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Abstract 
Cryptocurrencies are considered to be among the most disruptive innova-
tions done in the financial sector within the last decade. It is a digital asset 
that is designed to serve as a medium of exchange using cryptography. Finan-
cial modeling of cryptocurrencies is needed in order to determine the pres-
ence of dependence between currencies. Copulas functions assist in modeling 
dependency structure by making it possible to separate marginal distributions 
of a given multivariate distribution. The purpose of the study was to model 
dependencies of cryptocurrencies using copula Garch. The study proposed 
the use of copula Garch model to model the dependence of cryptocurrency 
price data. Bivariate copula was extended to Bivariate Copula Garch in order 
to model prices and measure the cryptocurrency dependence. Prices of the 
four cryptocurrencies (Bitcoin, Binance, Litecoin and Dogecoin) were ana-
lyzed to establish whether there exists any dependency. The results showed 
standard Garch (1,1) under the highly flexible ARMA-GARCH model was 
appropriate to identify the true patterns of index returns. Fitting the copula 
standard Garch (1,1) model to the currencies, it was observed that the pair 
Litecoin and Bitcoin has the highest tail dependence among the selected 
cryptocurrencies, which implies that change in prices of Litecoin will influ-
ence the prices of Bitcoin and vice versa is true. Optimization of the crypto-
currencies showed that Dogecoin has the best optimization. The results of 
this study indicate that investing on Dogecoin significantly reduces risk ir-
respective of significant correlation among Litecoin, Bitcoin and Binance. 
Standard Garch (1,1) is the best in identifying dependence between the cryp-
tocurrencies. 
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1. Introduction 

Cryptocurrency is a virtual or digital currency secured through cryptography; 
hence it is safe from counterfeit [1]. Blockchain technology has been used in a 
decentralizing cryptocurrency network. It is not issued by the government, thus 
immune from interference and manipulation by the central banking system in a 
country according to [2]. This currency is mostly used as a medium of exchange 
in online trading where digital ledgers are applied. There is a need for strong 
cryptography in securing transaction record entries. The transactions do not ex-
ist physically, and the individuals involved may not know each other physically 
[3]. Bitcoin which was the first cryptocurrency, released in 2019 by open-source 
software, has consistently been used in many countries. It is still famous; how-
ever, various alternative coins have been created afterward, with some being 
bitcoin clones or forks. Litcoin, Namecoin, Peercoin, and Cardano are some of 
Bitcoin’s competing cryptocurrencies. To model and measure the dependencies 
in cryptocurrencies, the study proposed the use of copulas where copulas have 
been distinguished in different families namely, Elliptical copulas, Archimedean 
copulas, Empirical copulas and Periodic copulas. Each family has different types 
of copulas depending with the distribution of the functions [4]. Copulas is rele-
vant in finance mainly in portfolio management, risk management, derivative 
pricing and optimization. 

The autoregressive conditional heteroscedastic (ARCH) model [5] and gene-
ralized conditional heteroscedastic (GARCH) model that was stated by [6] have 
been used widely financial time series to model return variance processes. It has 
been observed that financial time series data exhibit heavy tails and extreme val-
ue theory (EVT) has been established as a useful tool in modelling tail behaviour 
of the distribution instead of the entire distribution. Extreme events study is key 
in financial risk management mainly to investors since it gives rare events that 
have catastrophic effects which may comprise of extreme default losses, market 
crashes and currency crisis. This GARCH-EVT combination has an advantage of 
being able to capture conditional heteroskedasticity in the given data through 
the GARCH framework, and at the same time apply EVT method to model the 
extreme tail behaviour. Linear correlation has been used as a measure of depen-
dence for multivariate variable while calculating the dependence between dif-
ferent asset returns. Gaussian, log-normal and Student-t are multivariate distri-
butions that have been widely used. However, they cannot be applied in the case 
of assymetrical data. Copulas provides a solution in addressing dependence struc-
ture problem, and it offers flexibility unlike correlation approach [7], hence pro-
viding an opportunity for one to examine separately marginal distributions from 
random variables dependency structures. 

