
Journal of Mathematical Finance, 2023, 13, 421-447 
https://www.scirp.org/journal/jmf 

ISSN Online: 2162-2442 
ISSN Print: 2162-2434 

 

DOI: 10.4236/jmf.2023.134027  Nov. 7, 2023 421 Journal of Mathematical Finance 
 

 
 
 

Unraveling Market Inefficiencies: Weak 
Arbitrage and the Information-Based  
Model for Option Pricing 

Matabel Odin1*, Jane Akinyi Aduda2, Cyprian Ondieki Omari3 

1Department of Mathematics, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), Nairobi, 
Kenya 
2Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, 
Kenya 
3Department of Statistics and Actuarial Sciences, Dedan Kimathi University of Technology (DeKUT), Nyeri, Kenya 

 
 
 

Abstract 
Discrepancies between theoretical option pricing models and actual market 
prices create arbitrage opportunities in financial markets. Despite being 
widely used in option pricing, the famous Black-Scholes model estimates op-
tion values based on the strict assumption of no arbitrage. In addition, its as-
sumptions of constant volatility and log-normal asset price distribution may 
not fully capture real-world market dynamics, resulting in mispricing and 
potential arbitrage opportunities. The Information-based model is adopted as 
an alternative to address this, allowing for stochastic volatility, non-specific 
asset price distributions, and variable transaction costs. This study extends 
the IBM by developing a pricing equation incorporating weak arbitrage pos-
sibilities using the weaker form of no-arbitrage termed as the Zero Curvature 
condition. The equation incorporates an adjusted risk-free rate, influenced by 
an arbitrage measure and option derivatives. Empirical findings based on the 
iShares S&P 100 ETF American call options dataset demonstrate that captur-
ing weak arbitrage improves theoretical option price estimates, reducing dis-
crepancies and potential arbitrage opportunities. Further research can focus 
on validating and enhancing the Information-based model using alternative 
financial assets data. 
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1. Introduction 

In financial markets, market inefficiencies emerge from discrepancies between 
theoretical option pricing models and actual market prices. Theoretical option 
pricing models, like the Black-Scholes-Merton (BSM) model, employ certain as-
sumptions and parameters to calculate the fair value of options based on under-
lying asset prices, option strike prices, time to expiration, interest rates, and con-
stant volatility. However, real-world markets are influenced by multiple factors 
that diverge from the assumptions of these models, giving rise to differences 
between theoretical prices and observed market prices. These disparities create 
opportunities for traders and investors to exploit potential mispricings. 

Various reasons contribute to the divergence between theoretical option pric-
ing models and market prices. Market frictions, such as transaction costs, 
bid-ask spreads, and liquidity constraints, can impact option prices and intro-
duce inefficiencies. Moreover, the volatility parameter used in option pricing 
models may differ from the actual market volatility, leading to pricing errors. 
Changes in interest rates may also not align with the model assumptions, in-
fluencing the pricing of options. In addition, investor sentiment and behavioural 
biases, such as fear or optimism, can drive demand for options, affecting their 
prices. Traders with superior information can also influence market prices, 
leading to deviations from theoretical values. These inefficiencies create arbi-
trage opportunities for market participants, albeit often short-lived, as trading 
activity corrects the discrepancies over time. 

The no-arbitrage assumption is a fundamental concept in modern financial 
econometrics which specifies that markets are efficient and there are no op-
portunities to make risk-free profits. According to [1], the assumption of No- 
arbitrage (NA) summarized under the First Fundamental Theorem of Asset 
Pricing (FFTAP) for discrete-time finite-state stochastic models, assumes that 
the absence of arbitrage opportunities is equivalent to the existence of an Equiv-
alent Martingale Measure (EMM) for the risky asset. The extension to the fi-
nite-horizon infinite state and infinite-horizon was proved by [2] and [3] respec-
tively. More versions of the theorem were proven by [4] [5] [6] and [7], take 
into account continuous-time models. For these extensions, the condition of 
NA turns out to be weak and has to be replaced by a stronger assumption. The 
studies show that the existence of an EMM is equivalent to the stronger ver-
sion called the No Freel Lunch with Vanishing Risk (NFLVR) for asset price 
processes that follow a general semi-martingale. 

The NFLVR condition has become popular and most option pricing models 
are based on its assumptions despite the options market experience being incon-
sistent with this concept since arbitrage possibilities occur naturally for short pe-
riods. In addition, the NFLVR represents a very strong assumption about market 
dynamics as it does not take into account market frictions, such as transaction 
costs and liquidity constraints. In practice, these frictions can create arbitrage 
opportunities when an option’s market price deviates from its theoretical price, 
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allowing traders to buy and sell options to make a risk-free profit. The BSM 
model revolutionized option pricing under the NFLVR condition. The model 
assumes that there are no arbitrage opportunities in the market, meaning that 
the price of the option should be equal to the expected value of its future payoff. 
Consequently, a derivative can be replicated through the creation of a risk-neutral 
portfolio consisting of the underlying asset and the risk-free asset. 

Several studies have investigated the empirical validity of the NFLVR condi-
tion, in particular the BSM model assumptions. In a study by [8], a sample of 
traded options was used to examine whether the BSM model’s NFLVR assump-
tion holds in practice. The results of the study indicated significant deviations in 
the model’s predictions from the market prices, suggesting the presence of arbi-
trage opportunities. Another study by [9] investigated the use of the BSM model 
in the presence of trading frictions. The transaction costs had a significant im-
pact on option pricing, leading to mispricing by the BSM, and hence arbitrage 
opportunities. [10] examined the American options market for the S&P 100 Ex-
change-Traded Fund (ETF) and found that the prices of call options were often 
higher than the theoretical values calculated using the BSM option pricing model. 
The results implied that there were arbitrage opportunities in the market, and 
these opportunities could be exploited using a riskless trading strategy involving 
buying a call option and short-selling a combination of the underlying ETF and 
a risk-free bond. [11] examined the pricing of European call options on the 
French stock market. The study found evidence of price discrepancies which 
were positively correlated with the option’s time to expiration. These results 
suggest that longer-dated options are more susceptible to market frictions. 

[12] also identified price deviations from the BSM predictions on the S&P 500 
index American call option market. The study found that the BSM model pre-
dictions were reasonably accurate for short-dated options, but significant devia-
tions occurred for longer-dated options. These deviations resulted from the 
presence of transaction costs and the difficulty in replicating the option’s payoff 
using the underlying asset. [13] analyzed the S&P 500 options market from 1987 
to 2009 and found that the BSM model significantly overpriced deep out-of-the- 
money options, leading to potential arbitrage opportunities for traders. They al-
so found evidence of a volatility smile pattern, where the implied volatility of op-
tions varies with the strike price, contradicting the constant volatility assump-
tion of the BSM model. [14] and [15] examined the relationship between option 
prices and implied volatility on index options based on Heston’s model. The re-
sults indicated that Heston’s model is more likely to overprice out-of-the-money 
options and underprice in-the-money options albeit it gives more accurate esti-
mates than the BSM model. However, BSM outperformed the Heston model for 
short-term in-the-money options where the latter was unable to capture the high 
implied volatility. More recent studies that provide evidence of model mispric-
ing include the works of [16] [17] [18] [19] and [20]. The findings suggested that 
pricing inefficiency was more pronounced during periods of high market vola-
tility. 
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The preceding empirical evidence that invalidates the assumption of the 
FFTAP prompted further research on the development of option pricing theory 
that does not depend on the existence of an equivalent martingale measure. 
Some studies focus on developing models which take into account short-lived 
arbitrage possibilities. One of the earliest attempts to include arbitrage possibili-
ties in derivative pricing was by physicists [21] [22] and [23]. Arbitrage is cha-
racterised as a random or virtual arbitrage return which follows the mean-rever- 
ting Ornstein-Uhlenbeck (OU) process. The approach was later adopted by ma-
thematicians in the field of finance. [24] and [25] considered the arbitrage return 
to be a component of short-term stochastic interest rates and applied it to the 
BSM model. The main limitation of this approach was that classical hedging was 
impossible because the random interest rate was not tradable. [26] modified the 
BSM model to include endogenous arbitrage opportunities modelled using the 
OU process. [27] later developed an asymptotic pricing theory by assuming that 
the option price and random arbitrage opportunities change on different time 
scales. The approach resulted in pricing bands that were independent of the de-
tailed statistical characteristics of the random arbitrage return. 

