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Abstract 
This paper offers a structural interpretation of the “leading indicator” proper-
ties of the yield curve observed in conventional times of monetary policy. 
Low levels of nominal interest rates and inflation, but a steeper yield curve, 
typically precede economic expansions. According to the model, if investors 
use bond markets mainly to hedge risk, positive economic news are only 
weakly transmitted into real interest rates, but monetary policy transmits 
them into lower inflation and nominal rates. A steeper yield curve reflects 
both expected faster growth and higher uncertainty about the growth path. 
Importantly, the mechanism conforms with other important term structure 
properties. 
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1. Introduction 

Inflation is back and with it the return of central banks to conventional mone-
tary policy and a renewed attention of investors to bond markets. This paper 
offers a structural interpretation of yield curve dynamics over the business 
cycle—the “leading indicator” properties of the yield curve-that have been ob-
served in times of conventional policy. In the data, the levels of nominal interest 
rates and inflation are typically negatively correlated with future output, while 
the long-short spread and expected excess returns (risk premia) are positively 
correlated with future output. That is, ahead of an expansion, nominal interest 
rates and inflation are low, while the yield curve is steep and expected excess re-
turns on long-term bonds over short-term bonds are high. Accounting for these 
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lead-lag dynamics of the yield curve is the main contribution of the paper rela-
tive to the literature. At the same time, however, emphasis is placed on the pro-
posed mechanism to be consistent, in general equilibrium, with standard yield 
curve moments: the average yield and volatility curves; the decomposition of the 
term structure into level, slope, and curvature factors; a single factor driving 
excess returns on bonds of different maturities; and the statistical properties of 
these reduced-form factors and their correlations with macro variables. 

In the model, the central bank follows a conventional monetary policy by 
controlling the interest rate on the shortest maturity in accordance with a Taylor 
rule. Preferences have the [1] form and the state space consists of four shocks 
(risk factors): a mean-reverting shock to the current level of productivity, com-
mon in real business cycle models; a persistent shock to the expected future 
growth rate of productivity a-lá [2]; a Taylor rule shock; and a volatility shock. 
Risk prices depend endogenously on these processes. Interestingly, the correla-
tions of expected excess returns with output growth at various leads and lags in 
the data suggest a dual role of the volatility shock: a positive volatility shock 
temporarily increases both the conditional variance and the conditional mean of 
future output growth. Consequently, volatility can be welfare neutral. The model 
is agnostic about the sources of this dual role and simply allows for it in the joint 
process for the shocks, a generalization of the consumption-volatility process of 
[2]. The model has a mapping into the [3] affine term structure model, whereby 
the reduced-form parameters of the [3] setup depend on the structural parame-
ters of the model. Most of results can be derived analytically, providing a clear 
insight into the mechanism. For reasons discussed below, the model also allows 
for the presence of hand-to-mouth agents and nominal price rigidities in goods 
markets. The equilibrium bond prices, however, are not particularly sensitive to 
such frictions. 

Starting with a flexible-price version of the parameterized model, in which 
hand-to-mouth agents do not play any role and the endogenous comovement 
between output and inflation is induced only by the Taylor rule, the notable 
properties of the equilibrium are as follows: 1) Only the expected growth factor 
has a price of risk substantially different from zero; 2) The time variation in the 
risk premium attached to this factor is driven by the volatility factor, which itself 
has a price of risk close to zero due to its near welfare neutrality; 3) The pricing 
kernel depends essentially only on expected inflation and the Epstein-Zin part 
pricing risk to lifetime utilities, with the standard intertemporal smoothing mo-
tive almost absent.1 These properties make the model consistent with the stan-
dard yield curve moments and, at the same time, offer a simple interpretation of 
the yield curve lead-lag dynamics: Low levels of nominal interest rates and a 
steeper yield curve observed in the data ahead of an economic expansion reflect 
news about higher future output growth, which is only weakly transmitted into 

 

 

1Features (a) and (b) echo the properties of the reduced-form model of [4]. In accordance with [4], 
the priced factor is correlated with the reduced-form level factor, while the factor driving move-
ments in risk premia is correlated with the reduced-form slope factor. 
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the real interest rate by intertemporal smoothing, but which the Taylor rule 
transmits into lower inflation. If the positive news about output growth is con-
tained in the volatility factor, a steeper yield curve also reflects higher expected 
excess returns due to elevated uncertainty about the (persistent) future growth 
path. 

In more detail, to carry a significant price of risk, a shock has to be either persis-
tent or large in size (have a large conditional variance). The expected growth factor 
has a persistent effect on bond investors’ expected consumption and lifetime utili-
ties and thus has a significant price of risk. However, for this mechanism to gener-
ate positive term premia on long-term nominal bonds in equilibrium, the elas-
ticity of intertemporal substitution of the stand-in investor has to be sufficiently 
high. This is different from models which have an exogenous joint consumption- 
inflation process (or at least contain some sources of exogenous covariance between 
the two variables).2 There are two reasons for this. First, a high elasticity of inter-
temporal substitution is required for a negative covariance between consumption 
growth and inflation, which is endogenously induced by the Taylor rule. Second, if 
the elasticity was low, a persistent decline in expected future consumption growth 
would significantly reduce the real interest rate through the intertemporal smooth-
ing motive. This would increase bond prices, making long-term nominal bonds a 
hedge, despite the negative effect on bond prices of higher inflation.3 The empirical 
lead-lag dynamics of the yield curve impose yet another constraint on the elasticity 
of intertemporal substitution to be high, by requiring a subdued response of the real 
interest rate to news about output growth.4 

Bond prices in the model thus predominantly reflect attitudes to risk inte-
racting with monetary policy, rather then intertemporal smoothing motives. In 
other words, from the perspective of the estimated model, bond prices imply 
that investors require only a small compensation to postpone consumption by 
an extra period, when investment payoffs appear to be certain. However, when 
faced with risky payoffs, the compensation for bearing risk has to be large. No-
minal bonds are risky because of the negative comovement between inflation 
and real economic activity, which is induced by conventional monetary policy 
summarized by the Taylor rule. 

A high elasticity of intertemporal substitution is not unusual in structural 
models of the yield curve. For instance, [10] and [6], who assume an exogenous 
consumption-inflation process, require the elasticity of intertemporal substitu-
tion to be around five and two, respectively.5 The endogeneity of the consump-

 

 

2E.g., [5] [6] and [7]. 
3Essentially, these adverse effects of a low elasticity of intertemporal substitution on the yield curve 
are different manifestations of the insights of [8] and [9]. 
4A low elasticity of intertemporal substitution would generate a large enough increase in the real in-
terest rate ahead of future output growth that would make nominal interest rates and future output 
growth, counterfactually, positively correlated and the term spread (excess returns) and future out-
put growth, counterfactually, negatively correlated. 
5This is higher than the median of the estimates in the literature, obtained typically from the res-
ponses of consumption growth to the real rate [11]. 
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tion-inflation process in this paper, as well as matching the lead-lag dynamics 
(not typically taken into account by the literature), require the elasticity to be 
even higher, between eight and ten. The real pricing kernel then effectively de-
pends only on the Epstein-Zin part pricing risk to lifetime utilities. This part is 
sufficiently volatile to satisfy the Hansen-Jagannathan bound without requiring 
unrealistically volatile consumption. The high elasticity of intertemporal substi-
tution inferred from the yield curve, however, appears to fly in the face of the li-
terature represented by e.g. [12]. This literature points out that consumption of 
many households is irresponsive to changes in interest rates but responds 
strongly to changes in current income. To check the robustness of the results 
against such empirical evidence, the model allows for the presence of hand- 
to-mouth households, as well as for sticky prices, which provide an additional 
source of endogenous comovement between output and inflation that deter-
mines bond prices. Although nominal price rigidities and hand-to-mouth agents 
improve the quantitative properties of the model in relation to the data, they do 
not materially change the equilibrium pricing kernel and, thus, the main results. 
This is because the New-Keynesian Philips Curve (NKPC) transmits, in a quan-
titatively meaningful way, only temporary shocks. While the impact of such 
shocks on macro variables is sizable, it is short-lived and its overall effect on 
equilibrium risk prices is small. The size of the hand-to-mouth population, in 
line with other macro models, amplifies the transmission of policy shocks. But 
for empirically relevant fractions of such households in the population, the re-
sulting amplification does not overturn the main results. 

The practical relevance of the model lies in providing further support to 
long-run growth shocks, in combination with monetary policy, as the main risk 
factor for bond prices. The additional support comes from showing that such 
shocks can not only account for the average yield curve, as already shown by the 
literature [6] [13], but also for its lead-lag dynamics. For instance, if the current 
geopolitical situation leads to subdued long-run growth and persistently higher 
inflation, then it is exactly the kind of shock that fits the long-run growth factor 
in the model. 

Affine term structure models [3] [14] have a long tradition in the study of 
monetary policy.6 The term structure of interest rates has been also studied 
within structural monetary models by, e.g. [24] [25] [26] and [27], as well as 
[28], and [29].7 Relative to this literature, the primary focus of this paper is on 
the cyclical lead-lag dynamics of the nominal term structure. A lead-lag behavior 
of various asset prices has been studied by [36]. But their model abstracts from 
the nominal side of the economy. In relation to the reduced-form affine term 

 

 

6See e.g. [15]-[21], and [22]. [23] provides a review of the literature. 
7Predecessors to the above models either derive the pricing kernel from preferences but take the 
inflation-output (consumption) process as given [5] [6] [10] [30], or derive the processes for output 
and inflation from a structural model but take the pricing kernel from an affine term structure mod-
el [31] [32]. Recent examples of the former approach are [7] and [33]. [13] and [34] solve for 
inflation, given a process for output; [35] do the opposite. [5] take into account the lead-lag correla-
tions between output and inflation as a part of the estimated exogenous output-inflation process. 
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structure models, the model-of course-cannot compete with that literature in 
terms of its empirical performance. For instance, the results suggest that the 
model misses factors behind movements in risk premia that are unrelated to the 
average business cycle.8 

Finally, a large literature studies the real effects of uncertainty shocks [37]. 
This paper is not concerned with the channels of transmission from uncertainty 
to real activity. While in the model (under sticky prices) output responds endo-
genously to volatility, most of the interaction between volatility and output 
comes from the exogenous process, which, in the asset pricing tradition [2] [36], 
is inferred from asset prices. This reveals that certain types of volatility shocks 
are related to the average business cycle and precede output.9 

The paper is structured as follows. Section 2 lists basic stylized facts about the 
nominal yield curve. Section 3 describes the model and explains the mechanism. 
Section 4 reports quantitative findings. Section 5 concludes. Online material 
contains an Appendix. 

2. Stylized Facts about the Term Structure 

This section lists selected stylized facts about the nominal yield curve and its re-
lationship to the macroeconomy that inform the construction and calibration of 
the model in the next sections. Most of the stylized facts are well known, a few 
less so. Where relevant, I note examples of studies that have previously docu-
mented various versions of these empirical regularities, possibly in different 
samples. Before proceeding, some notation and terminology are introduced. 

To start, one period in both the data and the model refers to a quarter. It is 
convenient to work with continuously compounded yields, returns, and growth 
rates. These variables are then reported in percent per annum. Let ( )n

tq  be the 
period-t price of a zero-coupon default-free bond that matures and pays one 
dollar in n periods. Continuously compounded yields can be inferred from a 
discounting formula ( ) ( )( )expn n

t tq ni= − , implying ( ) ( ) ( )1 logn n
t ti n q= − . Realized 

returns on holding a n-period bond for one period are defined as  
( ) ( ) ( )1

1 1log logn n n
t t tr q q−
+ +≡ − . Excess returns are then computed as ( ) ( )

, 1 1
n n

X t t tr r i+ +≡ − , 
where ( )1

t ti i=  is the short rate. Expected excess returns are given by ( )
, 1
n

t X tE r + , 
where the expectation operator is with respect to information up to and includ-
ing period t. Expected excess return quantifies the risk compensation, required 
ex-ante, for holding the n-period bond for one period and is estimated from 
standard forecasting regressions. 