This study’s primary objective is to fit the most appropriate GARCH model in 
modelling cryptocurrencies data, examine the dependence structure of Crypto-
currencies using Copula GARCH model and select a portfolio of cryptocurren-
cies with the best optimization. Therefore, this study’s main contribution was to 
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model cryptocurrency and selection of the cryptocurrency with the best optimi-
zation using Copula standard Garch model. 

The paper is organized as follows: Section 2 describes the methods of the study; 
Section 3 presents main results, simulation study results; Section 4 presents con-
clusion and suggestions for further research. 

2. Methods 
2.1. The ARMA-Model 

ARMA models can be used in modeling trends and seasonality in time series 
data. They are mostly constructed on white noise basis whose variance is de-
noted as 2σ Z . These models belong to a class of stationary univariate time series 
models which is utilized in a time series to capture (linear) serial dependence. 
These combines the two classes of time series models, namely; moving average 
(MA) process and autoregressive process (AR) that results in a parsimonious 
polynomial model which combines both moving averages and autoregressive 
models. 

Definition The ARMA(p, q) process Let ( ) ( )2~ 0,σ
∈t t

Z WN  for some, 
2 0σ >  be a white noise sequence on ( ), ,Ω F P . Let , ∈p q  and 1, ,φ φ p  

and 1, ,θ θ ∈ q . Then we have any stationary time series ( ) ∈t t
X  on 

( ), ,Ω F P  satisfying [ ]0 0=E X  and 

1 1 1 1φ φ θ θ− − − −− − − = + − + − ∀ ∈ t t p t p t t q t qX X X Z Z Z t      (1) 

( ) ∈t t
X  being an ARMA(p, q) process whose mean µ ,having ( )µ ∈t t

X  as 
an ARMA(p, q) process, µ∈ . We can write Equation (1) in compact notation 
that is based on the backshift operator which is given as follows 

( ) ( )Φ = Θ ∀ ∈t tB X B Z t                    (2) 

where ( ) 11 φ φΦ = − − −

p
pB B B  is given as the “autoregressive polynomial of 

degree p” and we have ( ) 11 θ θΘ = + + +

q
qB B B  given as the “moving average 

polynomial of degree q”. One can either use only the moving average or the au-
toregressive part of a given ARMA equation. 

Definition (AR(p)-process) 
In Equation (1), let q = 0 thus ( ) 1Θ =z . Hence the equation can be simplified 

to 

1 1 for allφ φ− −− − − = ∈ t t p t p tX X X Z t  

( ) for allθ = ∈t tB X Z t  

Given that p = 1, then we have the AR(1)-process 

1 1φ −− =t t tX X z  

Theorem 3.1. Given that ( ) 0Φ ≠z  ∀ ∈z  with 1≤z , then we have the 
ARMA model as given in Equation (1) having unique stationary solution 

∞
−=−∞

= Ψ ∀ ∈∑ t j t jjX Z t                     (3) 

where we can determine the coefficients ( )
∈

Ψ
j j

 by 

https://doi.org/10.4236/jmf.2023.133020


E. M. Kimani et al. 
 

 

DOI: 10.4236/jmf.2023.133020 324 Journal of Mathematical Finance 
 

( ) ( ) ( )1 1, with− ∞ −
=−∞

Θ Φ = Ψ = Ψ <∑ j
jjz z Z z r z r            (4) 

for any 1>r  
Definition(MA(q)-process) In Equation (1), let p = 0 and hence ( ) 1Φ =z . 

The equation then simplifies to 

1 1 for allθ θ− −= + + + ∈ t t t q t qX Z Z Z t  

( ) for all= Θ ∈t tX B Z t  

For q = 1, then we get the MA(1)-process 

1 1.θ −= +t t tX Z Z  

2.2. The GARCH-Model 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model 
which was introduced by [6] is a generalized form of the ARCH models which 
was introduced by [5]. The Autoregressive (AR) process considers observations 
made in the past up to a given degree into the present and utilizes a feedback 
mechanism. GARCH model “conditional component” implies variance depen-
dence on immediate past, while “heteroscedasticity” implies time varying volatil-
ity. A standard ARCH(p) process that has p lag terms and is designed to capture 
volatility clustering which can be expressed as 

0 1
2 2σ α α ε −=
= +∑ i t ii

p
t                      (5) 

where 0 0α >  and 0α ≥i , for 1,2, ,= i p  which ensures finite variance and 
we have 1 1α α+ + < p  in stationarity. Large persistence in volatility leads the 
ARCH model to require a large number of lags p which can be used to fit the 
data. 