Other studies have provided a weaker characterization of the strong no-arbitrage 
NFLVR assumption that admits the possibility of arbitrage opportunities. The 
works of [28] [29] [30] and [31] demonstrated that the full strength of NFLVR is 
not needed in order to solve option valuation problems for models that incor-
porate market frictions. Over the past three decades, other alternative forms of 
no-arbitrage conditions have been proposed in the literature, which are weaker 
than the classical and strong NFLVR and NA conditions. Some of the weaker 
forms of no-arbitrage conditions include the no unbounded profit with bounded 
risk (NUPBR), No Increasing Profit (NIP), No Strong Arbitrage (NSA), and No 
Arbitrage of First Kind (NA1) [32] and [33] show that the NUPBR condition is 
equivalent to the existence of a strict martingale deflator for the price process, 
which is a concept weaker than the EMM. Similarly, [34] shows that the NIP, 
NSA and NA1 can be fully characterized in terms of the semi-martingale cha-
racteristics of the discounted underlying asset process, which is not possible for 
the strong NA and NFLVR conditions because the latter depends on the struc-
ture of the filtration. The findings from these studies suggest that the strong 
no-arbitrage condition (NFLVR) implies the weaker no-arbitrage conditions. 

Another representation of the weaker form of no-arbitrage is based on Geo-
metric Arbitrage Theory (GAT) which gives a geometric interpretation of arbi-
trage. GAT allows the modelling of the financial market as a stochastic principle 
fibre bundle and arbitrage corresponds to its curvature. [35] provide a general 
measure of arbitrage curvature for any financial market model governed by an 
Itô process. The arbitrage measure is shown to be invariant under the change of 
numéraire and equivalent probability. [36] shows that the NFLVR implies the 
vanishing of the curvature and refers to this phenomenon as the Zero Curva-
ture (ZC) condition. Later, [37] prove the equivalence between the ZC and the 
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NUPBR condition. Mathematical results showed that the ZC condition is equiv-
alent to a weaker form of economic equilibrium, and can therefore be considered 
a form of market efficiency. An extension of the BSM model is also given that 
accounts for arbitrage under the ZC condition. 

The existing literature on option pricing with arbitrage primarily revolves 
around the well-known Black-Scholes model. However, the model still has sig-
nificant limitations due to its assumptions of constant volatility and the log- 
normal distribution for asset prices. As a result, it has faced criticism for its ac-
curacy in pricing options. To address these limitations, [38] introduced the In-
formation-Based Model (IBM), which allows for stochastic volatility and any 
distribution for asset price movements. The Information-based model proposes 
that the asset price process is ‘information-driven’ rather than following a spe-
cific law. Since its inception, IBM has undergone extensions and modifications 
to accommodate various market dynamics in option pricing and to price differ-
ent types of options. In [39], the first attempt was made to price early exercise 
Bermudan-style options under the information-based framework while consi-
dering variable transaction costs of trading. 

In this study, the main objective is to expand on the IBM approach, enabling 
the pricing of plain-vanilla options considering both variable transaction costs 
and weak arbitrage possibilities. To achieve this, an arbitrage measure is intro-
duced, that helps quantify small arbitrage opportunities present in the market. 
By doing so, a more accurate representation of the real market setting can be 
achieved, leading to improved price estimates and a reduction in the price dis-
crepancies between theoretical and market prices. Consequently, addressing and 
managing the existing inefficiencies. The strong no-arbitrage assumption of 
NFLVR commonly used in option pricing models is relaxed to allow the pricing 
of options under a weaker notion of no-arbitrage specified by the ZC condition. 
Subsequently, empirical evidence is presented to showcase that financial markets 
indeed encounter arbitrage opportunities, which can be successfully incorpo-
rated into theoretical option pricing models by integrating an arbitrage measure 
to account for these weaker arbitrage possibilities. 

The motivation behind this work stems from several aspects. Firstly, there is a 
lack of existing studies that consider arbitrage possibilities in option pricing 
within the information-based modelling framework. Additionally, the current 
literature on option pricing with arbitrage under the Black-Scholes model pri-
marily provides abstract descriptions of weaker forms of no-arbitrage, over-
looking the crucial aspect of quantifying arbitrage to develop pricing models that 
account for weak arbitrage. Furthermore, there are few empirical studies de-
monstrating option pricing while considering an arbitrage measure. 

The rest of the paper is structured as follows: Section 2 provides an explana-
tion of the primitives of the classical market model in stochastic finance. It also 
covers various concepts related to arbitrage in option pricing and the foundation 
of pricing under the information-based model. Section 3 presents the derivation 
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of the information-based model equation, considering the presence of weak ar-
bitrage. The derivation is based on the ZC condition under GAT and extends the 
assumption to include variable transaction costs of trading characterized by the 
non-increasing exponential transaction cost function. In Section 4, an empirical 
study is conducted to demonstrate the practical implementation of the model 
and present empirical evidence regarding the implications of estimating theoret-
ical option prices while accounting for weak arbitrage possibilities. Finally, Sec-
tion 5 gives concluding remarks and suggestions for future research. 

2. Arbitrage and the Information-Based Model in Option  
Pricing 

2.1. The Classical Market Model 

In this paper, continuous time trading is assumed, where the set of trading dates 
is considered to be the interval [ ]0,T ∈+∞ . This assumption encompasses cases 
of both finite and infinite discrete times, as well as a finite horizon represented 
in continuous time. Real-world trading occurs at specific moments in time, 
which are not known a priori. Therefore, adopting the continuous time assump-
tion proves to be a suitable choice as it simplifies mathematical analysis and 
supports the development of robust financial models. 

Let the uncertainty be modelled by the filtered probability space  
{ }( )0

, , ; t t>
Ω   , where Ω is the non-empty set representing the sample space of 

all possible future states of the financial market,   is the σ-algebra representing 
subsets of Ω, and   is a probability measure on  . The sequence { }:t t T∈  
of σ-algebras such that 1t t+⊂ ⊂    for every t T∈  is the market filtration 
which satisfies the condition of right continuity. Suppose the market consists of 
a bank account denoted by B, which acts as the numéraire and grows according 
to a deterministic risk-free rate of interest r, and finitely many risky assets de-
noted by iS . The risky assets are indexed by 1,2,3, ,i n=   and are assumed to 
be semi-martingales. The discounted prices of all risky assets are represented  

in terms of the numéraire and defined as the normalized asset processes 
i

i t
t

t

SS
B

= . 