The focus is on the period of conventional monetary policy 1961-2008. The 
stylized facts are presented for the period as a whole in order to capture the large 
long-run swings in inflation and interest rates and a sufficient number of busi-
ness cycles. Nonetheless, splitting the sample into the two commonly studied re-

 

 

8[7] point out shocks to the rate of time preference. 
9Although, by its very nature, the model has no time-varying idiosynscratic uncertainty [38] [39] 
[40], the volatility factor is a source of movements in the second moments of the pricing kernel, re-
sembling time-varying precautionary saving. 
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gimes, 1961-1979 and 1985-2008, produces qualitatively similar facts. The period 
of the zero-lower bound and quantitative easing is excluded as this period 
represents a major departure from conventional monetary policy and, as such, 
requires separate attention and different modeling approach. The maturities in-
cluded are 3 months and 1 to 7 years (the stylized facts are similar for the period 
1971-2008, for which the maturities are available up to 10 years).10 The stylized 
facts taken into account are as follows: 

1) Average yield and volatility curves. The yield curve slopes up on average; 
see the top-left panel of Figure 1. The volatility curve is fairly flat-the volatility at 
the long end is almost as high as the volatility at the short end; see the top-right 
panel of Figure 1. 

2) Level, slope, and return factors. Two principal components (PCs) account 
for over 99% of the total variance of yields across maturities, with the 1st PC ac-
counting for about 97% and the 2nd PC for a little over 2.5%. The 1st PC works 
like a “level factor”, shifting all yields more or less in parallel; the 2nd PC works 
like a “slope factor”, increasing the spread between the long and short rates [42] 
[43].11 See the bottom-left panel of Figure 1. A single PC accounts for essentially 
all variance (99%) of excess returns across maturities. The effect of this “return 
factor” on excess returns increases with maturity [4]. See the bottom-right panel 
of Figure 1. 

3) Properties of the level factor. The level factor is close to a random walk and 
is unrelated to the variation in excess returns [44]. The upper panel of Table 1 
shows the estimate of a VAR (1) matrix for the first five PCs of yields. It shows 
that the level factor is highly persistent, with statistically insignificant interac-
tions with the other PCs.12 (Granger causality tests, not reported, confirm that 
the level factor neither forecasts nor is forecastable by any other PCs.) The lower 
panel shows that forecasting excess returns with the level factor has R2 approx-
imately equal to zero.13 The level factor, however, is strongly positively correlated 
with inflation [15]; in the sample considered here, the correlation is 0.71.14 

4) Properties of the slope and return factors. The slope factor is statistically 
related to the return factor [47] [48]. The results of the forecasting regressions 
for the return factor (the lower panel of Table 1) report R2 equal to 0.08 when 

 

 

10The data for yields of maturities of one year and above come from the Federal Reserve Board data-
base on the nominal yield curve (the Gürkaynak-Sack-Wright dataset), with the 3-month T-bill rate 
taken from FRED. To compute realized returns, the required bond prices are obtained from the 
cross-sectional, date-specific, [41] curve that comes with the Gürkaynak-Sack-Wright dataset. The 
dataset is at daily frequency. Yields and log bond prices are converted to quarterly frequency by sim-
ple averaging (returns are then computed from the bond prices at quarterly frequency). Data for all 
other variables come from FRED. 
11A 3rd PC, accounting for 0.2% of the total variance, works like a “curvature factor”, changing the 
shape of the yield curve. 
12The persistence in the VAR is moreover likely underestimated due to a small sample bias [45] [46]. 
13In the forecasting regressions, the dependent variable is the return factor, the independent va-
riables are a constant and the PCs of yields specified in the table. 
14I take as the reference inflation rate the 1st PC (96% of the variance) of year-on-year inflation rates 
of the following price indexes: CPI, CPI less food and energy, PCE price index, PCE price index ex-
cluding food and energy, and the GDP deflator. 
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the slope factor is used as a regressor, with a statistically significant coefficient. If 
I let the return holding period be the more conventional one year, the R2 raises  

 

 
Figure 1. Top panel: U.S. average yield and volatility curves for 1961-2008. Bottom panel: loadings on the PCs of yields and excess 
returns. For yields, the contribution of the PCs is: 1st PC = 97.2%, 2nd PC = 2.6%, 3rd PC = 0.2%. For excess returns, the first PC 
accounts for 99% of the total variance. 
 

Table 1. Time series and forecasting properties of principal components of yields. 

  VAR (1) matrix 

  PC1 PC2 PC3 PC4 PC5 

 PC1 0.98 −0.11 −0.58 0.92 0.67 

 PC2 0.01 0.89 −0.58 −0.02 −0.85 

(t+1) PC3 0.00 −0.01 0.71 0.20 −0.41 

 PC4 0.00 0.00 0.02 0.78 0.19 

 PC5 0.00 0.00 −0.01 0.09 0.64 
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Continued 
 

specification 
regressors 

Forecasting regressions 

(1) (2) (3) (4) 

PC1 PC2 PC2 PC3 PC2 PC3 PC4 PC5 

coefficients 0.11 5.63 5.63 14.15 5.63 14.15 15.19 -1.83 

adj. R2 0.001 0.08 0.11 0.10 

Notes: The VAR (1) matrix is for a regression of a vector of the first five principal compo-
nents of yields in period t + 1 on the same vector in period t. In the forecasting regressions, 
the dependent variable is the first principal component of excess returns (the return factor), 
the independent variables are a constant and the principal components of yields specified in 
the table. The holding period is one quarter. In both tables, numbers in bold represent sta-
tistically significant estimates at 5% confidence level. PC1 is the first principal component of 
yields, PC2 is the second principal component of yields, and so on. The period is 1961-2008.  

 

to the typical value of about 0.2. As a direct consequence, the slope factor and 
expected (fitted) excess returns are closely related.15 

5) Yield curve and the business cycle. Yields exhibit a negative lead with respect 
to the growth rate of real GDP, whereas the slope of the yield curve and expected 
excess returns exhibit a positive lead [36] [50] [51] [52].16 Specifically, Figure 2 
plots ( )corr ,t j tx g+ , 6, ,0, ,6j = −   , where x is the variable of interest and g 
is the continuously compounded growth rate of real GDP, either quarter- 
on-quarter or centered year-on-year. The figure shows that the short rate has a 
strong negative lead, the long (7-year) rate has a weak negative lead, and the in-
flation rate has a negative lead similar to that of the short rate. Also, interest 
rates and inflation are negatively correlated with output growth contempora-
neously.17 The negative lead in yields occurs due to the level factor; the slope 
factor exhibits a positive lead, similar to that of the expected excess return.18,19 

3. The Model 

To avoid having to introduce new notation and equations, it is convenient to 

 

 

15Including the 3rd PC raises the adjusted R2 of the quarterly return regression from 0.08 to 0.11; in-
cluding also the 4th PC brings no further improvements in the fit. Including as a regressor the 
growth rate of real GDP, to allow for unspanned macro risk [49], did not significantly change the 
results in the sample considered here (not reported in the table). 
16[53] demonstrate that the negative lead of nominal interest rates is crucial for understanding the 
leading business cycle behavior of residential investment when house purchases are financed with 
mortgages. 
17As before, the inflation rate is the 1st PC of the inflation rates for various indexes. [54] document 
such inflation dynamics for a number of countries. 
18The expected excess return on the long bond is obtained from a [27] forecasting regression (i.e., 
from regressing excess return on the 7-year bond on a constant and the 7YR-3M spread). Essentially 
the same result is obtained if the slope factor is used as a regressor instead of the spread, or if the re-
turn factor capturing excess returns across maturities is used as the left-hand side variable. 
19Some authors argue that risk premia should be counter-cyclical [49]. When the correlations are 
computed with respect to the HP-filtered cyclical component of the level of real GDP, the contem-
poraneous correlation for the expected excess return is −0.44, with correlations at leads −6 to −1 be-
ing 0.38, 0.31, 0.19, 0.04, −0.11, −0.30, while those at lags 1 to 6 being −0.53 −0.56 −0.54 −0.52 −0.48 
−0.38. Risk premia in the sample are thus negatively correlated with current and past levels of out-
put, in accordance with [49]. 
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Figure 2. Yield curve and the business cycle. Cross-correlations with the growth rate of real GDP, 1961-2008. Bars are for a quar-
ter-on-quarter growth rate of real GDP, the solid line is for a centered year-on-year growth rate. The correlations are  

( )corr ,t j tx g+ , 6, ,0, 6j = −   , where x is the variable of interest and g is the growth rate of real GDP. 
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present the model in its full form that allows for sticky prices and hand-to-mouth 
agents. It is based on a stripped-down version of a two-agent New-Keynesian 
model studied by [55]. The flexible-price version used for the headline results is a 
special case of the general setup and this is pointed out where relevant. In the flex-
ible-price version, hand-to-mouth agents play no role, as will become clear below. 

The model has a convenient log-normal form that allows a straightforward, 
easy-to-interpret, mapping into the [3] affine term structure model. The New- 
Keynesian part is standard. The less standard features are the Epstein-Zin prefe-
rences and the state space. A fraction 1 λ−  of households are referred to as “bond 
investors”; the remaining fraction λ  are referred to as “hand-to-mouth” house-
holds who are excluded from financial markets.20 Within the two types, agents 
are identical. The only input into production is labor. Profits (dividends) of 
monopolistically competitive firms are split between the two types in a fixed 
proportion. That is, there is no trade in the claims on profits between the two 
types. In this sense the claims represent illiquid assets, such as unincorporated 
business, making the hand-to-mouth agents the “rich” hand-to-mouths of [56]. 

Where applicable, the notation from Section 2 carries over and interest rates, 
inflation rates, growth rates, and rates of return are, as before, continuously 
compounded. I adopt the convention that hats denote percentage or percentage 
point deviations from steady state and variables without a time subscript denote 
the steady state. The model allows for a deterministic trend. “Steady state” 
therefore refers to a balanced growth path. Up to a constant, ˆ logt ty y gt= − , 
ˆ logBt Btc c gt= − , ˆ logHt Htc c gt= − , and ˆ logt tw w gt= − , where ty  is output, 

Btc  is consumption of the bond investor, Htc  is consumption of the hand- 
to-mouth household, tw  is the real wage rate, and g is the growth rate of the 
deterministic trend, driven by productivity. The variables can be rewritten in 
terms of their growth rates as ( ), 1 1 1ˆ ˆlog logy t t t t tg y y g y y+ + += − = + −  and si-
milarly for the growth rates of Btc , Htc , and tw . The steady state of labor, in-
flation, and interest rates is a constant. To economize on space, throughout the 
paper the details of various derivations are relegated to the Appendix. 