Definition GARCH(p, q) The stochastic process ( )ε
∈t t

 on a probability 
space ( ), ,Ω F P  where Ω  is given by a GARCH(p, q) process if it gives a 
solution to ε σ=t t tz  with ( ) ∈t t

Z  being an iid sequence and the conditional 
variance of a GARCH(p, q) being 

1
2

1 1
2 2

0σ α α ε β σ−= = −= + +∑ ∑p p
t i t j tj ji                     (6) 

The GARCH model parameters must satisfy the following conditions in order 
for conditional variance to be finite and positive 

0 0α > , 1 ,0, ,α ≥ = i i p  and 0β ≥j  for 1, ,= j q  
Different versions and extensions have been made on GARCH model. Equa-

tion (6) gives a symmetric model which implies positive and negative shocks have 
the similar volatility effects. However, positive (negative) innovations to volatili-
ty have been suggested to correlate with negative (positive) innovations to re-
turns by empirical literature. 

We intend to consider two extensions of the standard GARCH model in order 
to account for leverage effects and symmetry [8] gave a proposal of a Boolean 
indicator being introduced in the GARCH Equation (6). We get the GJR-GARCH 
model conditional variance being given by 
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( )1 1
2 2 2 2

0 1 1 1 1σ α α ε ε ε ε β σ− − − −= = =
= + + Ψ +∑ ∑ ∑p p q

t i t i t t j t ji i j          (7) 

where we have ( ) 1εΨ =t  given that 0<tZ  and it is 0 if 0≥tZ . 
The term ( )1ε ε −Ψi t  also captures the shock in addition to the symmetrical 

GARCH(p, q) model which is given in (6). GJR-GARCH model is normally used 
to nest the standard GARCH model by equating all the gi coefficients to zero, 
hence reducing the GJR-GARCH model to the standard GARCH model. 

0 , ,α α βi j  and ( )α ε+i i  parameters are constrained to be non-negative in or-
der to ensure positivity and stationarity of the GARCH specifications. Non- 
negativity constraints are too restrictive as argued by [9], this advocated inclu-
sion of asymmetric volatility response to innovations with the EGARCH model 
in Nelson’s exponential GARCH model, it is given as 

( ) ( )0 1
2

1
2

11 1log logσ α α ε β σ
= − − −= =

= + + +∑ ∑ ∑i i
p p q

t i t i t j t jjZ Z        (8) 

Parameters ε i  with negative ε i  is used to capture asymmetry, higher im-
pact on valatility are experienced in negative shocks than positive shocks. Mar-
ginal distributions of standardized residuals tz  should be specified in order to 
complete univariate model specification. 

2.3. Copulas and Dependence Structure 
2.3.1. Definition of Copulas and Its Properties 
Definition Let C be a copula of a multivariate PDF which is defined on [ ]0,1 n , 
while its variables marginal probability distribution are uniformly distributed in 
[0, 1] [10] 

Definition For a 2-dimensional copula we have a function  
[ ] [ ] [ ]0,: 10, 0 11 ,× →C , which fulfils: 

1) For every [ ], 0,1∈a b : 

( ) ( ),0 0, 0= =C a C b  

2) For every [ ], 0,1∈a b : 

( ) ( ),1 and 1, =C a C b b  

3) For every [ ]1 2 1 2, , , 0,1∈a a b b  with 1a  and 2≤ a  and 1 2≤b b : 

( ) ( ) ( ) ( ) ( )2 2 2 1 1 2 1 1, , , , 0, 0− − + = ≥C u v C u v C u v C u v C v  

Functions fulfilling the first property are referred to as grounded. Implying, 
that for both outcomes the joint probability is zero given that the marginal 
probability of either outcome is zero. The second property is known as the co-
pula boundary condition while the third property is known as two-dimensional 
analogue for a function that is one-dimensional and non-decreasing. Such a 
function is called 2-increasing. 