To build upon the concept of arbitrage in option pricing, several definitions 
and notations extracted from [7] are introduced. 

A portfolio or a strategy is an t -predictable stochastic processes ( )ˆ
S tΠ  

defined by  

( ) ( ) ( ) ( )1 2ˆ , , , n
S S S St t t tΠ =Π Π Π                   (1) 

where each ( )i
S tΠ  represents number of shares of the risky asset i held at time 

t and 1,2, ,i n=  . The time t-value of the portfolio denoted by ( )tΠ  is given 
by  

( ) ( )
1

n
i i
S t

i
t t S

=

Π = Π∑                        (2) 

A portfolio ( )ˆ
S tΠ  is called admissible if its value is a.s. non-negative. This 
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means  

( ) 0, . .t a sΠ ≥ −                         (3) 

The portfolio ( )ˆ
S tΠ  is said to be self-financing if  

( ) ( )
1

d d
n

i i
S t

i
t t S

=

Π = Π∑                       (4) 

A self-financing portfolio process is called admissible if it is S-integrable such 
that if there exists a constant 0a > , the stochastic integral satisfies  

( ) ( )if 0 0tt S aΠ ⋅ ≥ − Π =  and  
( )( ) ( )( )limt tt
t S t S

∞ →∞
Π ⋅ = Π ⋅  exists a.s 

A portfolio ( )ˆ
S tΠ  is said to be an arbitrage opportunity if ( )ˆ 0 0SΠ =  and 

there exists a time [ ]0,t T∈  such that ( )( )0 0P tΠ ≥ > . 
Definition 2.1 Let the stochastic process { }tS  be a semi-martingale, ( )tΠ  

be an admissible self-financing portfolio for the time horizon [ ]0,T . Suppose 
0L  denotes the vector space of real valued measurable functions defined on the 

probability space ( ), ,Ω  , the space L∞  is the subspace of 0L  of all 
bounded functions. Define the sets:  

• ( ){ }is admissible|S
∞

= Π ⋅ Π ; 
• ( ){ }admissib e| is - la S a

∞
= Π ⋅ Π ;  

• 0
0 L+= −  ;  

• 0 L∞= ∩  .  
The semi-martingale S is said to satisfy the  
1) No-arbitrage (NA) condition if { }0L∞+∩ =  i.e. there is no a-admissible 

strategy.  
2) No Free Lunch with Vanishing Risk (NFLVR) condition if { }0L∞+∩ = . 

where the bar represents the closure of   in L∞ .  
3) No unbounded profit with bounded risk (NUPBR) condition if a  is 

bounded in 0L .  
The relationship between these three types of arbitrages is derived in [32] giv-

ing a proof of the result in Equation (5).  

NFLVR NA NUPBR⇔ +                   (5) 

Equation (5) indicates that the NFLVR is a stronger no-arbitrage condition as 
compared to the NA and the NUBPR conditions. The assumption of NFLVR is 
widely used in most option pricing models which assume the absence of arbi-
trage in the financial market. 

Definition 2.2. A probability measure on t  is called an equivalent martin-
gale measure if it has the properties:  

• ~   on t .  
• The price process S is a martingale under   on the time interval [ ]0,T .  
Theorem 2.1. The First Fundamental Theorem of Asset Pricing: Given a 

fixed numéraire, the market satisfies the NFLVR property if and only if there ex-
ists an equivalent martingale measure  .  

The First Fundamental Theorem of Asset Pricing (FFTAP) provides the ne-
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cessary and sufficient conditions for a financial market to be arbitrage-free. The 
Theorem assumes that a market does not admit arbitrage based on the existence 
of an EMM which is defined in Definition 2.2. Theorem 2.1 has two implications: 
Firstly, the existence of an EMM implies absence of arbitrage. Secondly, the ab-
sence of arbitrage implies existence of an EMM. The proofs of both implications 
can be found in [40].  

2.2. LRB-Information-Based Modelling Framework 

The Information-based model of Brody, Hugston and Macrina (BHM), also 
known as X-factor theory examines the role of information flow as the main 
driver of price dynamics. The main result of information-based modelling is that 
the risky assets i

tS  follow an Itô process which is derived from individual mar-
ket information processes i

tξ . Suppose we consider a single asset tS  which ge-
nerates cash flows tX  such that the sequence { }1 2, , ,t TS X X X=   of random 
variables can be modeled as measurable mappings :tS Ω→ . In addition, the 
terminal cash flow TX  is assumed to be integrable and has a priori continuous 
distribution ν  and is adapted to the filtration t . This implies that the asset 
price process tS  is also adapted to the filtration. 

In information-based modelling, the filtration t  is assumed to be equiva-
lent to, and generated by a market information process. Suppose tξ ∈  
represents the market information process, then the σ-algebra generated by tξ  
over the time interval [ ]0,t  is given as  

{ };t
t s s tξ σ ξ= ≤                         (6) 

By the assumption of equivalance, t tξ≡ . 
Let the market information process driving the asset price dynamics be a Lévy 

Random Bridge (LRB) defined by  
for 0t T ttX t Tξ λ β= + ≤ ≤                     (7) 

where [ ]0,1λ∈  denotes the rate of information flow to market participants  
0 if 0

if 0

1 if

t
t t T
T

t T

λ

=
= < <


=

                      (8) 

tβ  denotes a Brownian bridge process with mean zero and variance 
( )t T t

T
−

 

such that 0 0Tβ β= = , and XT is the terminal cash flow assumed to be known 
from the onset. 

The LRB market information process consists of two parts. The term, TtXλ  
represents the true information about the value of the cash flow with λ  denot-
ing the speed at which the true information about XT is revealed to market par-
ticipants and grows in magnitude as t increases. The second part, tβ , represents 
rumours or partial information about the value of XT which is not directly ac-
cessible to all market participants. Since 0Tβ =  and 1λ =  at time T, the value 
of XT is known at time T and there is no remaining noise such that T TXξ = . 
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The terminal cash flow XT and the Brownian bridge process tβ  are assumed to 
be independent. 

Given a deterministic rate of interest r, the martingale price of the risky asset 

tS  is defined by  
( ) [ ]e | , 0r T t

t T tS X t Tξ− −= ≤ ≤                   (9) 

One can solve Equation (9) by employing first principles, which involves ex-
panding the expectation using the concept of Bayes’ rule while considering the a 
priori marginal density of the cash flows Xt denoted by ν . The resulting asset 
price process is given in Equation (10)  

2 2
0

2 2
0

1exp d
2

1exp d
2

t

t t

t

Tx x x t x
T tS P
T x x t x

T t

λ ξ λ ν

λ ξ λ ν

∞

∞

  −  −   =
  −  −   

∫

∫
            (10) 

where ( )e r T t
tP − −=  and t T ttXξ λ β= +  is the LRB market information process. 

By application of Itô formula and Fujisaki-Kallianpur-Kunit (FKK) theory, the 
stochastic differential equation for the risky asset tS  given the LRB market in-
formation process is derived in [38] and [41] as follows:  

d d dt t t tS S t Wµ σ= + ; 0S s=                   (11) 

where rµ =  is the mean return on the stock, tW  is an t -Brownian motion 
defined by  

( )
0

1 d
t

t t T sW tX s
T s

ξ λ ξ= − −
−∫                 (12) 

and tσ  is the absolute volatility process denoted by  

( )( )expt t
Tr T t V

T t
λσ = − −
−

                 (13) 

tV  is the conditional variance of tX  with dynamics defined by  
2

2 2d d dt t t t
T TV V t K W

T t T t
λλ  = − + − − 

             (14) 

where tK  is the conditional skewness of tX . The conditional variance defined 
in Equation (14) is a function of ,W  t and λ  showing that the volatility 
process is stochastic and depends on both time and information flow rate. 