3.1. Preferences, Technology, Monetary Policy 

Bond investors have [1] preferences 

 ( ) ( )
1

11 ,t Bt t tU c U
ρρρβ βµ +

 = − +   (1) 

where ( )0,1β ∈  is a discount factor, tU  is the lifetime utility from period t 
on, and ( )1t tUµ +  is period-t certainty equivalent of stochastic lifetime utilities 
from t + 1 on. Further, 1ρ ≤  controls the elasticity of intertemporal substitu-
tion, given by ( )1 1 ρ− . The certainty equivalent is based on expected utility 

 ( ) ( ) 1

1 1 ,t t t tU E U
ααµ + +

 =    (2) 

 

 

20Other terminology used in the literature is “savers” v.s. “spenders”, “unconstrained” v.s. “con-
strained”, or “participants” v.s. “nonparticipants”. 
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where tE  is the expectation operator based on period-t state variables. The pa-
rameter 1α ≤  controls the coefficient of relative risk aversion, given by 1 α− . 
Implicitly, labor supply of bond investors is assumed to be inelastic.21 

Nominal zero-coupon bonds of different maturities are available in zero net 
supply. The real pricing kernel is equal to the representative investor’s stochastic 
discount factor 

 
( )

1
, 1 1

1
1

.B t t
t

Bt t t

c U
m

c U

α ρρ

β
µ

−−
+ +

+
+

  
=        

 (3) 

The nominal pricing kernel is given by ( )$
1 1 1expt t tm m π+ + +≡ − , where 1tπ +  is 

a continuously compounded inflation rate between t and t + 1. In the real pric-
ing kernel, if α ρ= , 1tm +  becomes the standard marginal rate of intertempor-
al substitution for CRRA time-additive preferences. In that case, only consump-
tion growth between t to t+1 affects asset prices. If α ρ≠ , the pricing kernel 
also depends on lifetime consumption streams, embedded in the lifetime utili-
ties. A common assumption in the literature, which is also imposed here, is 

0α ρ− < . In this case, a higher 1tU +  is considered a good news by the investor 
and reduces the pricing kernel. In addition, it is assumed that 0α < . The budg-
et constraint of the bond investor is given by 

1
1

1 1 ,
1 1

t
t Bt t t B t

t

ib c b w l dε
π λ
−

+
+ −

+ = + +
+ −  

where 1tb +  denotes holdings of a one-period nominal bond between periods t 
and t + 1, t Bw l  is labor income, td  is aggregate dividends, and ( )1 ε−  is the 
share of the dividends claimed by bond investors. As bonds are in zero net 
supply and bond investors are all alike, bonds are not traded in equilibrium. 
Bonds of longer maturities can be priced by arbitrage, once the equilibrium no-
minal pricing kernel is determined. Leaving long-term bonds out of the budget 
constraint is thus inconsequential for the equilibrium.22 

The per-period utility function of the hand-to-mouth household takes the 
standard form in the New-Keynesian literature, ( ) ( )1log 1Ht Htc l ηω η+− + . Here, 

Htl  is labor, 0ω ≥  is a weight on disutility from labor, and 0η ≥  is the Frish 
elasticity. Like in the case of the bond investor, this utility function could be 
embedded in the Epstein-Zin form. However, as the decision problem of the 
hand-to-mouth household is static, such a formulation would be inconsequential 
for the equilibrium.23 The budget constraint of the hand-to-mouth household is 

 

 

21This assumption simplifies the equilibrium pricing kernel, facilitating more straightforward in-
sights into the results. An economic justification for this assumption could be the observation that 
most adjustments in aggregate employment and hours worked in the data occur in the lower half of 
the income distribution that likely characterizes hand-to-mouth households. 
22In other words, long-term bonds are redundant assets in this economy. The one-period bond is in-
cluded since, as described below, its interest rate is set by the central bank in relation to inflation 
and, thus, the bond pins down the nominal side of the economy. 
23The per-period utility function of the bond investor embedded in Equation (1) has the same form 
as that of the hand-to-mouth household, but with a general elasticity of intertemporal substitution of 
consumption and the weight on disutility from labor equal to zero. 
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Ht t Ht tc w l dε
λ

= +
 

and the optimal labor supply is characterized by the first-order condition 
log log logt Ht Htw c lη= + . 

Goods market clearing requires ( )1t Bt Hty c cλ λ= − + . Output is given by the 
production function log logt t ty gt z l= + + , where tz  is a log-deviation of 
productivity from the deterministic trend and tl  is aggregate labor. Dividends 
are determined as a residual from output, once labor is paid: t t t td y w l= − . The 
business sector has the usual setup with sticky prices, leading to the standard 
NKPC. When log-linearized around a zero inflation steady state (a common as-
sumption) the NKPC takes the well-known convenient form, 1 ˆt t t tEπ β π υ+= +Φ , 
where ˆ ˆt t tw zυ = −  is the log-deviation of the marginal cost from steady state 
and ( )( )1 1ζ βζ ζΦ ≡ − − , with ζ  being the Calvo parameter [57].24 Substi-
tuting for t̂υ  yields the NKPC in terms of output 

 ( )1 ˆ ,t t t t tE y zπ β π += +Ω −  (4) 

where 

1 .H

H

cw w
z zl z

η ε
ε
 Φ  Ω = + + −  

    
This is derived by combining the first-order condition for labor, the hand- 

to-mouth agent’s budget constraint, the production function, and the equation 
for dividends (see the Appendix for the derivation).25 When prices are flexible, 

0ζ = , Φ = Ω = ∞ , and ˆt ty z= . 
The model is closed with a Taylor rule 

 ( ) ( )*
, 1 ,t t y t y t ti i E g gπν π π ν ξ+= + − + − +  (5) 

where *π  is an inflation target and tξ  is a shock. The standard restrictions on 
the parameters apply: 1πν >  and 0yν > .26 

3.2. Exogenous Processes 

Two shocks, the productivity shock ( tz ) and the Taylor rule shock ( tξ ), have 

 

 

24Log-linearizing the NKPC eliminates the upward pricing effect due to precautionary price setting [58]. This effect, however, is muted in the 
present model due to the volatility shock also affecting the conditional mean of productivity growth, not just its variance. To keep the analysis 
simple, I proceed with the log-linear version. Log-linearizing the NKPC around the zero inflation steady state reduces the stochastic discount 
factor in the NKPC only to β . Given that β  is the same across agents, it renders irrelevant any discussion regarding which agent’s stochastic 
discount factor should be used to discount profits. In the calibrated model, the quarterly steady-state inflation rate π  is close to zero, equal to 
0.00975. 
25When the steady state is normalized so that 1w z= =  and bond investors are eliminated from the model ( 1λ = ), then 1ε =  (all dividends go 
to the hand-to-mouth agent) and H Hc y l= = . Consequently, Ω boils down to the standard expression in a representative-agent New-Keynesian 

model, ( )1 ηΩ = Φ + . As in [55], I normalize the steady state so that B Hc c= , B Hl l= , 1z = , and 1y = . Further, 0.65w = , which reflects the 

labor share in NIPA and is consistent with the preference parameter 0.65ω = . 
26Specifying the Taylor rule in terms of the output growth rate leads to a better fit of the model to macro and yield curve data than a specification 
in levels. Whether the current or expected growth rate is used has minuscule effects on the results, but the specification in terms of the expected 
growth rate is more convenient in terms of the state space. As in both the calibrated model and the data inflation is persistent, including into the 
Taylor rule also 1t tEπ +  has only small effects on the results. As in other models with Taylor rules, including tπ  is necessary for determinacy 
under flexible prices. 
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already been introduced and are standard in the macro literature. There are two 
additional shocks, ts  and tv , taken from the finance literature, whose role is 
explained below. The following stationary Gaussian processes are adopted for 
the four shocks 

 

  

( )

1

1

1 1

1

1 2

1 0
0 0 ,
0 0 0

t t

t z t z

t s t s t t t

t t

ax xA

z z a
s s a v v v B

ξ

φ
φ ω

ξ φ ξ
+

+

+ +

+

      
      = + − +      

           


 (6) 

 ( )1 1.t t tv v v v bθ ω+ += + − +  (7) 

Here, [ ), , , 0,1z s ξφ φ φ θ ∈ , 0v > , and , 0z sa a ≥ . Further, 0B ≥  is a 3 × 4 
matrix with positive entries only at 11 22,B B , and 33B , and 0b ≥  is a 1 × 4 
vector with a positive entry only at 4b . Consequently, 0BbΤ = . Finally, 

( )~ 0,t N Iω  is a 4 × 1 vector of innovations. At a certain point in the deriva-
tions below (at the point of evaluating the real pricing kernel, which depends on 
consumption growth), it will be convenient to work with the state space (6)-(7) 
written as 

 

 

( )

1

1

1 1
2

1

1

1 1 0
0 1 0 ,
0 0 1 0

tt d

t z t z

t s t s t t t

t t

axx A

z z a
s s a v v v B

ξ

φ
φ ω

ξ φ ξ
+

+

+ +

+

∆

 ∆ −     
      ∆ = − + − +      

     ∆ −      




 (8) 

 ( )1 1,t d t tv v v bθ ω+ +∆ = − +  (9) 

which is obtained by simply subtracting tx  and tv  from both sides of Equa-
tions (6) and (7), respectively. Here, 1dθ θ≡ − . The joint process (6)-(7), or 
equivalently (8)-(9), belongs in the class of stochastic volatility in the mean 
processes and conforms with the setup of the [3] affine term structure model. 

The shock tv  affects the conditional volatility of 1tx +  (or equivalently 

1tx +∆ ), through B, as well as its conditional mean, through a. The shock is thus 
both a volatility shock and a news shock about future productivity. This specifi-
cation is motivated by the Stylized Fact 5. In the model, tv  makes the second 
moments of the pricing kernel time varying and thus generates time-varying risk 
premia. The parameter a controls the extent to which the time-variation in risk 
premia, and thus expected excess returns, precedes the time variation in produc-
tivity growth, and thus in output growth. The lead-lag dynamics and risk pre-
mia, however, are not independent phenomena, and risk premia in equilibrium 
also depend on the parameter a.27,28 

The shock ts  is a shock to the conditional mean of 1tz +  (or equivalently 

1tz +∆ ). As such, it is a pure news shock about future productivity, similar to the 

 

 

27Strictly speaking, tv  must be greater than zero and thus cannot be Gausian. However, as in [43], it is possible to choose its variance so that the 

probability of tv  being zero or negative is low enough and think of the Gausian assumption as a convenient approximation. In the numerical 

experiments, the incidence of 0tv ≤  is under 0.1%. 
28The implicit assumption in the above processes-that tv  affects the conditional variance of all elements in 1tx + -is adopted for parsimony. In a 

more general model, there could be a separate volatility variable for each element of 1tx + . 
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shock to consumption and dividends in [2]. In contrast, tz  is a mean reversing 
shock to the current productivity level, typical for RBC models. Unlike the ts  
shock, which can generate persistent changes in the growth rate, it leads to a 
growth rate that is dominated by purely temporary changes.29 

3.3. Equilibrium 

This section describes the conditions characterizing the equilibrium, with the 
actual solutions reported and discussed in the next section. 

3.3.1. Sharing Rules 
As bond investors are all alike, in equilibrium 0tb =  and bond investors con-
sume their entire income. The budget constraints of the two types, the equation 
for dividends, the production function, and the first-order condition for labor 
yield “sharing rules” (consumption claims on output) for the two agents. See the 
Appendix. For bond investors: 

 ( ) ( )1 1ˆ ˆ1 1 ,
1

B

Bt t t t
wc z y z
z

λ ε λη η
λ ε λ

Φ

 − −  = + − + − −  −   


 (10) 

which relates the bond investor’s consumption to aggregate output in a way that 
depends on the fraction λ  of hand-to-mouth agents in the population. The 
larger is λ , the smaller is BΦ . This property reflects the aspect of sticky-price 
models that dividends and labor income move in opposite directions in response 
to shocks that affect ˆt ty z−  [57]. When λ  is large, the given share of aggre-
gate dividends, 1 ε− , accruing to bond investors is divided among a smaller 
measure of them 1 λ− , thus providing each of them with a stronger hedge against 
labor income fluctuations. The overall effect of λ  on ˆBtc , however, depends also 
on the endogenous ˆty , which in equilibrium is also affected by λ . 