The theorem presented next establishes the continuity of copulas via a Lip-
schitz condition on [ ] [ ]0,1 0,1× : 

Theorem 1 Let C to be a copula. Then we have that for every  
[ ]1 2 1 2, , , 0,1∈a a b b  
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( ) ( )2 2 1 1 2 1 2 1, ; ,− ≤ +C a b a b a a b b                  (9) 

Theorem 2 Let C to be a copula. Then we have that for every [ ]0,1∈a . We 
have the partial derivative ∂ ∂C  a existing in almost all [ ]0,1∈v . Given that a 
and b, one exists for almost all [ ]0,1∈b . having a and b one has 

( )0 , 1∂
≤ ≤
∂

C a b
v

                       (10) 

The partial derivative analogous statement is true for ∂ ∂C u . In addition, we 
have the function ( ) ( ),→ ≡ ∂ ∂C

ba a C a b b  and → ≡ ∂ ∂C
a ab b C b a  on [0, 

1] being defined and non-decreasing in almost everywhere . 
Definition 
Copula density. We let C to be a two times and two-dimensional partial diffe-

rentiable copula, therefore we have the function [ ] [ ]2: 0,1 0,1→c  hence 

( ) ( ) [ ]
2

1 2
1 2 1 2

1 2

,
, , , 0,1

∂
= ∈

∂ ∂
C a a

c a a a a
a a

              (11) 

is referred to as copula density for C 
The fundamental theorem of copulas theory is key. It is stated by Sklar’s theo-

rem [11]. Sklar’s theorem issues key properties for copulas 
Lemma (Sklar’s theorem) [10] 
Let ( )1 2,F x x  to be a two dimensional joint probability distribution function 

for two random variables illustrated as X1 and X2 whose marginal distributions 
are F1 and F2. Then we have a 2-dimensional copula C, where by  
( ) ( ) ( ) ( )( )2

1 2 1 2 1 1 2 2, , , , ∀ ∈ = x x F x x C F x F x  holds. For the continuous F1 
and F2 and we have C as unique and defined through 

( ) ( ) ( )( )1 1
1 2 1 1 2 2, ,− −=C x x F F x F x  

Conversely, having C as a copula and marginal distribution functions F1 and 
F2, then we have the function F being defined in equation (iv) as a bivariate joint 
distribution function whose margins are F1 and F2. 

From the theorem 3 the bivariate distribution density function ( )f  be 
written in copula form. 

( ) ( ) ( ){ } ( ) ( )1 2 1 1 2 2 1 1 2 2 1 2, , , ,= ∈f x x c F x F x f x f x x x      (12) 

Copulas capture only dependency features that are invariant under increasing 
transformations [12]. 

2.3.2. Bivariate Two-Parameter Copula Families 
The families of bivariate two-parameter copula are key in capturing dependen-
cies that are more than one such as upper and lower tail dependence or in find-
ing dependence in one of the tails and concordance [13]. 

Definition (Bivariate two-parameter copula families) 
These copula families take the form 

( ) ( ) ( )( )( )1 1
, log ,µ µ

− −−Ψ −Ψ= Ψ −C a b K a v              (13) 

where we have K being maximal infinite divisible which we can denote as 
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(max-id). [We have K as max-id given that for all a > 0, αK  is a cdf] and we 
have Ψ  as a Laplace-transform (LT). 

Given that δ  and Ψ  are used to parametrize K by parameter θ  (denoted 
by θψ ) then we result to Two-parameter families. Having K increase in its con-
cordance as δ  increases, then definately there is an increase in concordance of 
C as δ  increases while we have θ  being fixed. It is harder to check concor-
dance ordering, δ  being fixed with θ  varying. K taking the Archimedean 
copula form, then we have C taking the Archimedean copula form. That is, if 
( ) ( )( ) ( )( )1 1, ; δ δ δ δδ φ φ φ φ− −= +K x y x y  for δφ  family, then 

( ) ( )( ) ( )( )( )
( ) ( )( )