The no-arbitrage price of a call option V on an underlying asset that satisfies 
the SDE in Equation (11) can be obtained through the application of dynamic 
programming to yield the second-order linear partial differential equation 
(PDE):  

2
2

2
1 0
2 t

V V VrS rV
t SS

σ∂ ∂ ∂
+ + − =

∂ ∂∂
               (15) 

The representation of the option price as a PDE allows one to incorporate 
transaction costs within the pricing equation through the utilization of Itô for-
mula and a hedging argument. Suppose market frictions characterized by a rea-
listic variable transaction costs are considered. The cost per transaction is as-
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sumed to be a non-increasing exponential function of the change in the number 
of shares denoted by S∆Π  and the LRB market information process, tξ  per 
unit of time. This cost is defined by  

( ) 1 2
0, e t SC C

S tC C ξξ − − ∆Π∆Π =                   (16) 

where 0 0C >  is the constant cost of trading, 1 0C ≥  is the reduced cost per 
unit time as t T→  (information cost) and 2 0C ≥  is the reduced cost per 
amount of share traded. [ ]1 2, 0,1C C ∈  for all positive values of tξ  and S∆Π  
such that ( ), 0S tC ξ∆Π ≥ . The decision to use non-increasing exponential 
transaction costs is based on their reflection of realistic transaction costs com-
monly encountered in financial markets. Nonetheless, other forms of transaction 
costs can also be employed for analysis. 

To derive the PDE with variable transaction costs, a self-financing portfolio Π 
is structured comprising of SΠ  shares of the underlying asset S and one call 
option V. When accounting for transaction costs, the change in the value of the 
portfolio is expressed as  

d d dSV S CΠ = +Π − ∆                     (17) 

where C denotes the variable transaction costs of trading given by the non-in- 
creasing exponential function defined in Equation (16). The PDE can then be 
obtained through the application of Itô formula together with the assumption 
that the portfolio is risk-less and must earn the risk-free rate of interest. For a 
comprehensive derivation of this PDE along with the existence and uniqueness 
proofs, please refer to [39]. The resultant no-arbitrage pricing equation, ac-
counting for variable transaction costs, is presented as follows:  

2
2

2
1 ˆ 0
2 t

V V VrS rV
t SS

σ∂ ∂ ∂
+ + − =

∂ ∂∂
               (18) 

where  

( ) 2 2
2 2 0

1 2 2 2
1 2ˆ 1 exp

2 2
t

t t T
t

t T tSC V VC tX C sign
T S Sdt dt

σ
σ σ λ

σ

   −  ∂ ∂ =  − − + −      ∂ ∂    π   
(19) 

The utilization of non-increasing exponential costs in the model modifies the 
PDE into a second-order non-linear equation. This equation incorporates ad-
justed volatility, which depends on various factors, such as transaction cost rates 
representing trade size and information cost, time, asset price, first and second- 
order derivatives of the option price, information flow rate parameter, and ter-
minal cash flow. 

3. The Information-Based Model PDE in the Presence of  
Arbitrage 

Pricing with market frictions may introduce short-lived arbitrage opportunities 
in the market. The inclusion of variable transaction costs in option pricing may 
cause temporary discrepancies in option prices, which astute investors can ex-
ploit to generate risk-free profits through arbitrage. In addition, stochastic vola-
tility in IBM can potentially lead to volatility arbitrage. This may result in situa-
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tions where the option is either overpriced or underpriced relative to its market 
value. In order to tackle the potential arbitrage opportunities in information- 
based modelling, the option price is calculated while incorporating an arbitrage 
measure that quantifies these possibilities. Nevertheless, it is crucial to recognize 
that the existence of arbitrage opportunities contradicts the presence of equili-
brium in the market. Consequently, the pricing model developed must adhere to 
an appropriate weak no-arbitrage condition to ensure market efficiency is main-
tained. 

The conceptual structure called Geometric Arbitrage Theory (GAT) is applied 
to model arbitrage in financial markets in the presence of variable transaction 
costs and stochastic volatility. GAT involves modelling the market consisting of 
financial instruments and their term structures as principal fibre bundles. It re-
quires a geometrical reformulation of the market model in order to measure ar-
bitrage (See [35] for more details). For instance, the risky asset acts as a deflator 
and the risk-free asset as the term structure. This leads to the relaxation of the 
FFTAP since GAT assumes the existence of a generalization of the EMM given 
by a martingale deflator. Arbitrage in the market is characterized as a curvature 
such that the no-arbitrage condition holds when the curvature vanishes. This is 
termed the Zero Curvature (ZC) condition and provides a weaker assumption of 
no-arbitrage compared to the NFLVR condition. Unlike other weaker notions of 
no-arbitrage such as the NUBPR, NA1, NIP and NSA which only give an ab-
stract description of weak no-arbitrage conditions, the ZC assumption quantifies 
an arbitrage measure that can be tested empirically. As proved by [37], the ZC 
and NUBPR are equivalent  

ZC NUBPR⇔                        (20) 

Thus, using the well-known results in [32] given in Equation (5) leads to fol-
lowing  

NFLVR NA ZC⇔ +                      (21) 

The definition of the ZC condition under the Lévy Random Bridge-informa- 
tion-based model (LRB-IBM) is restated as follows:  

Definition 3.1. Suppose the dynamics of the market model follow an Ito 
process as in Equation (11) where the drift parameter µ  and diffusion process 

tσ  are predictable, and the term structure, B grows according to the rate 0r > . 
Let [ ]1,1, ,1e =  , then the market model satisfies the ZC condition if and only if  

( ) ( ) ( )tSpan r Range Span eµ σ+ = =                 (22) 

Equation (22) implies that the market model satisfies the Zero Curvature con-
dition if and only if the curvature vanishes a.s. Based on Definition 3.1 an arbi-
trage measure on the market model is defined as  

( )
1

0
N

n
t

n
G rα µ

=

= + ≡ ∈∑                       (23) 

where N is the number of assets in the market model and { }1 2, , , N
t t t tG G G G=   

is the orthonormal basis of ( )tker σ . Equation (23) means that arbitrage is 
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measured as a linear combination of orthonormal basis vectors. For a general 
market model, the method of finding the orthonormal basis vectors as outlined 
in [35] is given in Definition 3.2  

Definition 3.2. Let Σ be a real and symmetric N N×  covariance matrix with 
components 

1 i j

N
ij t tn σ σ

=
Σ =∑ , where N is the number of assets in the market 

model. In addition, define U as an N N×  matrix of ones. Then the matrix M is 
defined by  

( ) ( )
( )( )

( )2
1 1M U U Tr U U

dim dim
= Σ − Σ + Σ + Σ

Σ Σ
        (24) 