The sharing rule for hand-to-mouth agents is 

 ( ) ( )1 1ˆ ˆ1 1 ,

H

Ht t t t
wc z y z
z

ε λη η
ε λ

Φ

 − −  = + + + − −    


 (11) 

where HΦ  depends positively on λ . For a given ε , a sufficiently large λ  
makes consumption of hand-to-mouth households more volatile than consump-
tion of bond investors.30 Observe that under flexible prices (i.e., ˆt ty z= ), the 
sharing rules are reduced to ˆ ˆBt Ht tc c z= = . 

3.3.2. A system in Output and Inflation 
Bond investors satisfy the Euler equation for the one-period nominal bond. Two 
conditions then characterize equilibrium processes for output and inflation. One 
condition is the NKPC (4), the other is a combination of the Taylor rule and the 

 

 

29The [2] process is a special case of (8)-(9), with 1zφ = , sφ  close to one, and 0z sa a= = . The 

specification used here can approximate their process arbitrarily well by letting 1zφ → . I opt for the 

current specification as the lead-lag patterns in Figure 2 constitute dynamics for which the exact [2] 
process is too restrictive. 
30[55] refers to this feature as “cyclical inequality”. 
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Euler equation for the one-period bond, ( ) ( )1 1exp expt t t ti E m π+ + − = −  , with 

1tm +  given by (3) and ˆBtc  given by (10). This condition will be referred to as 
the ‘bond market equilibrium condition’, as it relates bond investors to the cen-
tral bank. Hand-to-mouths affect the equilibrium through λ  affecting the 
sharing rule for ˆBtc  and thus the pricing kernel. Assuming for the moment that 

ti , 1log tm + , and 1tπ +  are jointly normally distributed (verified later on), we 
can expand the Euler equation and write the bond market equilibrium condition 
as 

 ( ) ( ) ( )2*
, 1 1 1log ,t y t y t t t t t t ti E g g E m E mπν π π ν ξ π+ + ++ − + − + = − + +  (12) 

where ( ) ( )2
1 1 1 10.5 log 0.5 log ,t t t t t t t tm var m var cov mπ π+ + + +≡ − − +  subsumes the 

second moments of the nominal pricing kernel. It is shown below that 1log tm +  
is linear in ˆBtc  and thus, by (10), in ˆty . 

Given the log-linear/log-normal form of the model, we can consider equili-
brium functions of the state space 

 ˆ ,t x t v ty y y x y vΤ= + +  (13) 

 ,t x t v tx vπ π π πΤ= + +  (14) 

where ( , , , , ,x v x vy y y π π πΤ Τ ) are endogenous coefficients, commensurate to the 
state variables. The functions (13) and (14) solve the two functional equations 
(4) and (12) and the equilibrium coefficients are obtained by the method of un-
determined coefficients.  

The rest of this section describes how the pricing kernel is transformed into 
the [3] form, which provides a convenient form for solving for the equilibrium 
yield curve and establishes a close connection with affine term structure models. 

3.3.3. The Real Pricing Kernel and the Value Function 
The Epstein-Zin pricing kernel depends on endogenous lifetime utilities. Start-
ing with (3), the real pricing kernel can be expressed in a log form 

 
( ) ( ) ( ){

( ) }
1 , 1 , 1 1

, 1 1

log log 1 log

log exp ,

t c t c t t

t c t t

m g g u

g u

β ρ α ρ

µ

+ + + +

+ +

= + − + − +

 −  
 (15) 

where 1 1 , 1t t B tu U c+ + +≡  is a scaled lifetime utility, which is constant on the ba-
lanced growth path. Further,  

( ) ( )1
, 1 1 , 1 1log exp log exp logt c t t t c t tg u E g uµ α α−
+ + + +   = +    , which follows from 

the homogeneity of degree one of the certainty equivalent (2); see the Appendix. 
If 1ρ = , the standard margin depending on short-term consumption growth is 
eliminated from the pricing kernel; if α ρ= , the part depending on lifetime 
utilities is eliminated. 

The rest of this subsection evaluates , 1c tg +  and 1tu +  in the pricing kernel 
(15) to make the kernel depend only on state variables and innovations. The 
coefficients of the resulting pricing kernel are functions of the coefficients of the 
output process ( , ,x vy y yΤ ). 

Given the linear relationship (10) between ˆBtc  and ˆty , the growth rate 
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, 1c tg +  can be written as ( ) ( ), 1 , 1 11c t B y t B tg g g g z+ + += +Φ − + −Φ ∆ , which, using 

(13), can be further expanded as  

( ) ( ), 1 1 1 11c t B x t v t B tg g y x y v zΤ
+ + + += +Φ ∆ + ∆ + −Φ ∆  or 

 , 1 1 1,c t x t v tg g c x c vΤ
+ + += + ∆ + ∆  (16) 

where 

 ( )1 , and .x B x B z v B vc y e c yΤ Τ Τ≡ Φ + −Φ ≡ Φ  (17) 

Further, [ ]1 0 0zeΤ ≡ , and 1tx +∆  and 1tv +∆  are given by (8) and (9), respec-
tively. 

The log utilities in the pricing kernel (15) must satisfy the recursive Equation 
(1). Adopting the [59] approximation 

 ( )1
0 1 , 1 1log log exp log .t t c t tu E g uκ κ α α−

+ + ≈ + +   (18) 

Here ( ) ( )1
0 1log 1 expκ ρ β β ρµ κ µ−≡ − + −    and  
( ) ( ) ( ) ( )1 exp 1 exp 0,1κ β ρµ β β ρµ≡ − + ∈        works like a discount factor. 

Further, ( )( )log exp g uµ ≡  is the steady-state value of the log certainty equiv-
alent, with u denoting a steady-state (balanced growth path) scaled utility.31 The 
functional Equation (18), which by (16) and (17) depends on ( , ,x vy y yΤ ), admits 
a linear solution 

 log ,t x t v tu u u x u vΤ= + +  (19) 

where ( , ,x vu u uΤ ) are endogenous coefficients that solve (18) and depend on 

( , ,x vy y yΤ ); see the next section for the solution. 

3.3.4. The Duffie-Kan Pricing Kernel 
The value function (19), the equation for consumption growth (16), and the 
stochastic processes (8) and (9) allow to express the real pricing kernel (15) only 
in terms of the state variables and innovations 

 1
1 2

1 1log ,t x t v t x t t v tm x v vδ δ δ λ ω λ ωΤ Τ Τ
+ + += + + + +  (20) 

where ( , ,x vδ δ δΤ ) are factor loadings and ( ,x vλ λΤ Τ ) are prices of risk, commen-
surate to the state variables and shocks (see the Appendix for derivation). The 
factor loadings and prices of risk, reported in the next section, depend on 
( , ,x vy y yΤ ). Equation (20) takes the form of the pricing kernel in the [3] affine 
term structure model. The key difference is that here the factor loadings and 
prices of risk are not free parameters, but depend on the deep parameters of the 
model. 

The equilibrium nominal pricing kernel is:  

( )$
1 1 1 1log logt t x t v tm m x vπ π πΤ
+ + + += − + + , where ( , ,x vπ π πΤ ) are the equilibrium 

coefficients of the inflation process. It also preserves the [3] form 

 $ $ $ $ $ $
1 1

1 2
1log ,t x t v t x t t v tm x v vδ δ δ λ ω λ ωΤ Τ Τ

+ + += + + + +  (21) 

where the coefficients are 

 

 

31See the Appendix for details. 
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( )$ 1 ,x vav vδ δ π π π θΤ= − + − −  
$ ,x x x Aδ δ πΤ Τ Τ= −  

$ ,v v x vaδ δ π π θΤ= − −  
$ ,x x x Bλ λ πΤ Τ Τ= −  
$ .v v vbλ λ πΤ Τ= −  

Note that as 1log tm + , tπ , ty  are linear functions of the normally distributed 
factors, they are normally distributed too, confirming the earlier conjecture. 

3.4. Inspecting the Coefficients 

Before moving on to the quantitative results, I list the coefficients of the 
processes for lifetime utility, the real pricing kernel, inflation, and output and 
point out their most important properties to provide insight into the quantita-
tive findings. The coefficients of each of these processes have a recursive struc-
ture. First, the loadings on tx  are determined, independently of the constant 
and the loading on tv . Second, the loading on tv  is determined. It depends on 
the loadings on tx  but not on the constant. Finally, the constant is determined 
and it depends on both the loadings on tx  and tv . The loadings on tx  are 
related only to conditional expectations; the loadings on tv  reflect both condi-
tional expectations and conditional second moments. I only discuss the loadings 
on tx  and tv , which affect the dynamics, relegating constants to footnotes. 

3.4.1. Lifetime Utility 
Lifetime utility is used to evaluate the real pricing kernel. Recall that log tu  is 
the log of lifetime utility scaled by current consumption. It can therefore either 
increase or decline, in response to a positive consumption shock, depending on 
whether the shock affects more the lifetime utility or current consumption. Posi-
tive mean reversing shocks to the level of consumption reduce log tu , whereas 
the opposite is true for persistent positive shocks to the consumption growth 
rate. For the following set of expressions, take ( , ,x vy y yΤ ) as given. These expres-
sions characterize the solution to the bond market equilibrium condition (12); or 
to the flexible-price version of the model, i.e., the special case of [ ]1 0 0xyΤ =  
and 0vy = . 

Before proceeding, recall that 0α ρ− <  and 0α < , and that xcΤ  and vc  
are related to xyΤ  and vy  through (17) and, through BΦ , depend on the frac-
tion of hand-to-mouths in the population. 

The coefficients of the value function are given by 

( ) 1
1 1 ,x x du c A I Aκ κ −Τ Τ= −  

( ) ( ) ( )1

1

.
1 2v x x v d x x x xu c u a c c u BB c uκ αθ

κ θ
Τ Τ Τ = + + + + + −    

The coefficient xuΤ  is an infinite discounted sum of expected future con-
sumption, conditional on a unit of tx . Thus, even shocks that affect only future 
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consumption (not current consumption) affect xuΤ . In vu , the linear part with-
in the square brackets captures expected lifetime utility from consumption from 
next period on, while the quadratic part reflects uncertainty about lifetime utility 
from consumption from next period on, both being conditional on a unit of tv . 
The linear part is present in vu  due to tv  being a news shock about future 
productivity (and due to a general equilibrium effect of tv  on consumption, the 

vc  term, in the version with the NKPC). The quadratic part is present due to 

tv  being a volatility shock. Observe that the two parts can potentially offset each 
other (as 0α < ), making vu  equal to zero. Volatility in the model is thus po-
tentially a “welfare-neutral” risk factor. Observe also that xuΤ  and vu  increase 
in absolute value with the persistence of the respective shocks, summarized by 
the eigenvalues of A and the size of θ .32,33 

3.4.2. Real Pricing Kernel 
The real pricing kernel enters the bond market equilibrium condition (12). Its 
coefficients depend on the coefficients of lifetime utility and are given by 

( )( ) ( ) ( )2log 1 ,
2x v d v vg c av c v c u bbαδ β ρ θ α ρΤ Τ= + − − − − − +

 

( )1 ,x x dc Aδ ρΤ Τ= −  

( )( ) ( ) ( ) ( )1 ,
2v x v d x x x xc a c c u BB c uαδ ρ θ α ρ ΤΤ Τ= − + − − + +

 

( ) ( )( )1 ,x x x xc B c u Bλ ρ α ρ ΤΤ Τ= − + − +  

( ) ( )( )1 .v v v vc b c u bλ ρ α ρΤ = − + − +  
The pricing kernel has two parts: the standard part depending on short-term 

consumption growth, the terms pre-multiplied by ( )1ρ − , and a part depending 
on lifetime utilities, the terms pre-multiplied by ( )α ρ− .34 To focus on the 
second part, consider the limiting case of 1ρ =  (infinite elasticity of substitu-
tion), so that the short-term part drops out. Under this restriction, xδ

Τ  is elim-
inated from the pricing kernel. The quadratic terms in the factor loadings δ  
and vδ  are related to the certainty equivalent (pertaining to its constant and 
time-varying margins, respectively). If tv  increases, the certainty equivalent, 
under the restriction 0α < , unambiguously declines, reducing vδ .35 The prices 
of risk, xλ

Τ  and vλ
Τ , determine the impact of the innovations to 1tx +  and 

1tv + , respectively, on the pricing kernel. 