1 11 1

1 1
, , ,

, ; ; log

,

θ θ θ δ

θ δ θ δ θ δ

θ δ φ φ µ φ µ

η η η

− −− Ψ − Ψ

− −

 = Ψ − +  

= +

C a b a b

a b
 (14) 

where ( ) ( )( )1
, logθ δ θ δη φ− = Ψ −s s  

For δ  being fixed and 2 1θ θ> , with , , 1,2θ δη η= =i i  the ordering of the 
concordance being ( )1; ,θ δ⋅C  and ( )2; ,θ δ⋅C  could then be established through 
showing that 1

2 1ω η η−=   is superadditive. 
BB1-copula 
The definition of BB1-copula is given by 

( ) ( ) ( )

( )( ) ( )( )

1
1

1 1

, ; ; 1 1 1

0, 1

θ
δ δ δθ θθ δ

η η η η θ δ

−

− −

− −

   = + − + −     

= + > ≥

C a b a b

a b

          (15) 

where 

( ) ( )
1

1

, 1
θ

θ
θ δη η

−
 

= = +  
 

s s s  

We have the copula density being 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

1 21

2 2

1

1 11 1

, ; ; 1 1 1

1 1

1 1 1 1

1 1

θ
δ δ δθ θ

δδ δθ

δ δθ θ

δ δθ θ θ θ

θ δ

θ

θδ θ δ

− −

− −

−
−

−
− −

− −− − − − − −

   = + − + −     

 × − − + −  
   × + + − − + −     

× − −

C a b a b

b

a b

a a b b

    (16) 

We consider BB1-copula as an example of a bivariate Archimedean copula 
whose generator function is ( ) ( ); , 1

δθφ θ δ −= −s s . 
BB7-copula 
The BB7-copula, is at times considered as Joe-Clayton copula, with a similar 

structure as the one of the BB1-copula, The Archimedean generator function is 
given by ( ) ( ); , 1 1 1

δθφ θ δ
−

 = − − − s s  whereby it is defined as  
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( ) ( ) ( )
1

1

, ; ; = 1 1 1 1 1 1 1
θδ θθ θ θθ δ

− − −    − − − − + − − −      
JCC a b a b  

( ) ( )( )1 1 , 1, 0η η η θ δ− −+ ≥ >a b                  (17) 

where ( ) ( ) ( )
1

1

, 1 1 1
θ

δ
θ δη η − = = − − +  

s s s  

Copula density is given by 

( )
1 11 1, ; ; 1 θθ δ

θ δ
−  = − − ⋅  

  
c a b h dabh                (18) 

In BB7-copula the lower and upper tail dependence can range on each other 
from zero to anywhere freely. 

2.3.3. Bivariate Dependence Measures 
Pearson Correlation Coefficient 
Pearson’s correlation which is also referred to as correlation coefficient or 

product moment correlation is a measure used widely in measuring linear cor-
relation given two random variables. Correlation and dependence can be used 
interchangeably. 

Definition Let ( )T,X Y  to be a vector of random variables which have non-
zero finite variances. Linear correlation coefficient can be defined as 

( ) ( )
( ) ( )

,
,ρ =

Cov X Y
X Y

Var X Var Y
                   (19) 

The correlation coefficient properties (ρ) are 
1). ( ), 1ρ ≤X Y  
2) X and Y being independent, then we have ( ), 0ρ =X Y . 
3) ( ), 1ρ =X Y  if ∃a  and 0≠b  such that ( ) 1= + =P X a bY  
4) ( ) ( ) ( ), ,ρ α β δ α ρ+ ϒ + = ϒX Y Y sgn X Y  
5) X and Y being joint bivariate normal distribution that have standard nor-

mal margins then we have, correlation coefficient ρ  being uniquely defined by 
the existing joint distribution. 

Definition The correlation coefficient can be estimated using 

( )( )
( ) ( )2

1

2

1

1

1

ρ̂ =

=

− −
=

− −

∑
∑

i
n

ii

i

n

X X Y Y

X X Y Y
 

Linear correlation is popular due to its ease in calculations but cannot be ap-
plied as a canonical dependence measure. It is commonly used in elliptical dis-
tributions. 