Let   be the null space of matrix M such that the orthonormal basis vec-
tors 0

iti G =∑  are orthogonal to the vector of ones, say ( )1,1,1,e =  . 
The determination of the call option price in the presence of arbitrage is 

summarised under Proposition 3.1.  
Proposition 3.1. Let the market model consist of three assets: a bank account B 

which acts as the numeráire, a stock S which is driven by the LRB-market infor-
mation process tξ  and evolves according to the SDE in Equation (11), and a call 
option V written on the underlying asset S. Suppose that there are variable trans-
action costs of trading represented by the cost function, ( ), :tC ξ +∆Π →   
which is a non-increasing exponential function of the form in Equation (16), for 
all 0tξ > , 0S∆Π > . Then the risk-neutral price of a call option under the 
weak no-arbitrage Zero Curvature condition solves the non-linear second-order 
partial differential equation:  

2
2

2 2

11 ˆ 0
2

2 1
t

V
V V V SS r rV
t SS V V

S S

σ α

  
∂  − ∂ ∂ ∂  ∂+ + + − ≈  ∂ ∂∂ ∂ ∂   + −   ∂ ∂   

    (25) 

where α  measures the arbitrage allowed in the market. The corresponding 
partial differential operator is defined as  

( )
2

2
2

1 ˆ
2 tS r rV

S S
α σ∂ ∂

= + + −
∂ ∂

                 (26) 

where 
2

1

2 1

V
S

V V
S S

α α

 
∂ − ∂≈  
∂ ∂  + −  ∂ ∂  

 . 

The modified stochastic volatility ˆtσ  is defined by Equation (19).  
Proof of Proposition 3.1. The market model comprises of three assets namely 

the risk-free asset (B ), risky asset (S ), and a call option (V ) with dynamics re-
spectively given by  

d dB rB t=                         (27) 

d d dt t t tS S t Wµ σ= +                      (28) 
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2
2

2

d d

1d d d
2

t

t t

aV t b W

V V V VV S t W
t S SS

µ σ σ

+

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂∂ 


          (29) 

where a is the drift parameter and tb  is the diffusion process of the option. 
Following Definition 3.1, we need to obtain the null space of the market   
and obtain its corresponding orthonormal basis. First, the covariance matrix Σ 
relating to the market model is determined.  

2

2

0 0 0
0
0

t t t

t t t

b
b b

σ σ
σ

 
 Σ =  
 
 

                      (30) 

Using Σ, the M matrix is obtained using Equation (24) and is given by  
2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2
1 2 4 4 2 2 5
9

2 2 2 5 4 4

t t t t t t t t t t t t

t t t t t t t t t t t t

t t t t t t t t t t t t

b b b b b b
M b b b b b b

b b b b b b

σ σ σ σ σ σ
σ σ σ σ σ σ

σ σ σ σ σ σ

 + + − + − − −
 

= − + − + − − − + 
 − − − − + + − 

   (31) 

The resulting matrix M has a complex form as given in Equation (31) making 
it difficult to obtain the null space. Instead, the concept of eigen values and eigen 
vectors are used to indirectly obtain the null space of the matrix. 

The eigen values for M are 
( )2 2

1 2

2
, 0

3
t t t tb bσ σ

λ λ
− +

= =  and 3 0λ = . The 

corresponding eigen vectors are  

1 2 3

2 2
2

2 , 1 , 0
2

0 1
1

t t
t t t t

t t
t t t t

t t

t t

b b b
b b b
bV V V

b

σ
σ σ

σ
σ σ

σ
σ

+  − − +    −      + +    − +    = = = −     
    
        

 

         (32) 

where 2 3 0MV MV= =  and 1 0MV ≠ . The basis of the null space is then deter-
mined by projecting 2V  or 3V  onto the space orthogonal to ( )1,1,1e = .  

Definition 3.3 For any given matrix G of order n p× , n p≤ , where G G′  
is non-singular, the projection matrix P is defined by  

( ) 1P G G G G−′ ′=                      (33) 

It follows that 2P P=  and ( )1P P O− = .  
Based on Definition 3.3, the projection matrix P onto the range space of the 1 

× 3 matrix tG G≡  is given by  
1 1 1 2 1 1

1 11 1 1 1 1 2 1
3 3

1 1 1 1 1 2
P P

− −   
   = ⇒ − = − −   
   − −   

            (34) 

The normalized null vector corresponding to 3V  is thus given by  

( )
( )

( )
( )( )

3 3

2 2 2
3

3

1 1 1
1 21

t t

t t

t t t t
t

b
P V P V

G b
P V b bP V

σ

σ σ σ

− + 
− −  = = = − − + −  −  

    (35) 

where the condition 0tG =∑  is satisfied implying that the curvature vanishes. 
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However, to account for arbitrage which corresponds to the realistic case 
where 0α ≠ , we introduce some randomness in the drift terms given in Equa-
tions (28)-(29). The deterministic drift terms are decomposed as opposed to the 
diffusion terms because the tangent space d tS  and dV  has a natural decom-
position into the direction which contains the randomness dt tWσ  and the ones 
orthogonal to it. The decomposition of the drift terms allowing for arbitrage 
under the weak no-arbitrage ZC condition is given by  

t tGµ ζσ α ′= +                        (36) 

where  

0 0
,t t t

t

a
b

µ σ σ
µ

  
  = =   
     

                     (37) 

ζ  is the market price of risk and α  is the arbitrage measure defined by 
Equation (23). The dynamics of the market model can be rewritten as  

d dB rB t=                          (38) 

( )2d d dt t t t t t tS G S t Wζσ α σ= + +                (39) 

( )3d d dt t t tV b G V t b Wζ α= + +                 (40) 

( )
2

3 2
2

1 d d
2t t t t t

V V V VG S t W
t S SS

ζσ α σ σ
 ∂ ∂ ∂ ∂

= + + + + ∂ ∂ ∂∂ 
      (41) 

Recall that the change in the value of the portfolio considering transaction 
costs is given by  

d d dSV S CΠ = +Π − ∆                   (42) 

where C∆  represents the change in transaction costs and is defined in [39] as 
follows:  

( ),
2 S t S
SC C ξ∆ = ∆Π ⋅ ∆Π                 (43) 

22 2 2

0 1 22 2 2
2 2 d

2 d dt T t
S V V VC C tX C t

t tS S S
σ λ σ

π π

  ∂ ∂ ∂ = − −   ∂ ∂ ∂  
    (44) 

Substituting the new dynamics of dS  and dV  in Equation (42) representing 
change in the value of the portfolio yields  

( )

( )( ) ( )

2
3 2

2

2

1d d d
2

d d ,
2

t t t t

S t t t t t S t S

V V V VG S t W
t S SS

SG S t W C

ζσ α σ σ

ζσ α σ ξ

 ∂ ∂ ∂ ∂
Π = + + + + ∂ ∂ ∂∂ 

+ Π + + − ∆Π ⋅ ∆Π

    (45) 

The last part of Equation (45) given by ( ),
2 S t S
S C ξ∆Π ⋅ ∆Π  remains un-

changed since 
2

2 dS
V S

S
∂

∆Π ≈ −
∂

 
2 2 2

2
2 2 2d dS t t t

V V VG t W
S S S

ζσ α σ
 ∂ ∂ ∂

⇒ ∆Π = − − − ∂ ∂ ∂ 
 but 

https://doi.org/10.4236/jmf.2023.134027


M. Odin et al. 
 

 

DOI: 10.4236/jmf.2023.134027 435 Journal of Mathematical Finance 
 

d 0t =  hence the decomposed drift term is zero. This means that arbitrage does 
not have an effect on the transaction costs of trading. 

