
MSE MAE 

1 Step 5 Step 10 Step 22 Step 1 Step 5 Step 10 Step 22 Step 

AR 1.5657 × 10−5 4.9321 × 10−5 6.2018 × 10−5 6.4260 × 10−5 0.0033 0.0066 0.0075 0.0076 

LM-AR 1.4573 × 10−5 1.2422 × 10−5 1.3509 × 10−5 1.5047 × 10−5 0.0033 0.0027 0.0029 0.0032 

MS-AR 1.1067 × 10−5 1.2886 × 10−5 1.5620 × 10−5 1.6566 × 10−5 0.0021 0.0027 0.0031 0.0032 

MS-LM-AR 9.8418 × 10−6 1.1432 × 10−5 1.2218 × 10−5 1.3066 × 10−5 0.0021 0.0024 0.0024 0.0025 

HAR 1.1144 × 10−5 7.9609 × 10−6 1.0745 × 10−5 1.6281 × 10−5 0.0024 0.0021 0.0023 0.0028 

LM-HAR 1.2320 × 10−4 2.9088 × 10−5 2.6893 × 10−5 2.3731 × 10−5 0.0108 0.0048 0.0045 0.0042 

MS-HAR 1.0561 × 10−5 7.8352 × 10−6 1.0308 × 10−5 1.5627 × 10−5 0.0022 0.0021 0.0022 0.0027 

MS-LM-HAR 1.0241 × 10−5 1.0073 × 10−5 1.0626 × 10−5 1.1616 × 10−5 0.0021 0.0021 0.0022 0.0023 

AR-J 1.8366 × 10−5 1.0908 × 10−4 2.2306 × 10−4 3.2902 × 10−4 0.0035 0.0100 0.0145 0.0176 

LM-AR-J 0.0011 2.0317 × 10−4 1.4279 × 10−4 1.0036 × 10−4 0.0336 0.0139 0.0115 0.0094 

MS-AR-J 1.2425 × 10−5 1.6263 × 10−5 2.3867 × 10−5 0.0014 0.0020 0.0023 0.0028 0.0111 

MS-LM-AR-J 9.9378 × 10−6 1.2416 × 10−5 1.3217 × 10−5 1.4976 × 10−5 0.0021 0.0025 0.0025 0.0028 

HAR-J 1.2695 × 10−5 1.1879 × 10−5 1.4235 × 10−5 1.8040 × 10−5 0.0026 0.0029 0.0030 0.0031 

LM-HAR-J 4.0683 × 10−4 1.1422 × 10−4 1.0203 × 10−4 8.5458 × 10−5 0.0199 0.0101 0.0093 0.0083 

MS-HAR-J 1.1176 × 10−5 8.9483 × 10−6 1.0752 × 10−5 0.0024 0.0023 0.0023 0.0024 0.0113 

MS-LM-HAR-J 1.2267 × 10−5 9.7165 × 10−6 7.2532 × 10−5 1.2135 × 10−5 0.0022 0.0022 0.0057 0.0022 

 
MCS method recently developed is an attractive and efficient one among the 
current methods, this paper chooses to use this method. 

As a newest method, MCS test is utilized to compare several volatility models 
and select the best model set from the given initial model set according to a giv-
en optimality criterion without requiring a benchmark to be specified. The MCS 
procedure comprises three steps: 

Step 1, set M = M0, where M0 denotes the initial model set including all the 
specifications of competing models. 

Step 2, at a significant level α , this paper use the MCS statistic to examine 
the null hypothesis that all the models have equal predictive ability (EPA), that 
is, 0, ,: 0N kl tH E d  =  . The statistic is defined as 

 
 ( )

,maxMCS k
k l N

k

d
T

Var d
⋅

∈

⋅

=  (20) 

where 1
1k kll Nd d

n⋅ ∈
=

− ∑  denotes the sample loss function of model k relative 

to the average losses for all models in the model set, 1,2, ,l N=  ,  
1

,1kl kl tt
nd n d−
=

= ∑  is the average of the relative loss between model k and l, 

, , ,kl t k t l td L L≡ −  is the differential of loss function at time t between model k and 
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l,  ( )kVar d ⋅  is the bootstrapped estimate of variance of kd ⋅ . 

Step 3, set the superior model set (hereafter SSM) as *
1M̂ Mα− =  when the 

test doesn’t reject the null hypothesis, or the worst model is removed from the 
model set M, and step 2 is repeated. Finally, this step can obtain the model con-
fidence set *

1M̂ α− . 
The results of MCS test of 16 volatility models are presented in Table 5. For 

MSE, at given significant level 0.20α = , the model confidence set encompasses 
the following models: MS-LM-AR, MS-HAR, MS-LM-HAR, MS-LM-AR-J for 1 
step ahead forecast, HAR and MS-HAR for 5 step, MS-LM-AR, HAR, MS-HAR, 
and MS-LM-HAR for 10 step, and MS-LM-HAR, MS-LM-HAR-J for 22 step, 
respectively. Similarly, for MAE, at given significant level 0.20α = , the model 
confidence set encompasses the following models: MS-AR, MS-LM-AR, MS- 
HAR, MS-LM-HAR, MS-AR-J, MS-LM-AR-J, and MS-LM-HAR-J for 1 step, 
MS-HAR and MS-LM-HAR for 5 step, HAR, MS-HAR, MS-LM-HAR for 10 
step, and MS-LM-HAR and MS-LM-HAR-J for 22 step, respectively. 