 

 

32The coefficient u has no effect on equilibrium allocations and prices; it only affects welfare and is 

given by ( ) ( ) ( )20 1

1 1

1
1 1 2x x v d v v vu g c u av c v u v c u bbκ κ αθ θ

κ κ
Τ Τ = + − + − + − + + − −  

. 

33The expression x xc u+  reflects the scaling of the lifetime utility at 1t + ; that is, , 1 1

, 1

B t t

Bt B t

c U
c c

+ +

+

. Si-

milarly for the expression v vc u+ . See the Appendix for details. 
34The second part, under the restriction 0α ρ− < , is sometimes referred to in the literature as the 
“preference for an early resolution of uncertainty”. The standard pricing kernel for a time-additive 
CRRA utility function and constant volatility results under α ρ=  and 0vb c a= = = . 
35When risk increases, the agent is willing to accept lower certain income. 
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Because of the dependence of the risk prices on xuΤ  and vu , the more per-
sistent is a given shock, the larger is its price, in absolute value. In addition, the 
risk prices are scaled by the variance of the respective innovations (B and b). The 
larger is the conditional variance of a given shock, the larger is its price. 

3.4.3. Inflation and Implications for Term Premia and the Lead-Lag  
Dynamics 

The coefficients of the inflation process, obtained from the equilibrium equation 
(12), using the real pricing kernel (20), for a given ( , ,x vy y yΤ ), are: 

 ( )( ) 1 ,x y x d xy A e I Aξ ππ ν δ ν −Τ Τ Τ Τ= − + + −  (22) 

( )1 1 1 ,
2 2v y x v d v x x x x x x xy a y a BB B

π

π ν θ δ π λ λ π π λ π
ν θ

Τ Τ Τ Τ Τ Τ Τ = − + − + − − + −  
 (23) 

where [ ]0 0 1eξ
Τ ≡ . The effect summarized by xπ

Τ  is standard [60]. It is a solu-
tion to the expectations part (i.e., ( )2 0tm = ) of the difference equation in infla-
tion (12), conditional on tx . Note that 0yν >  translates positive shocks to 
output growth (captured by x dy AΤ ) to negative shocks to inflation. In contrast, 

xδ
Τ  does the opposite, unless 1ρ = . The horse race between these two effects 

plays an important role in the determination of term premia and would not arise 
in settings with exogenous inflation [5] [6].  

In vπ , the linear terms are expectations terms similar to those in xπ . They 
come from the effect of tv  on output growth in the Taylor rule (the first term) 
and on the conditional mean of the nominal pricing kernel (the second and third 
term). The quadratic terms result from the effect of tv  on the second moments 
of the nominal pricing kernel (the terms in ( )2

tm  in Equation (12)). The va-
riance term of the real pricing kernel, x xλ λΤ , reduces inflation when uncertainty 
rises. This effect on inflation can be interpreted as the effect of precautionary 
saving, similar to [40].36 The term x xBλ πΤ Τ  reflects covariance between infla-
tion and the real pricing kernel, induced by variation in tx . If the elements, cor-
responding to a given element of tx , in both xλ

Τ  and xπ  are negative, then the 
covariance is positive. This corresponds to a situation of low inflation when the 
marginal value of real income is low (good times for the investor), so that a given 
nominal payoff in such a state translates into a high real payoff. This covariance 
plays an important role in the determination of term premia derived below.37 

The second moments of the pricing kernel impose restrictions on term premia 
and the lead-lag dynamics of nominal interest rates and inflation in relation to 
output growth. Observe that the three quadratic terms in vπ  can be rewritten 
as ( ) ( )0.5 x x x xB Bλ π λ π

ΤΤ Τ− − − . Their joint effect on inflation is thus unam-
biguously non-positive but the magnitude depends on the counteracting effects 
of the variance and covariance terms (precautionary savings v.s. term premia ef-

 

 

36If a real one-period bond was priced by the real pricing kernel, the real interest rate would be given 
by 0.5 0.5t x t v t v v x x tr x v vδ δ δ λ λ λ λΤ Τ Τ= − − − − − . When tv  increases, the last term reduces the real 

rate, in line with the precautionary saving interpretation of the effect. 
37The third quadratic term in vπ , x xBBπ πΤ Τ , is a Jensen's inequality term. This term is typically 
small. 
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fects). The larger is the relative contribution of xπ  to the covariance term, the 
smaller is the joint effect of the second moments on inflation. In the limit, it can 
be zero. This creates the following potential tension: the larger is the contribu-
tion of the negative covariance between output growth and inflation to term 
premia, the more likely is the negative lead of inflation (and nominal interest 
rates) due to the expectations part of the pricing kernel (the news shock role of 

tv ), rather than its second moments (the volatility shock role of tv ).38 

3.4.4. Output 
To solve the NKPC, take ( , ,x vπ π πΤ ) as given. Solving Equation (4) for the out-
put process yields 

 ( )1 ,x x zy I A eπ βΤ Τ Τ= − +
Ω

 (24) 

 ( )1 1 .v v xy aπ βθ βπ Τ = − − Ω
 (25) 

Observe again the recursive structure: xyΤ  depends only on xπ
Τ , whereas vy  

depends on both vπ  and xπ
Τ .39 As the NKPC does not depend on the share of 

hand-to-mouth agents in the economy, these agents affect the coefficients of the 
output process only in general equilibrium, through xπ

Τ  and vπ . Observe from 
(24) that the more persistent is a given shock, the closer the corresponding ele-
ment of ( )I Aβ−  is to zero and thus, for a given xπ

Τ , the smaller is the trans-
mission of the shock to output through the NKPC. For highly persistent shocks, 
the model with the NKPC behaves almost like a flexible-price model. In (25), the 
situation regarding the effect of the persistence of tv  is more involved, as the gen-
eral equilibrium effect of tv  on output operates through both vπ  and xπ

Τ . Thus, 
even for θ  close to one, tv  can propagate through the NKPC due to the second 
term in (25). Under flexible prices, Ω = ∞  and [ ]1 0 0x zy eΤ Τ= = , 0vy = . 

3.4.5. The System of Equilibrium Coefficients 
Substituting for the coefficients of the value function and the real pricing kernel, 
the joint system of the equilibrium coefficients (22)-(25), pinned down by the 
functional Equations (4) and (12), is linear in the unknowns and recursive. Ob-
serve that Equations (22) and (24) can be solved for xπ

Τ  and xyΤ . Given this so-
lution, Equations (23) and (25) can then be solved for vπ  and vy . (The coeffi-
cients π  and y are obtained in the last step.) The response of the economy to the 
volatility shock thus depends on how the economy responds to the tx  shocks.40 

The rigidities in the real economy affect the equilibrium coefficients in two 
ways. First, the fraction of the hand-to-mouth households ( λ ) enters the coeffi-

 

 

38Lastly, 

( ) ( ) ( )1 * 21 11 1
2 2y x v d x v v v v v vi y a y v a v bb bπ ππ ν ν π ν θ δ π θ π λ λ π λ π− Τ Τ Τ Τ Τ Τ = − − + + + − − − − − − +    

. 

39The constant is given by ( ) ( )1 1 1x vy av vπ β βπ βπ θ− Τ= Ω − + − −   . 
40This recursive property of the equilibrium is a direct consequence of the log-normality assumption 
for the shocks (i.e., only first and second moments matter) and the conditional variance of the 
shocks depending only on tv , not tx . Making the conditional variance depend on tx  leads to a 

quadratic system with multiple solutions. 
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cients (22) and (23) of the inflation process through the sharing rule entering the 
real pricing kernel. Second, the Calvo parameter (ζ ) enters the coefficients (24) 
and (25) of the output process. The effects of the rigidities are, however, inter-
linked: if prices are flexible ( t ty z= ), the fraction of hand-to-mouths in the pop-
ulation has no effect on the pricing kernel, as follows from (10). 

3.5. Yield Curve and Risk Premia 

The yield curve for zero-coupon bonds can be derived from a set of no-arbitrage 
conditions. Assume that the log price of a n-maturity bond is linear in the state 
space 

 ( ) ( ) ( ) ( )log .n n n n
t x t v tq x vγ γ γΤ− = + +  (26) 

Using the relationship between bond prices and interest rates, ( ) ( )log n n
t tq ni− = , 

interest rates are given by 

 ( ) ( ) ( ) ( )( )1 ,n n n n
t x t v ti x v

n
γ γ γΤ= + +  (27) 

where ( )1
t ti i=  is the short rate. 

Bond prices have to satisfy the no-arbitrage condition ( ) ( )( )1$
1 1

n n
t t t tq E m q −

+ += , 
starting with ( )0

1 1tq + = . Recall that $
1 1 1log logt t tm m π+ + += − , so that one could 

also write ( ) ( ) ( )1
1 1 1expn n

t t t t tq E m q π−
+ + +

 = −   and think of the no-arbitrage condi-
tion in terms of the real pricing kernel and a real payoff. Substituting the guess 
(26) in both sides of the no-arbitrage condition gives a recursive system 

 ( ) ( )1$ ,n n
x x x Aγ δ γΤ − ΤΤ= − +  (28) 

 ( ) ( )( ) ( )( ) ( )( ) ( )1 1 1 1$ $ $1 ,
2

n n n n n
v v x x x x x va B Bγ δ γ λ γ λ γ γ θ

Τ− Τ − Τ − Τ −Τ Τ= − − − − − +  (29) 

 

( ) ( ) ( ) ( )
( )( ) ( )( ) ( )

1 1$

1 1 1$ $

1

1 ,
2

n n n
x v

n n n
v v v v

av v

b b

γ δ γ γ θ

λ γ λ γ γ

− Τ −

Τ− − −Τ Τ

 = − + − − 

− − − +
 (30) 

where in each equation the respective recursive coefficient at ( )1n −  is listed as 
last on the right-hand side. The system can be solved from the initial conditions 

0γ = , 0xγ
Τ = , and 0vγ =  (i.e., ( )0 1tq = ). Observe that, here again, ( )n

xγ
Τ  is 

determined first, followed by ( )n
vγ , and finally by ( )nγ . 

3.5.1. The Economic Interpretation of the Yield Curve Coefficients 
To gain economic insight into the implications of the recursive system (28)-(30) 
for the yield curve, consider first Equation (28). Substituting for $

xδ
Τ  and solv-

ing the equation forward by recursive substitutions gives a closed-form solution 

 ( ) ( )1 ,n
x x d n x nc A Aγ ρ πΤ Τ Τ= − − Π + Π  (31) 

where ( ) ( )1 1n
n I A I A− +Π = − − , which depends positively on the persistence of 

the tx  process. The loading ( )n
xγ

Τ  is a pure expectations hypothesis term (cor-
responding to the solution to a sequence of simple Fisher equations), where 
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x d nc AΤ Π  is expected consumption growth between t and t n+  and x nAπ Τ Π  is 
expected inflation between t and t n+ , conditional on a unit of tx . Higher ex-
pected consumption growth or inflation thus increase the nominal interest rate 
on the n-period bond, consistent with the Fisher relationship (recall that 1ρ ≤ ). 