Rearranging Equation (45) and using S
V
S

∂
Π = −

∂
 gives  

( )
2

2 3 2
2

1d d ,
2 2t t t S t S

V V V V SG S G S t C
t S SS

σ α α ξ
 ∂ ∂ ∂ ∂

Π = + + − − ∆Π ⋅ ∆Π ∂ ∂ ∂∂ 
 (46) 

Inserting the values of 2 3,t tG G  defined in Equation (35) into Equation (46) 
yields  

( )

2
2

2 2
2 2 2

1d d
2

2

,
2

t t

t

t t t

S t S

V
V V V SS t
t SS V V

S S

S C

σ σ
σ α

σ σ σ

ξ

  
∂  − ∂ ∂ ∂  ∂Π = + +  ∂ ∂∂ ∂ ∂   + −   ∂ ∂   

− ∆Π ⋅ ∆Π

    (47) 

Substituting the dynamics of ( ),
2 S t S
S C ξ∆Π ⋅ ∆Π  previously derived for 

the variable transaction costs yields  

2
2

2 2

11 ˆd d
2

2 1
t

V
V V V SS t
t SS V V

S S

σ α

  
∂  − ∂ ∂ ∂  ∂Π = + +  ∂ ∂∂ ∂ ∂   + −   ∂ ∂   

        (48) 

where 2ˆtσ  is defined in Equation (19). 
Assuming the portfolio grows approximately according to the risk-free rate of 

interest r, the Equation (48) is equated to dr tΠ  to obtain 

2
2

2 2

11 ˆ 0
2

2 1
t

V
V V V V SrS S rV
t S SS V V

S S

σ α

 
∂ −∂ ∂ ∂ ∂  ∂+ + + − ≈ ∂ ∂ ∂∂ ∂ ∂  + −  ∂ ∂  

     (49) 

Equation (49) can be rewritten as  
2

2
2

1 ˆ
2 t

V V V VrS rV S
t S SS

σ α∂ ∂ ∂ ∂
+ + − ≈ −

∂ ∂ ∂∂
                 (50) 

where  

2

1

2 1

V
S

V V
S S

α α

 
∂ − ∂=  
∂ ∂  + −  ∂ ∂  

                     (51) 

This completes the proof.  
Remark 1. In practice, the arbitrage measure α  is not directly observable in 

the market making it difficult to solve Equation (50). [35] suggests an estimate of 
α  to be the largest eigenvalue of the matrix M. When 0α = , then Equation 
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(50) reduces to the standard no-arbitrage price with variable costs defined in 
Equation (18).  

The resulting Equation (50) is referred to as the weak no-arbitrage Lévy Random 
Bridge Information-based Model Partial Differential Equation (LRB-IBM-PDE) 
for pricing call options on an underlying driven by the LRB market information 
process. Rearranging this equation yields  

2
2 *

2
1 ˆ 0
2 t

V V V r S rV
t SS

σ∂ ∂ ∂
+ + − ≈

∂ ∂∂
                (52) 

where *r r α= +   is the adjusted risk-free rate of interest and α  is a function 
of the arbitrage measure α  and the first derivatives of the option as defined in 
Equation (51). 

Any numerical approach, like Finite Difference Schemes, Finite Element Me-
thods, and Spectral Methods, can be utilized to obtain the numerical solution for 
the pricing equation. For the specific case of solving Equation (18) using Finite 
Difference Methods, refer to [42]. This approach can be extended to incorporate 
the arbitrage measure into the equation.  

4. Empirical Results 
4.1. Data Description 

The data set utilized consists of the daily closing prices of iShares S&P 100 ETF 
(OEF) American options. The data spans an 8-month period from January 21, 
2020, to September 18, 2020, and was retrieved from  
https://www.ivolatility.com/landing/index.html. The dataset comprises 4901 da-
ta points, representing daily observations for 29 distinct call options on OEF 
shares. These call options have strike prices ranging from $134 to $162 and share 
a common expiration period of 8 months. iShares S&P 100 ETF Options are 
among the most traded American-style options in the NYSE market. The fund 
tracks the investment results of the S&P 100 index composed of 100-large capita-
lization U.S equities. ETF options are known for their high liquidity, which facili-
tates efficient trading and reliability of the empirical analysis. Despite high liquid-
ity, ETF markets can suffer from temporary inefficiencies, especially during vola-
tile periods or when new information affects market sentiment. These inefficiencies 
can create opportunities for arbitrageurs to capitalize on the price discrepancies. 

The summary statistics for both the OEF share prices and option prices over 
the 8-month period are presented in Table 1. During this period, the share price 
of OEF exhibited a range of values, a minimum recorded at $104.41 and a max-
imum at $167.97. The distribution of these share prices displayed a negative 
skewness of −0.56, indicating that the majority of prices were higher and making 
it reasonable to consider pricing call options rather than put options. This ob-
servation is also evident from the histogram depicted in Figure 1. Moreover, the 
negative skewness suggests that OEF share price deviates from the normal dis-
tribution, with most prices exceeding the mean value. Furthermore, the kurtosis 
of the share prices was 2.81, which is less than 3. This also implies that the dis-
tribution of share prices had a lower peak compared to the normal distribution.  
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Table 1. Summary statistics of the stock price and empirical option price for iShares S&P 
100 ETF. 

 Share Price Option Price 

Min 104.41 2.50 

Max 167.97 17.60 

Mean 141.31 8.12 

Median 143.50 7.05 

Range 63.56 15.10 

Std. Deviation 13.41 5.01 

Kurtosis 2.81 1.85 

Skewness -0.56 0.44 
 

 
Figure 1. Histogram of daily closing share prices of iShares S&P 100 
ETF (OEF) from Jan-Sept 2020. 

 
The summary in Table 1 also shows that the empirical option prices for the 

different strikes ranged between $2.5 and $17.6 for the same period. A positive 
skewness for the option price implies that most of the option prices were lower 
than the mean value while a positive kurtosis of less than 3 indicates that most 
prices though lower, were closer to the mean. Overall, these observations high-
light the non-normal distribution of both the OEF share prices and the empirical 
option prices  

Figure 2 presents the historical share prices of iShares S&P 100 ETF from 
January 21, 2020, to September 18, 2020. During this period, there was a notable 
decrease in the share price around March 2020, likely attributable to the impact 
of the Covid-19 pandemic. It can be deduced that the share price plunged at this 
time due to a combination of factual information and market rumours circulat-
ing regarding the potential ripple effects of Covid-19. Subsequently, the share 
price embarked on an upward trajectory with intermittent fluctuations from 
April to September. 
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Figure 2. iShares S&P 100 ETF historical daily closing share prices from 
Jan-Sept 2020. 

 
In Figure 3, the plot illustrates the time series of daily log returns of iShares 

S&P 100 ETF. It is evident that these returns exhibit mean reversion and volatil-
ity clustering, which are key features, commonly observed in time series analysis. 
There are significant spikes observed around March suggesting notable fluctua-
tions in volatility during this time.  

 

 
Figure 3. iShares S&P 100 ETF daily returns from Jan-Sept 2020. 