Kendall’s tau 
Kendall’s tau for a given vector, given ( )T,X Y  is given by finding the proba-

bility of concordance in the pair of random variables minus the probability of 
discordance in the pair of random variables chosen in a population version 
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which can expressed in the following definition by [7] [14] [15]. 
Therefore, Kendall’s tau can simply be defined as the probability of concor-

dance minus the probability of discordance. 
Definition (Kendall’s τ) Let ( )1 1,X Y  and ( )2 2,X Y  be two pairs of inde-

pendent random variables whose joint distribution, denoted as F and marginal 
distributions denoted as XF  and YF . Therefore Kendall’s tau can be illustrated 
by 

( ) ( )( ) ( )( )
( ) ( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, 0 0

, ,
τρ = − − > − − − <

= < > − > <

X Y P X X Y Y P X X Y Y

P X X Y Y P X X Y Y
     (20) 

In the equation, ( )( )1 2 1 2 0− − >P X X Y Y ), is referred to as P (concordance), 
while, ( )( )1 2 1 2 0− − <P X X Y Y  is P (discordance). Therefore,  

( ) ( ) ( )concordance discordanc, eτρ −=X P PY . 
An alternative definition making use of the mathematical expectation opera-

tor, expresses Kendall’s tau as 

( ) ( )( )( )( )1 2 1 2,τρ = − −X Y E sign X X Y Y              (21) 

The empirical version of this expression is 

( ) ( )( )
1

, , , ,
1

,
2τ

−

≤ < ≤

 
= − − 
 

∑i j t i s i t j s j
t s n

n
r X X sign X X X X         (22) 

where we have ,t iX  and ,t jX  referring to the t-th observations in the two 
random vectors that have n observations. 

Kendall’s tau can also be represented in terms of copula; the illustration is 
given as follows 

( ) ( )
0 0

1 1
4 , d , 1τρ = −∫ ∫ C u v C u v                  (23) 

Theorem Kendall’s tau for a bivariate Archimedean copula C whose generator 
function is given by ϕ  in one-dimensional integral can be written as [16] 

( )

( ) ( )

1
1

0 1
1 4 d

ϕ
τ

ϕ

−

−
= +

′∫
t

t
t

                     (24) 

2.4. Tail Dependence 

Tail dependence concept is mostly applied in non-normal multivariate families, 
especially in financial applications. In a bivariate distribution, tail dependence 
can be represented by the probability of first variable exceeding its q-quantile, 
when the other also exceeds its own q-quantile. Upper tail dependence coeffi-
cient is the limiting probability as q goes to infinity, where we have the copula as 
the upper tail dependent given that it is not zero. The lower tail dependence is 
said to be analogously defined. The implication is that given two continuous 
random variables X and Y, then the tail dependence is a copula property and 
whose amount of tail dependence will be invariant given strict increasing trans-
formations of X an Y [17]. 
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Definition (Tail dependence) Let ( )T,X Y  to be a vector for continuous 
random variables whose marginal distribution functions denoted as F and G. 
The upper tail dependence coefficient λU  of ( )T,X Y  is therefore the limit of 
the conditional probability for Y being greater than the a-th percentile for G 
given that we have X being greater than the a-th percentile for F as a approaches 
1, i.e. 

( ) ( )( )1 1

1
lim |λ − −= ≥ ≥


A Y Xa
P Y G a X F a               (25) 

provided that limit | 0,1|λ ∃A  exists. If | 0,1|λ ∃A , X, Y are asymptotically de-
pendent in upper tail; if 0λ =A , X and Y are asymptotically independent in up-
per tail. Similarly the lower tail dependence, λB . 

( ) ( )( )1 1

1
lim |λ − −= ≤ ≤


B Y Xa
P Y G a X F a               (26) 

Definition (Upper tail dependence for copulas) 
The coefficient for upper tail dependence of the given bivariate copula family 

denoted as C is such that 

( )1 2 ,
lim

1
λ

− +
=

−

A a

a C a a
a

                     (27) 

Then C has a lower tail dependence if we have [ ]0,1λ ∃B , and is lower tail de-
pendence if 0λ =B . 

Coefficients of upper and lower tail dependence in bivariate margins are 
needed to show the difference in two-dimensional Student and Gaussian copu-
las. 