In the expression (29) for ( )n
vγ , the linear terms after the equality sign are ex-

pectations terms. In addition to expectations about consumption growth and in-
flation (embedded in ( )1n

xγ
− Τ  and $

vδ− ), the terms include expectations about 
the certainty equivalent (see the expression for vδ  derived in Section 3.4.2). As 
in the case of tx , higher expected consumption growth or inflation increase the 
interest rate (through both ( )1n

xγ
− Τ  and $

vδ− ), in line with the Fisher relation-
ship. The effect of the certainty equivalent is also positive. When tv  increases, 
the agent is willing to accept a lower certain price today for the bond, increasing 
the interest rate. 

The quadratic term in (29) comprises of a variance term for the nominal 
pricing kernel, $ $0.5 x xλ λΤ− , Jensen’s inequality term, ( ) ( )1 10.5 n n

x xBBγ γ− Τ −Τ− , and a 
risk premium term, ( )1$ n

x xBλ γ −Τ Τ , which is the covariance between the price of 
risk and the yield of a ( )1n − -period bond. The term premium on the entire 
bond is determined by a sequence of these terms in recursive forward substitu-
tions of Equation (29). Observe that all three quadratic terms pertain to tx , 
even though they are a part of the coefficient loading onto tv  in the interest 
rate Equation (27). The response of the n-period yield to tv  working through 
the second moments thus depends on the properties of the response of the 
( )1n − -period yield and the nominal pricing kernel to tx . If a given element of 

tx  has its corresponding element in $
xλ
Τ  negative, then for the risk premium 

associated with this factor to be positive, we need the respective element in 
( )1n
xγ
−  to be also negative. That is, the yield must be low (the nominal bond price 

must be high) in “good times” for the investor, when the marginal value of no-
minal income is low. 

Finally, note that the parameter a, which controls the lead-lag relationship 
between volatility and productivity growth, shows up in the expectations part of 

( )n
vγ , as well as in the term premium part of ( )nγ  (through both ( )1n

xγ
−  and the 

presence of vu  in $
vλ
Τ ). It thus affects not only the responses of interest rates 

to tv  due to the expectations hypothesis but also steady-state term premia. The 
lead-lag dynamics and term premia are thus interconnected. 

3.5.2. Term Premia and Intertemporal Substitution 
From (31) follows that the yield is low (the price is high) when a given element 
of tx  is associated with either low expected consumption growth or low ex-
pected inflation. Thus, to get a positive risk premium, we need these expecta-
tions to prevail in times when the same tx  implies a low marginal value of no-
minal income (good times for the investor). From the expression for xλ

Τ  fol-
lows that this is the case when either current consumption growth or expected 
future consumption growth are high. The latter effect, however, is inconsistent 
with a low yield brought about by low expected consumption growth due to the 
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same tx . From $
x x x Bλ λ πΤ Τ Τ= −  follows that a low marginal value of nominal 

income also occurs when the tx  implies high current inflation. However, to the 
extent that inflation is positively autocorrelated, high current inflation is incon-
sistent with a low yield brought about by low expected inflation due to the same 

tx . 
A combination of ( )1n

xγ
−  and $

xλ
Τ  that does work is if the effect of expected 

consumption growth on ( )1n
xγ
−  is attenuated by ρ  sufficiently close to one-see 

Equation (31)-and ( )1n
xγ
−  thus predominantly reflects inflation expectations. 

Then, if xπ  is negative and xuΤ  is positive and sufficiently large, we could have 
both ( )1n

xγ
−  and $

xλ
Τ  negative (the former due to a negative xπ , the latter 

through the presence of a sufficiently large xuΤ  in xλ
Τ ; see Subsection 3.4.2 and 

recall that 0α < ). From the solution for xuΤ  in Section 3.4.1 follows that xuΤ  
is positive and large for persistent shocks to consumption growth. From equa-
tion (22) and the solution for xδ

Τ  in Section 3.4.2 follows that xπ  is negative if 
the respective element of tx  increases expected output growth, the Taylor rule 
weight on output growth is positive, and ρ , again, is sufficiently close to one. 
ρ  sufficiently close to one is thus necessary for both ( )1n

xγ
−  and xπ  being 

negative. Like xuΤ , both ( )1n
xγ
−  and xπ  increase in absolute value with the per-

sistence of the shock. 
In sum, the above combination describes a situation when the yield is low (the 

bond price is high) due to low inflation expectations (showing up in ( )1n
xγ
− ) and, 

at the same time, the marginal value of income is low due to high expected fu-
ture consumption growth (showing up in xλ

Τ ), with these expectations not be-
ing significantly reflected in bond prices (due to a high ρ ; i.e., not showing up 
in ( )1n

xγ
− ).41 

3.5.3. Time Variation in Expected Excess Returns 
The above principles that determine term premia also determine expected excess 
returns. Following the definition from Section 2, one-period excess return on a 
n-period bond is given by ( ) ( ) ( )( )1

, 1 1log logn n n
X t t t tr q q i−

+ +≡ − − . Using the equili-
brium functions for ( )1

1log n
tq −
+ , ( )log n

tq , and ti  derived above, and taking ex-
pectations, gives the expected excess return on the n -period bond 

 ( ) ( ) ( ) ( ) ( )1 1 1 1$
, 1

1 ,
2

n n n n n
t X t x x x x tE r B BB vν γ λ γ γ− − Τ − Τ −Τ

+
 = + − 
 

 (32) 

where ( ) ( ) ( ) ( )1 1 1 1$ 0.5n n n n
v v v vb bbν γ λ γ γ− − − − ΤΤ≡ − ; see the Appendix for derivation. 

The first term in the parentheses is the covariance term determining term pre-
mia, discussed above, while the second term is the Jensen’s inequality term, 
which is small. The covariance term clearly affects the extent to which ( )

, 1
n

t X tE r +  
responds to tv . In contrast, the covariance term ( )1 $n

v vbγ λ− , contained in ( )1nν − , 
affects the mean (steady-state) excess return, but not its variation. It also affects 
the mean of term premia; see Equation (30). The parameter a controls the 

 

 

41This result does not mean that the expectations part of interest rates only reflects inflation expecta-
tions. It only states that such an effect has to sufficiently dominate the intertemporal substitution ef-
fect, reflecting expectations about consumption growth due to the same factor. 
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lead-lag relationship between volatility and productivity growth, and thus be-
tween expected excess returns and output growth. However, it also affects 
steady-state expected excess returns through the terms in ( )1nν − . 

4. Quantitative Analysis 

Having explained the mechanism, this section: i) evaluates if the model is quan-
titatively consistent with the stylized facts summarised in Section 2 and ii) shows 
that the resulting asset pricing structure coexists with a large fraction of the pop-
ulation behaving like hand-to-mouths in an environment with nominal price ri-
gidities. 

4.1. Calibration 

As a benchmark, consider the solution to the bond market equilibrium condi-
tion (12), given [ ]1 0 0xyΤ =  and 0vy = . This is a flexible-price version of the 
model, denoted by 1 . Recall that hand-to-mouth agents do not affect the 
pricing kernel under flexible prices. 

The following parameters are shared across the flexible- and sticky-price spe-
cifications: 2 400g = , 5.55 400i = , and * 3.9 400π = . They are chosen to be 
consistent with the sample averages, 1961-2008. Further, 0.65ω =  is chosen on 
the grounds of the average labor share in NIPA.42 Conditional on 1 , the re-
maining 15 parameters are pinned down by minimizing the distance between 
the model and the data of 15 equally weighted calibration targets, listed in Table 
2. The parameters thus calibrated are: β , ρ , α  (preferences), πν , yν  
(Taylor rule), and zφ , sφ , ξφ , za , sa , θ , 11B , 22B , 33B , 4b  (stochastic 
processes). The resulting parameter values are reported in the first column of 
Table 2. The largest discrepancy between the model and data moments is in the 
volatility of the expected excess return on the long bond. This is discussed in 
further detail in Section 4.3. 

A noteworthy feature of the resulting parameterization is that 0.9ρ = , as an-
ticipated by the discussion in Section 3.5. This implies the elasticity of intertem-
poral substitution equal to 10. The risk aversion parameter is −28.43 

The estimates of the utility function imply the following behavior of bond 
investors: when faced with payoffs that appear to be certain (in real terms), 
only a small increase in real interest rates in sufficient to convince investors to 
postpone consumption by an extra period. However, when faced with uncer-
tain payoffs, the compensation for the investment has to be large. Conse-
quently, asset prices mainly reflect hedging motives of investors, rather than 

 

 

42As already noted in Section 3.1, following [55], I normalize the steady state so that B Hc c= , 

B Hl l= , 1z = , and 1y = . Under this normalization, 0.65w ω= = . Finally, the normalization for 

v is 1v = . 
43Values of α  similar to the one here are not unusual for Epstein-Zin preferences. For instance, in 
[6], 20α = − ; in [5], 59α = − . The value of ρ  has already been discussed in the context of the li-
terature in the Introduction. 
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Table 2. Calibration.  

 1
 2

     

High street       

λ   0.41     

ε   0.478     

η   1     

ζ   0.77     

 1
 2

  Data 1
 2

 
Preferences   Targets    

β  0.9945 0.9948 ( )std tg
 3.3 3.56 3.56 

ρ  0.9 0.88 ( )acorr tg
 0.3 0.4 0.37 

α  −28 −29 ( )std ti  2.72 2.74 2.86 

Taylor rule   ( )acorr ti  0.96 0.90 0.90 

πν  1.64 1.64 ( )( )28std ti  
2.44 2.18 2.18 

yν  0.85 0.85 ( )( )28acorr ti  
0.98 0.99 0.99 

Stochastic 
processes 

  ( )( )28
, 1std t X tE r +  

4.08 0.82 0.81 

zφ  0.886 0.886 ( )( )28
, 1acorr t X tE r +  

0.88 0.80 0.80 

sφ  0.999 0.999 ( )std tπ  2.80 3.12 3.41 

µφ  0.999 0.999 ( )corr ,t tgπ
 −0.26 −0.3 −0.27 

za  0.014 0.014 ( )1corr ,t tPCπ
 0.71 0.81 0.79 

sa  4.0257e−4 4.0922e−4 ( )( )28
, 1 1corr ,t X t tE r g+ +  

0.30 0.42 0.58 

θ  0.8 0.8 ( )tE i
 5.55 5.55 5.55 

11B  0.0053 0.001 ( )( )4
tE i

 
6.03 5.90 5.90 

22B  0.002 0.002 ( )( )28
tE i

 
6.80 7.08 7.08 

33B  2.32e−4 2.32e−4     

4b  0.23 0.23     

Notes. Model nomenclature: 1  = flexible prices, 2  = sticky prices. Parameters that 

are shared across the models: 2 400g = , 5.55 400i = , * 3.9 400π = , which are chosen 
to be consistent with the sample averages, 1961-2008; and 0.65ω = , which reflects the av-
erage labor share in NIPA. Conditional on these parameters (and the parameters of the high 
street in model 2 ), the parameters in the table are determined by minimizing the distance 

between the model and the data of the 15 equally weighted calibration targets, which are the 
averages for 1961-2008. For the long bond, 28N =  stands for a 7-year bond (28 quarters).  

https://doi.org/10.4236/jmf.2024.141004


R. Šustek 
 

 

DOI: 10.4236/jmf.2024.141004 89 Journal of Mathematical Finance 
 

intertem poral substitution. 
The Taylor rule parameters are within the bounds found in the literature. The 

Taylor rule shock is highly persistent, thus resembling the inflation target shock 
of, e.g. [61] rather than a transitory policy disturbance (the role of transitory 
policy shocks is explored later).44 The shock to the conditional mean of produc-
tivity growth is also highly persistent, in line with [2]. However, the persistence 
of the volatility shock (0.8) is much lower than in their model, where it takes a 
value close to one. This is because, unlike in their paper, the calibration here 
takes into account the lead-lag pattern of expected excess returns. To capture 
this dynamics, the autocorrelation of the volatility shock cannot be too high. The 
persistence of the shock to the level of productivity is a little lower but close to 
the RBC literature. Both elements of a are positive, with za  being two orders 
of magnitude larger than sa . Finally, while the volatility shock is substantially 
less persistent than the other shocks, it has the largest conditional standard 
deviation. 