4.2. Market Parameters for the Information-Based Model 

In the context of information-based modelling, the primary focus is on the ter-
minal cash flow denoted by XT. This cash flow is generated by the asset price 
process St within the time interval [ ]0,T , where 8 monthsT = . For this analysis, 
the initial asset price is represented by OEF’s share price at the beginning of the 
contract, denoted as S0, which is equal to $148.62. Similarly, the share price at 
the end of the contract denoted as ST, is equivalent to the terminal cash flow XT, 
with a value of $153.31. In order to determine the risk-free rate of interest, we 
use the average one-year U.S. Treasury Bill rate in 2020, which is recorded as 
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0.37% (source: Macrotrends). 
Variable transaction costs included in the Lévy Random Bridge Informa-

tion-based model pricing equations are estimated based on various factors. 
These factors include the bid-ask spreads obtained from the dataset, the Options 
fee schedule provided by the NYSE market, and the information available in the 
iShares S&P 100 ETF prospectus. Based on the NYSE American Options Fee 
Schedule for the year 2023, electronic options transaction fees range from 0.25% 
to 1.50% of the total industry customer equity and ETF option average daily vo-
lume. These fees cover broker-dealer fees and other facilitation fees. Most bro-
kerage firms operating under the NYSE charge a commission based on the trade 
value, which typically falls within the range of 0.1% and 0.5% (source: U.S. 
News). Additionally, the iShares S&P 100 ETF charges an expense ratio of 0.20%, 
which represents a management fee automatically deducted from the fund’s val-
ue. 

To account for the constant cost of trading denoted by C0, the average NYSE 
electronic options transaction fee of 0.875% is used, along with an additional 
0.20% for the expense ratio, resulting in a total of 0 1.075%C = . The informa-
tion cost denoted as C1, is considered to be reflected by the bid-ask spreads, 
which indicate the presence of information asymmetry in the market. For the 
considered 8-month period and all the 29 call options related to the iShares S&P 
100 ETF, the average bid-ask spread is approximately 0.3799%, which is rounded 
to 0.38%. The transaction cost rate applied to the trade volume denoted as C2, is 
assumed to be 0.3%, which represents the average broker fees charged. 

4.3. iShares S&P 100 ETF Volatility and Volatility Surface 

The estimated stochastic volatility for OEF during the 8-month period is based 
on the Euler discretization of Equation (13). The results displayed in Figure 4 
show volatility exhibits stochastic behaviour, displaying variation and fluctua-
tions over time. The volatility ranges between approximately 8% and 18% across 
the observed period.  

The volatility surface of options on iShares S&P 100 ETF is also displayed to 
depict market expectations regarding future volatility and to evaluate any signif-
icant deviations from the estimated volatility. Implied volatility is estimated us-
ing the Newton-Raphson method at different strike prices and time to maturity. 
The outcomes are showcased in Figure 5. 

The volatility surface of iShares S&P 100 ETF exhibits a downward slope, in-
dicating a negative or reverse skew. This volatility skew suggests that market 
participants anticipate higher future volatility for options with lower strike pric-
es compared to options with higher strike prices. This can be attributed to a 
number of factors. Firstly, the distribution of OEF’s price movements is left- 
skewed, meaning that large downward price movements are more probable than 
large upward movements. This may indicate a greater concern for downside 
risks rather than upside risks, potentially due to the belief that downside risks 
are more severe or an expectation of a higher likelihood of negative market  
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Figure 4. Estimated stochastic volatility for iShares S&P 100 ETF for the period 
Jan-Sep 2020.  

 

 
Figure 5. Implied volatility surface for iShares S&P 100 ETF. 

 
shocks. In such a case, in-the-money (ITM) options, are more exposed to poten-
tial downward price movements than out-of-the-money (OTM) options. This 
increased downside risk increases the demand for protection, leading to higher 
implied volatility. Consequently, market participants are willing to pay a higher 
premium for options with lower strike prices, anticipating significant price 
movements in the underlying asset. Conversely, options with higher strike prices 
have lower implied volatility as market participants anticipate smaller price 
fluctuations. 

Secondly, ITM options have greater intrinsic value than OTM options. This 
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intrinsic value contributes to the total option value and increases the sensitivity 
of the option’s price to changes in the underlying asset’s price. As a result, ITM 
options are more influenced by fluctuations in the underlying asset’s price, 
leading to higher implied volatility. Thirdly, investors and market participants 
generally exhibit risk aversion, being more concerned about potential losses than 
gains. This risk aversion is reflected in the higher implied volatility of ITM op-
tions as they provide more downside protection. Market participants are willing 
to pay a higher premium for ITM options due to their higher perceived risk as-
sociated with potential adverse price movements. Fourthly, market demand and 
supply dynamics can also contribute to higher implied volatility for ITM options. 
The demand for ITM options may be driven by investors seeking to hedge ex-
isting positions or speculators anticipating further price movements. The in-
creased demand for ITM options can drive up their prices and, consequently, 
their implied volatility. 

Overall, the implied volatility deviates from the estimated volatility at various 
points in time. At the inception of the options contract, the implied volatility 
tends to be slightly higher, while towards maturity, it decreases. This behaviour 
is expected, as IBM may not fully account for factors such as investor sentiments, 
market inefficiencies, or unforeseen events that can significantly impact volatili-
ty. Moreover, it is noteworthy that the implied volatility generally reaches its 
lowest level as the option approaches maturity. The reason behind this pattern is 
that as an option nears its expiration date, there is less time for the underlying 
asset to undergo substantial price movements. Consequently, the level of uncer-
tainty and the potential for large price swings diminish, leading to a decrease in 
implied volatility. In information-based modelling, the decline in implied vola-
tility towards maturity can be attributed to the increased availability of informa-
tion regarding the asset’s price, which reduces uncertainty for market partici-
pants. 

4.4. Pricing with Arbitrage 

The Lévy Random Bridge Information-based model is used to price American 
call options on iShares S&P 100 ETF. It incorporates stochastic volatility, which 
is adjusted to account for variable transaction costs. Equation (16) defines the 
modified volatility, considering non-increasing exponential costs. [42] provides 
additional details on how the numerical approximation of the modified volatility 
is conducted using the explicit finite difference scheme. By considering transac-
tion costs, the model effectively reduces stochastic volatility. 

For the empirical illustration, a near-the-money option is chosen with a strike 
price of $149 because the initial underlying asset price is close to $149 ($148.65). 
Additionally, one option each is selected to represent in-the-money (ITM), deep 
ITM, out-of-the-money (OTM), and deep OTM options, with strike prices dif-
fering by intervals of $5. This selection results in 5 out of the 29 iShares S&P 100 
ETF call options with the following strikes: { }$139,$144,$149,$154,$159K = . 

https://doi.org/10.4236/jmf.2023.134027


M. Odin et al. 
 

 

DOI: 10.4236/jmf.2023.134027 442 Journal of Mathematical Finance 
 

The selected market data is utilized to evaluate whether the LRB-IBM-PDE satis-
fies the weak no-arbitrage Zero Curvature condition. The measure of arbitrage 
curvature, denoted by α , is determined based on the orthonormal basis of the 
null space of the market Gt, as defined in Equation (35). At each time step, the 
value of Gt is calculated, and the resulting values of Gt fulfill the condition 

3
1 0n

tn G
=

=∑  for every time step, implying that α  is also zero. This observa-
tion indicates that the LRB-IBM-PDE satisfies the ZC condition and that market 
efficiency holds, taking into account the iShares S&P 100 ETF market data. 