According to the MCS test results, we can get four significant findings as fol-
lows. Firstly, it is verified that the LM-AR or HAR or MS-AR model is better 
than AR. MS-AR-J is better than AR-J, LM-AR-J or HAR-J is almost as AR-J. 
The AR-based models with long memory or switching regime consistently  

 
Table 5. MCS test results of volatility models for S & P500 index 

Model 
MSE MAE 

1 Step 5 Step 10 Step 22 Step 1 Step 5 Step 10 Step 22 Step 

AR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 

LM-AR 0.0007 0.0001 0.0364 0.0000 0.0000 0.0000 0.0000 0.0000 

MS-AR 0.0473 0.0000 0.0039 0.0000 0.7500 0.0000 0.0000 0.0000 

MS-LM-AR 1.0000 0.0001 0.3762 0.0757 0.8337 0.0006 0.0340 0.0214 

HAR 0.0646 0.3538 0.6496 0.0000 0.0274 0.0055 0.3683 0.0000 

LM-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MS-HAR 0.4872 1.0000 1.0000 0.0000 0.2970 1.0000 0.6013 0.0000 

MS-LM-HAR 0.6345 0.0000 0.7469 1.0000 0.8885 0.2072 1.0000 0.7703 

AR-J 0.0001 0.0000 0.0000 0.0134 0.0000 0.0000 0.0000 0.0000 

LM-AR-J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MS-AR-J 0.0210 0.0002 0.0000 0.0256 1.0000 0.0443 0.0000 0.0028 

MS-LM-AR-J 0.7801 0.0000 0.1873 0.0000 0.7529 0.0003 0.0004 0.0000 

HAR-J 0.0111 0.0000 0.0449 0.0000 0.0000 0.0000 0.0000 0.0000 

LM-HAR-J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

MS-HAR-J 0.0288 0.0082 0.8303 0.0163 0.0045 0.0026 0.0366 0.0022 

MS-LM-HAR-J 0.0298 0.0003 0.0000 0.3995 0.6791 0.0120 0.0000 1.0000 
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outperform the ones without the corresponding property. 
Secondly, MS-HAR is better than HAR, and MS-HAR-J is better than HAR-J. 

But LM-HAR-J is almost as HAR-J, LM-HAR model is not better than HAR. It is 
obvious that combination switching regime with HAR model can improve fore-
cast performance, but tt is cautious to combine LM-AR and HAR model into 
LM-HAR, which can be still further researched. 

Thirdly, more important, according to the frequency of encompassing models, 
MS-LM-HAR model has 3 times for MSE and 4 times for MAE, with total 7 
times which is maximum frequency compared with other models. Therefore, 
MS-LM-HAR model is the best model amongst sixteen volatility models, fol-
lowed by MS-HAR model. 

Finally, AR-based models with jump component are not better than the ones 
without jump. In details, AR-J is almost as same as AR model, HAR-J is almost 
as HAR, and MS-LM-HAR-J is not better than MS-LM-HAR. Considering pre-
vious daily jump doesn’t improve the accuracy of out-of-sample forecast al-
though its estimated coefficient shown in Table 2 and Table 3 is significant. 

Therefore, we can draw the conclusion from above findings that combination 
long memory, heterogeneity and regime switching with AR model can signifi-
cantly improve volatility forecast performance. It is necessary to incorporate the 
property of long memory and switching regime into HAR-type model to model 
and forecast volatility, but not necessary for lag daily jump component. 

The MS-LM-HAR model yields higher forecasting accuracy then the other 
models, suggesting that accounting for the long memory, switching regime and 
heterogeneity can significantly improve the out-of-sample forecasting accuracy 
of realized stock volatility. 

 

 
Figure 4. The daily realized volatility out-of-sample forecast of S & P 500 index based on 
the combined MS-LM-HAR model. 
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4. Conclusions and Remarks 

This paper creatively proposes a new combined model of short memory, long 
memory, heterogeneity, switching regime and jump, called MS-LM-HAR-J, to 
describe the stylized facts in volatility series. By using realized volatility of SPX, 
we divide the full-sample (i.e., from January 1, 2000 to December 31, 2019) into 
in-sample (i.e., from January 1, 2000 to December 31, 2018) and out-of-sample 
(i.e., from January 1, 2019 to December 31, 2019). The Quasi maximum like-
lihood estimator is utilized to estimate the sixteen models’ parameters in the 
estimating sample moving forward by one observation, and forecast the out- 
of-sample volatility by 1, 5, 10, 22 steps ahead, respectively. 

The estimated results of in-sample indicate that the impact of long memory, 
jump component and switching regime on the realized volatility is significant. 
The evaluating results of volatility forecast in out-of-sample demonstrate that 
the property of long memory considered in LM-AR, HAR and LM-HAR model 
can significantly improve the forecast performance, but may not for switching 
regime and jump component. Moreover, LM-AR is the best model from the 
in-sample estimated results and the out-of-sample evaluated results. 

However, whether we should combine the LM-AR and HAR model into 
LM-HAR is still further researched by using more samples and other proxies of 
realized volatility. 

Totally, LM-AR is the best model from the results of in-sample estimation, 
loss function comparison, and MCS evaluation. 

The findings of this paper may benefit portfolio investors, risk managers and 
policy makers for minimizing risks, maximizing returns, and stabilizing the 
markets. Our findings have important implications for financial investors and 
market policymakers. 

However, it is not clearly conclusive results whether the combination of long 
memory in LM-AR model and heterogeneity in HAR model should be consi-
dered for volatility forecast. Certainly, some topics are worthy to further re-
search, such as robust checks by more samples and other proxies of realized vo-
latility, the extensive case with GARCH term and more factors. Moreover, the 
multivariate long memory and switching regime models are an excellent future 
direction for academic research in this field. 
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