In the version with sticky prices ( 2 ), 0.41λ = , 0.478ε = , and 1η = , 
which are chosen to reproduce Table 1 in [62], the [12] case. Recall that the pa-
rameters of the hand-to-mouth population affect the part of the pricing kernel 
related to shocks other than tz . The Calvo parameter is chosen to make Ω in 
the NKPC (4) achieve the standard value in the literature. This yields the value 
of the Calvo parameter close to 0.7, which is also standard. The remaining pa-
rameters are calibrated following the same strategy as for 1 . The resulting 
values are reported in the second column of Table 2 and are in general similar to 

1 , with the exception of 11B . 

4.2. Properties of the Equilibrium Pricing Kernel 

Table 3 reports the quantitative properties of the equilibrium pricing kernel, and 
its determinants, to connect the quantitative results with the discussion in the 
previous sections and help interpret the results that follow. Starting with 1 , 
there are only small differences between the real and nominal pricing kernels in 
terms of risk prices, with the resulting nominal risk prices being determined 
predominantly by the real kernel. Further, the only factor that is significantly 
priced is ts  and the time-variation in the risk premium attached to this factor 
is driven by another factor, tv , which itself has a price of risk equal to zero. In-
cluding the variance of expected excess returns among the calibration moments 
drives $

vλ  down to zero, thus making tv  close to welfare neutral, with vλ  
being almost zero (more on this in the next section). Such a parsimonious asset 
pricing structure is akin to the reduced-form model of [4]. Also, in accordance 
with their paper, the priced factor is closely related to the reduced-form level 
factor, as shown in Table 4, while the factor driving the time-variation in risk  

 

 

44An inflation target shock is isomorphic to the shock in the Taylor rule (5) and can be expressed in 

terms of that shock as ( ) 1* 1t tππ ν ξ−
= − − . A high persistence of a Taylor rule shock is typical for the 

term structure papers noted in the Introduction. 
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Table 3. Equilibrium pricing kernel.  

1
 

xyΤ

 
[1 0 0] 

vy  
0 

  xuΤ

 
[−0.99 7.26 0] 

vu  
4.6e−4 

   xδ
Τ

 
[0.011 −0.10 0] 

vδ  
−0.09 

xλ
Τ

 
[−0.002 −0.42 0 0] 

vλ
Τ

 
[0 0 0 −0.003] 

 xπ
Τ

 
[0.11 −0.99 −1.56] 

vπ  
−0.013 

$
xδ
Τ

 
[−0.09 0.78 1.56] 

$
vδ  

−0.08 

$
xλ
Τ

 
[−0.003 −0.42 3.6e−4 0] 

$
vλ
Τ

 
[0 0 0 0] 

2
 

xyΤ

 
[1.05 −0.47 −0.03] 

vy  
−0.018 

  xuΤ

 
[−1.03 7.30 0.002] 

vu  
0.0123 

   xδ
Τ

 
[0.014 −0.12 0] 

vδ  
−0.09 

xλ
Τ

 
[−3.4e−4 −0.42 1.3e−4 0] 

vλ
Τ

 
[0 0 0 −0.004] 

 xπ
Τ

 
[0.12 −1.02 −1.56] 

vπ  
−0.017 

$
xδ
Τ

 
[−0.09 0.78 1.56] 

$
vδ  

−0.07 

$
xλ
Τ

 
[−4.6e−4 −0.42 4.9e−4 0] 

$
vλ
Τ

 
[0 0 0 0] 

Notes. Model nomenclature: 1  = flexible prices; 2  = sticky prices. The order of the factors in the above vectors is: tz , ts , 

tξ , tv , with volatility, where applicable, reported separately. The nominal pricing kernel is related to the real pricing kernel as: 
$
x x x Aδ δ πΤ Τ Τ= − , and $

v v x vaδ δ π π θΤ= − −  for the factor loadings; and as $
x x x Bλ λ πΤ Τ Τ= −  and $

v v vbλ λ πΤ Τ= −  for the prices of 
risk. The standard deviations of the shocks are: in 1 , 11 0.0053B = , 22 0.002B = , 33 0.000232B = , 4 0.23b = ; in 2 ,  

11 0.001B = , 22 0.002B = , 33 0.000232B = , 4 0.23b = .  
 

premia is correlated with the reduced-form slope factor.45 
The significant price of risk of ts  is due to the large value of this factor’s 

corresponding element in xuΤ , reflecting the fact that this shock persistently 
shifts the expected future growth rate of output. Observe also that the loading on 

ts  in the equilibrium inflation process is negative, as required for a positive 
term premium attached to ts . Turning to 2 , the presence of the NKPC does 
not have a material effect on the pricing kernel. If anything, it strengthens the 
result that only ts  is priced by reducing the conditional variance of tz  re-
quired to match the data, thus reducing the price of risk of tz . Further, despite 
the nominal rigidities, the Taylor rule shock is not significantly priced. Referring 
back to Section 3.4, this is because the NKPC transmits into output, in a quanti-
tatively meaningful way, only shocks that are temporary. However, in order to 
match the yield curve moments listed Table 2, the Taylor rule shock has to be 
persistent. 

Anticipating the findings below, observe that the equilibrium loading on tv  
in the inflation process is larger (in absolute value) in 2  than in 1 . Con-
sequently, in 2 , volatility accounts for some short-run movements in output 
at the expense of the decline in the conditional standard deviation of the tempo-
rary shock tz , which in 2  is five times smaller than in 1 . The effect of 
volatility on output working through sticky prices is negative, in line with the 
uncertainty literature noted in the Introduction. The shock thus first reduces  

 

 

45Unlike in [4], the factor driving risk premia here is spanned by the yield curve (yields have nonzero 
loadings on this factor). 
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Table 4. Principal components and structural shocks.  

 Data 1
 2

 

PCs of yields    

share ( )1var PC  97.2% 95.7% 95.1% 

share ( )2var PC  2.6% 4.1% 4.7% 

share ( )3var PC  0.2% 0.2% 0.2% 

( )1corr ,PC z
  0.67 0.66 

( )1corr ,PC s
  0.62 0.60 

( )1corr ,PC ξ
  −0.91 −0.91 

( )1corr ,PC v
  −0.12 −0.16 

( )2corr ,PC z
  0.18 0.22 

( )2corr ,PC s
  0.30 0.31 

( )2corr ,PC ξ
  −0.28 −0.29 

( )2corr ,PC v
  0.70 0.73 

( )3corr ,PC z
  0.03 0.04 

( )3corr ,PC s
  0.25 0.27 

( )3corr ,PC ξ
  −0.30 −0.29 

( )3corr ,PC v
  −0.71 −0.66 

Notes. Model nomenclature: 1  = flexible prices; 2  = sticky prices.  

 
output through nominal price rigidities, before spilling over into future produc-
tivity, as captured by the parameter a. While this has only marginal implications 
for the pricing kernel, it improves the model’s ability to account for the observed 
lead-lag patterns of inflation and interest rates. 

In both 1  and 2 , the effect of tz  on output ( ty ) is similar, equal to 
one (in 1  this is by construction, in 2  there is an additional effect of 
sticky prices on aggregate demand); see Table 3. The immediate effect of ts  on 
output in 1  is zero. This is because ts  is a news shock about future tz  and 
only tz  affects output. The news shock thus affects output only over time as the 
news starts materializing. In 2 , the news shock has also an immediate effect 
on output as the news affects aggregate demand and, through nominal price ri-
gidities, also output. 

Finally, the resulting pricing kernel satisfies the Hansen-Jagannathan bound. 
The Sharpe ratio in the data is 0.29 for the 1-year bond and 0.13 for the 7-year 
bond. The ratio of the unconditional standard deviation of the pricing kernel to 
the mean is 0.46 in 1  and 0.45 in 2 . 
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4.3. The Model and the Stylized Facts 

Stylized Facts 1. Figure 3 is the model counterpart to Figure 1. As in the data, 
the average yield curve is upward sloping and concave, with the term premium 
on mid and long bonds almost the same as in the data. The volatility curve 
shares with its empirical counterpart the key property that volatility is fairly flat 
across maturities. To the naked eye, there are no differences between 1  and 

2  and the figure only contains plots for one model. 
Stylized Facts 2. Figure 3 also shows that the loadings on the three most im-

portant PCs of yields are almost the same as in the data. Again, to the naked eye, 
there are no differences between 1  and 2 . The loadings on the single 
most important PC of excess returns in Figure 3 are, as in the data, upward  

 

 
Figure 3. Model results: average yield and volatility curves and loadings on principal components. The results are nearly identical 
for the flexible ( 1 ) and sticky price ( 2 ) specifications. Only one set of curves is therefore plotted as separate plots for the two 

specifications would be almost indistinguishable.  

https://doi.org/10.4236/jmf.2024.141004


R. Šustek 
 

 

DOI: 10.4236/jmf.2024.141004 93 Journal of Mathematical Finance 
 

sloping, but the value at the long end is lower than in the data. The loadings are 
again essentially the same for 1  and 2 . The PCs in the model also ac-
count for similar magnitudes of the total variance of yields across maturities as 
in the data (Table 4).  

Stylized facts 3 and 4. Similarly to the data, the first PC of yields in the model 
is highly persistent and, as already reported in Table 2, strongly positively cor-
related with inflation. A direct consequence of the structure of the pricing kernel 
reported in Table 3 is that the time-variation in risk premia is related to the 
slope factor (the second PC of yields). As reported in Table 4, the correlation 
between tv  and the slope factor is around 0.7 in both 1  and 2 . The level 
factor (the first PC of yields) is unrelated to movements in risk premia. Its cor-
relation with tv  is weak in both 1  and 2 . 

Stylized facts 5. Figure 4 is the model counterpart to Figure 2. As in the data, 
the short rate and inflation are similarly negatively correlated with output 
growth, with the strongest negative correlation occurring at a quarter lead. In 
contrast, the slope factor and the expected excess return on the long bond are 
positively correlated with output growth, with the strongest positive correlation 
occurring at a quarter lead. These correlations, however, are stronger than in the 
data. As in the data, the level factor has a negative lead. However, the stronger 
positive correlations of risk premia than in the data imply that the long rate is 
roughly uncorrelated with the business cycle in the model, instead of exhibiting 
weak negative correlations observed in the data. The tight comovement of the 
slope factor and expected excess returns with output growth indicates that the 
parsimonious asset pricing structure misses factors driving the slope of the yield 
curve and risk premia unrelated to the business cycle. The endogenous response 
of output to volatility in 2  makes the lead-lag dynamics more pronounced 
than in 1 , thus bringing the model closer to the data. 