However, the volatility surface of the iShares S&P 100 ETF, as illustrated in 
Figure 5 differs from the estimated stochastic volatility under LRB-IBM-PDE. 
This discrepancy suggests the existence of potential weak arbitrage opportunities 
in the market, indicating that α  is not equal to zero in reality. Consequently, 
the market estimate for α  is taken as the largest eigenvalue for the matrix M in 
Equation (24) which is important in determining the orthonormal basis of the 
null space of the market. The eigenvalues of matrix M are calculated as follows: 

1 0.002λ ≈ , 2 3 0λ λ= ≈ . Hence, the market estimate for the arbitrage curvature 
is approximately ˆ 0.002α ≈  across all strike prices. This suggests that potential 
weak arbitrage opportunities are quantified using a positive arbitrage curvature 
of 0.002. Subsequently, call prices are calculated by considering variable transac-
tion costs and accounting for these weak arbitrage opportunities. The resulting 
prices are presented in Table 2, where the values in parentheses represent the 
absolute percentage errors between the estimated theoretical prices and the em-
pirical prices.  

 
Table 2. Comparison of iShares S&P 100 ETF call prices: LRB-IBM with transaction costs 
and weak arbitrage vs. No Arbitrage. 

Strike Empirical Prices 
Non-increasing exponential costs 

Without arbitrage With arbitrage 

139 13.55 12.57 12.98 

  (0.0723) (0.042) 

144 9.95 9.14 9.46 

  (0.0814) (0.0492) 

149 6.50 6.28 6.52 

  (0.0339) (0.0031) 

154 4.00 4.07 4.23 

  (0.0175) (0.0575) 

159 2.50 2.50 2.60 

  (0.0000) (0.0400) 

 MAPE 4.10% 3.84% 

 MAE 0.4160 0.2820 
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Based on the results, incorporating positive arbitrage curvature leads to an in-
crease in call prices across all strikes. This adjustment brings the LRB-IBM prices 
with non-increasing exponential transaction costs closer to the empirical prices, 
particularly for in-the-money, deep in-the-money, and at-the-money calls, as 
evidenced by the reduced absolute percentage errors. However, the inclusion of 
positive curvature results in overpricing of out-of-the-money and deep out-of- 
the-money calls, which typically have a lower likelihood of accommodating weak 
arbitrage opportunities due to their low intrinsic value and implied volatility. 
These results suggest that including arbitrage curvature is not necessary when 
estimating OTM or deep OTM calls, as it reduces the accuracy of the theoretical 
estimates. However, including arbitrage curvature becomes crucial when esti-
mating ATM, ITM and deep ITM calls, as it significantly improves the accuracy 
of the theoretical estimates. Consequently, this helps to reduce the price discre-
pancies within information-based modelling, thereby removing potential arbi-
trage opportunities that arise froms such discrepancies. 

Additionally, the sMAPE and MAE values for LRB-IBM continuation values 
were computed to analyze the impact of incorporating arbitrage on these values. 
The results, presented in Table 3, provide insights into the differences between 
scenarios with and without arbitrage curvature. The results suggest that the es-
timates of continuation values are improved, especially for ITM, deep ITM, and 
ATM calls with strikes of $139, $144, and $149, respectively. This improvement 
is indicated by the reduced sMAPE and MAE values for these options. However, 
the effect of the positive arbitrage curvature is insignificant for OTM and deep 
OTM calls with strikes of $154 and $159, respectively. In these cases, the change 
in sMAPE and MAE is negligible. Thus, by accounting for arbitrage in the com-
putation of continuation values, the theoretical estimates are refined. These im-
proved estimates can then be used to determine the optimal exercise times for 
the American options.  

 
Table 3. Comparison of sMAPE and MAE for continuation values: LRB-IBM with trans-
action costs and weak arbitrage vs. No Arbitrage. 

 Option Strike Price without arbitrage Price with arbitrage 

 139 25.50% 23.40% 

 144 29.77% 28.42% 

sMAPE 149 36.39% 36.14% 

 154 56.10% 56.12% 

 159 71.02% 71.04% 

 139 1.2848 1.2415 

 144 0.9903 0.9367 

MAE 149 0.9100 0.9105 

 154 1.0545 1.0555 

 159 1.1517 1.1524 

https://doi.org/10.4236/jmf.2023.134027


M. Odin et al. 
 

 

DOI: 10.4236/jmf.2023.134027 444 Journal of Mathematical Finance 
 

5. Conclusions and Further Research 

This study extends the Information-based model with variable transaction costs 
by developing a pricing equation incorporating weak arbitrage possibilities. The 
successful attainment of this objective involved a departure from the classical 
no-arbitrage condition to assuming the Zero Curvature condition for weak arbi-
trage. Pricing under the ZC condition allowed for the quantification of potential 
weak arbitrage opportunities using an arbitrage measure. Under the ZC condi-
tion, the dynamics of the option and asset price were adjusted to incorporate the 
arbitrage measure through the decomposition of the respective drift terms. 
Consequently, the second-order non-linear partial differential equation that 
represents the fair value of a call option under the information-based model was 
modified. This modification entailed the inclusion of an adjusted rate of interest 
earned on the underlying asset, which was expressed as a function of the arbi-
trage measure, as well as the first and second derivatives of the option. Remark-
ably, a positive arbitrage measure resulted in an adjusted interest rate exceeding 
the assumed risk-free rate. 

The pricing equation, incorporating variable transaction costs and weak arbi-
trage possibilities, was validated to satisfy the weak no-arbitrage Zero Curvature 
condition. This validation was based on the market data from the OEF dataset, 
where the estimated curvature was determined to be zero. However, significant 
disparities were observed between the model’s estimated stochastic volatility and 
the OEF’s volatility surface, suggesting the presence of potential weak arbitrage 
opportunities. A positive curvature estimate of 0.002 was used to quantify these 
opportunities, leading to an improved theoretical call estimate for ATM, ITM, 
and deep ITM options, but overpricing for OTM and deep OTM options. The 
findings imply that a positive arbitrage measure is suitable for ATM, ITM, and 
deep ITM options, as they are more likely to be mispriced due to demand. 
However, for OTM and deep OTM options, a zero or lower arbitrage measure is 
recommended. The information-based model, accounting for variable transac-
tion costs and weak arbitrage, offered better accurate estimations of call values 
and continuation values compared to the no-arbitrage scenario. Therefore, it can 
be concluded that capturing weak arbitrage in theoretical option pricing can 
improve price estimates, reducing price discrepancies, and limiting opportuni-
ties for arbitrageurs. This holds particularly true when analyzing iShares S&P 
100 ETF market data. 

Future research can explore alternative approaches for estimating the arbi-
trage measure since the current method proves unsuitable for all types of options 
based on moneyness. Such investigations could enhance the model’s usability 
and adoption within the financial industry. Alternatively, the research could fo-
cus on identifying other methods to account for weak arbitrage possibilities in 
the market while preserving market efficiency within the information-based or 
other option pricing frameworks. For robustness and consistency, it is recom-
mended to conduct further investigations using alternative historical options 

https://doi.org/10.4236/jmf.2023.134027


M. Odin et al. 
 

 

DOI: 10.4236/jmf.2023.134027 445 Journal of Mathematical Finance 
 

data. This encompasses a range of datasets, such as those spanning various time 
periods, diverse market segments, different geographical markets, varying mar-
ket regimes, and distinct market volatility states. This extended analysis will 
yield valuable insights into the model’s performance across different datasets, 
reinforcing its credibility and reliability. 
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