Volatility of expected excess returns. As already noted in Section 4.1, the 
model is unable to match the volatility of expected excess returns on the long 
bond, while being consistent with the other 14 calibration targets. In the model, 
the (annualized) standard deviation of the expected excess return is 0.82%, whe-
reas in the data it is around 4%. The explanation is as follows. First, the adopted 
calibration strategy drives $

vλ  down to zero by essentially choosing sa  so that 

tv  is close to welfare neutral. Equation (32) would suggest that in such a case 
the variance of tv  can be chosen to exactly match the variance of ( )

, 1
n

t X tE r +  
without affecting steady-state risk premia through the ( )1nν −  term. However, 
there is a second constraint on the variance of tv . As tv  is tied to 1tz +  
through the spillover vector a in the stochastic process, increasing the variance 
of tv  affects the properties of output growth. The empirical properties of out-
put growth thus place further restrictions on the stochastic properties of tv . 
This supports the earlier conjecture that the model misses factors driving the 
slope of the yield curve and expected excess returns that are unrelated to the 
business cycle. In other words, the stochastic properties of output growth imply 
that the specific volatility factor considered in the model accounts for 25% of the  
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Figure 4. Model results: yield curve and the business cycle. Cross-correlations with the growth rate of output. The correlations are 

( )corr ,t j tx g+ , 6, ,0, ,6j = −   , where x is the variable of interest and g is the growth rate of output. 
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variance of expected excess returns, leaving 75% to factors unrelated to the 
business cycle. This is different from models such as [2] and [6], where the vola-
tility factor follows an autonomous process.46 

Principal components and the structural shocks. A final result to note, re-
ported in Table 4, is the relationship between the three reduced-form PCs of 
yields, frequently used as risk factors in affine term structure models, and the 
structural shocks in the model. While all four shocks are to some extent corre-
lated with all three PCs of yields, the strength of the relationship is markedly 
different for different shocks. The level factor is strongly related to tz , ts , and 

tξ . The slope factor is related to tv  and tv  is also strongly correlated with the 
quantitatively small curvature factor. 

4.4. Hand-to-Mouths and Intertemporal Substitution 

Table 5 explores the effect of hand-to-mouth agents on the pricing kernel. Re-
call, that the share λ  of hand-to-mouths in the population has a direct effect 
on consumption of bond investors through BΦ  in the sharing rule (10) and  

 
Table 5. The share of hand-to-mouth households and the pricing kernel.  

λ  ,H xcΤ

 ,H vc
 

$
xδ
Τ

 
$
vδ  

$
xλ
Τ

 
$
vλ
Τ

 
( )28
XEr  

0.21 [1 0 0 0] 0 
[−0.09 0.773 

1.56 0.93] 
−0.0753 

[−4.70e−4 −0.42 
6.1e−4 0.0047] 

[0 0 0 0 3.3e−4] 2.07 

0.31 
[1.05 −0.46 

−0.031 −1.68] 
−0.017 

[−0.09 0.776 
1.56 0.96] 

−0.0750 
[−4.66e−4 −0.42 
5.6e−4 0.0045] 

[0 0 0 0 1.9e−4] 2.08 

0.41 
[1.08 −0.69 

−0.047 −2.59] 
−0.026 

[−0.09 0.781 
1.56 1.00] 

−0.0747 
[−4.60e−4 −0.42 
4.9e−4 0.0043] 

[0 0 0 0 0] 2.09 

0.51 
[1.10 −0.84 

−0.057 −3.23] 
−0.032 

[−0.09 0.788 
1.56 1.07] 

−0.0742 
[−4.52e−4 −0.42 
4.0e−4 0.0040] 

[0 0 0 0 −2.8e−4] 2.12 

0.61 
[1.11 −0.95 

−0.064 −3.79] 
−0.037 

[−0.09 0.799 
1.56 1.17] 

−0.0735 
[−4.39e−4 −0.42 
2.5e−4 0.0035] 

[0 0 0 0 −7.3e−4] 2.14 

0.71 
[1.12 −1.03 

−0.069 −4.45] 
−0.041 

[−0.09 0.818 
1.56 1.37] 

−0.0721 
[−4.18e−4 −0.42 
1.9e−4 0.0025] 

[0 0 0 0 −0.0016] 2.19 

0.81 
[1.13 −1.11 

−0.072 −5.79] 
−0.048 

[−0.10 0.857 
1.56 1.94] 

−0.0688 
[−3.73e−4 −0.42 
−5.1e−4 −1.8e−4] 

[0 0 0 0 −0.0036] 2.29 

0.91 
[1.14 −1.25 

−0.075 −25.45] 
−0.075 

[−0.11 0.998 
1.56 11.42] 

−0.0515 
[−2.10e−4 −0.42 

−0.0021 
−0.0046] 

[0 0 0 0 −0.0152] 2.71 

Notes. Applies to the sticky-price version (model 2 ). The order of the factors in the equilibrium vectors is: tz , ts , tξ , tµ , 

tv , where tµ  is the temporary Taylor rule shocks and volatility, where applicable, is reported separately. The loadings pertaining 
to the Taylor rule shock are highlighted in bold. The autocorrelation of the temporary shock is 0.7. The standard deviations of the 
shocks are: 11 0.001B = , 22 0.002B = , 33 0.000232B = , 44 0.0025B = , 4 0.23b = .  

 

 

46It would also appear that it is possible to increase the variance of expected excess returns by in-
creasing $

xλ
Τ , for instance by increasing the absolute value of α . However, this makes the average 

yield curve counterfactually too steep by increasing the average term premia. 
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general equilibrium effects working through the equilibrium responses of output 
to shocks other than tz , provided nominal prices are sticky. As the NKPC 
transmits only temporary shocks, whereas the yield-curve moments used in the 
calibration require the Taylor rule shock to be highly persistent, resembling an 
inflation target shock, for the purpose of this exercise I add a purely temporary 
shock tµ  in the Taylor rule. Its persistence is set equal to 0.7 and the condi-
tional standard deviation to 0.0025. 

[56] reports a fraction of rich hand-to-mouth households in the population 
between 30% and 50%. The baseline 0.41λ =  is based on [62], the [12] case in 
his terminology. In this case, consumption of hand-to-mouths responds 2.2 
times as much to the temporary policy shock as consumption of bond investors. 
Table 5 explores values from 0.21, which (given the value of ε ) maximizes the 
hedge for the hand-to-mouths, to 0.91, a value well above any reasonable esti-
mates in the literature. The table reports the loadings on the shocks in the equi-
librium consumption process of the hand-to-mouths, the equilibrium nominal 
pricing kernel, and the steady-state risk premium on the 7-year bond. In line 
with the macro literature, the higher is λ , the stronger is the response of con-
sumption of hand-to-mouths to the temporary shock. The response increases 
exponentially. However, unless the value of λ  substantially exceeds the esti-
mates in [56], the effects on the pricing kernel are small. The same (to a lesser 
extent) applies to tv , the other temporary shock that is transmitted through the 
NKPC in a quantitatively significant way.47 

Finally, Figure 5 explores the consequences of a lower elasticity of intertempor-
al substitution of bond investors. Four values of ρ  are considered: 0.88ρ =  
(the baseline value), and three alternative values, 0.6,0.5,0.3ρ = . The baseline 
value corresponds to the elasticity of intertemporal substitution equal to 8.33; the 
alternative values to 2.5, 2, and 1.43, respectively. The figure demonstrates the 
effects of ρ  on the average yield curve and on the cross-correlations of ex-
pected excess returns (on the 7-year bond), inflation, and the short rate with 
output growth at various leads and lags. Lower values of ρ  lead to counterfac-
tually positive cross-correlations of the short rate with future output growth, 
despite generally negative cross-correlations of the inflation rate with future 
output growth. This is because the real interest rate becomes strongly positively 
correlated with future output growth due to a strong intertemporal substitution 
effect: high expected future income growth induces bond investors to borrow, 
thus increasing the real rate in equilibrium. This, consequently, makes nominal 
bonds a hedge and leads to negative risk premia and a downward sloping aver-
age yield curve. Further, the long-short spread and expected excess returns be-
come negatively correlated with future output growth. As discussed in Section 
3.5, a negative correlation between inflation and output growth is not sufficient 
for positive term premia, as the cases of 0.5ρ =  and 0.3ρ =  demonstrate. 

 

 

47The loadings on the temporary policy shock in the output and inflation processes vary from −1.68 
and −1.44, respectively, for 0.21λ =  to −10.81 and −9.25 for 0.91λ = . 
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Figure 5. Consequences of the elasticity of intertemporal substitution ( ( )1 1 ρ− ). The cross-correlations are with respect to the 

growth rate of output. 

5. Conclusions 

The paper shows that a parsimonious pricing kernel goes a long way accounting 
for key stylized facts of the term structure, including its leading indicator prop-
erties over the business cycle. The joint macro and nominal yield curve data 
suggest that the stand-in bond investor cares mainly about hedging consump-
tion-inflation risk, rather than intertemporal smoothing. That is, the data imply 
a high elasticity of intertemporal substitution but a low appetite for risk. Fur-
thermore, the riskiness of only one factor-the conditional mean of output 
growth, is substantially priced by the equilibrium pricing kernel. The riskiness of 
this factor is time-varying due to time-varying volatility, but shocks to volatility 
are approximately welfare-neutral, thus themselves not contributing to risk 
premia. The negative covariance, induced in equilibrium by the Taylor rule, be-
tween inflation and nominal interest rates on one hand and the priced factor on 
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the other makes nominal bonds risky. The equilibrium pricing kernel implies 
that low levels of interest rates observed in the data ahead of an economic ex-
pansion reflect news about higher future output growth, resulting in lower infla-
tion. If the positive news is contained in the volatility factor, the associated in-
crease in the long-short spread (a steeper yield curve) also reflects elevated un-
certainty about the future growth path, leading to higher term premia. It is this 
dual role of the volatility factor that makes it approximately welfare neutral, thus 
carrying a zero price of risk. 

The nominal nonneutrality embedded in the New-Keynesian Phillips Curve, 
as well as the size of the hand-to-mouth population, have quantitatively negligi-
ble effects on this basic result. This is because these rigidities, even if leading to 
sizable macro outcomes, have only short-term effects on consumption of bond 
investors and thus small effects on their lifetime utilities underpinning the equi-
librium prices of risk. 

Compared with the multiple sources of risk in many other term structure 
models, the structural model explored here may seem too simplistic. An ad-
vantage of its parsimony is that the mechanism is transparent and the model 
provides a simple bird’s eye interpretation of the joint macro and yield curve 
data, as summarized by the stylized facts. The lead-lag dynamics discipline 
the extent to which the model can account for the empirical volatility of ex-
pected excess returns. It suggests that about one quarter of the volatility of 
expected excess returns is tied to the business cycle. The remaining sources of 
the time variation in risk premia would appear unrelated to the average busi-
ness cycle. 

The proposed model also has a number of potential limitations. First, the 
model’s predictions are conditional on monetary policy following the Taylor 
rule. The model is thus not suitable for periods in which monetary policy is con-
strained by the zero lower bound and resorts to unconventional policy. The 
model is also not suitable for periods in which monetary policy independence is 
subordinated to fiscal policy. Second, the predictions of the model are condi-
tional on the particular parameterization of the Taylor rule. The parameteriza-
tion was chosen so that the model fits the historical data as well as possible. The 
estimated parameter values are within the estimates in the literature. However, if 
the parameters of the policy rule change (for instance, monetary policy starts to 
respond more to output and less to inflation), the empirical correlations may 
change too. Finally, as the empirical lead-lag correlations are not perfect, the in-
terpretation proposed by the model is not applicable to all scenarios. The inter-
pretation is conditional on output growth shocks being the main sources of ag-
gregate fluctuations. 
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