Given X and Y are continuous random variables with Student-t copula, C and 
the parameters ρ  and ν , hence the coefficients of the two tail dependence are 
equal and they are given by: 

( ) ( ) (1
1, , 2 1
1ν

ργ γ
ρ+

−
= = − +

+B AX Y X Y t v  

where we have 1ν +t  denoting the univariate Student-t distribution function that 
has 1ν +  degrees of freedom and the value of λ  is seen to depend on para-
meters with Student-t-copula has both the lower and upper tail dependence. 

In contrast, the Gaussian copula does not have the tail dependence at all; there 
is neither lower nor upper tail dependence. Hence the Gaussian copula which 
has parameter ( )1,1ρ ∈ − , thus the tail dependence is given by 

1
lim 2 1 0

1
ρ

λ
ρ→∞

  −
= −Φ =    +  

x

x  

Therefore there is no tail dependence in the Gaussian copula. 
Tail dependence in the Archimedean copulas can be expressed in form of ge-

nerator function. 
Theorem Let a strict generator be ϕ  such that 1ϕ−  is seen to belong in the 

class of Laplace transformation for random variables that are strictly positive. If 
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( )1 0ϕ−  being finite then we have 

( ) ( ) ( )( )1
1 2 1 2, ϕ ϕ ϕ−= +C a a a a  

The upper tail dependence does not exist. If copula C has upper tail depen-
dence, ( )1 0ϕ− = −∞  and the upper tail dependence coefficient is given by 

( )
( )

1

10

2
2 2lim

ϕ
λ

ϕ

−

−

 
= − ⋅  

 
A s

s
s

                    (28) 

The proof is seen in [7] [18]. 
Theorem Letting ϕ  as denoted in Theorem The lower tail dependence coef-

ficient for copula ( ) ( ) ( )( )1
1 2 1 2, ϕ ϕ ϕ−= +C a a a a  is equal to 

( )
( )

1

1

2
2 2lim

ϕ
λ

ϕ

−

−→∞

 
= − ⋅  

 
B s

s
s

                     (29) 

2.5. Copula Parameter Estimation 
Full Maximum Likelihood (FML) 
The representation of canonical copula is 

( ) ( ) ( )( ) ( )1 1 1 =1, , , ,= ∏ 

d
n n n j jjf x x c F x F x f x            (30) 

Let the sample data matrix be { } 1
, ,

=


T
u nt t

x x . Then the log-likelihood function 
is given by 

( ) ( ) ( )( ) ( )1 1
1 1 1

, , lnθ
= = =

= +∑ ∑∑

T T n

t n nt j jt
t t j

l Inc F x F x f x           (31) 

where the set of marginal parameters and the copula are given as θ . Therefore, 
with a copula and marginal density probability function set the maximum like-
lihood estimator is obtain through maximization 

( )ˆ maxθθ θ=MLE l                          (32) 

Holding the usual regulatory conditions, then the maximum likelihood esti-
mator being asymptotically efficient and consistent, with the covariance matrix 
being asymptotically normally distributed given Fisher’s information matrix in-
verse [19]. Exact MLE computation is intensive in a high dimension case since 
the margin and copula parameters are jointly estimated. 

2.6. Goodness of Fit Test Based on Kendall’s Tau 

Hence goodness-of-fit measures gives a summary of discrepancy in expected and 
observed values in a given model. Mostly it is applied in hypothesis testing how-
ever in this case we test if the underlying copula data fits in a chosen copula. 

{ } { }0 1: : vs : :θ θθ θ∈ = ∈Θ ∈ = ∈ΘH C L C H C L C  

where Θ  is a parameter space and L as the set of copulas. We apply Cra-
mer-von Mises statistic as the test statistic, defined as 

( ) ( )2
|0,1|

d= ∫Cn
n n nS C u C u                       (33) 
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where we have 1, , nU U  being observations made from an unknown distribu-
tion. 

( ) ( )1 1
1

1 1 , ,
=

= ≤ ≤∑ 

n

n i id d
i

C u U u U u
n

                 (34) 

Given the indicator function as the empirical distribution,  
( ) [ ]1, , 0,1= ∈

d
du u u , ( )1 ⋅  and ( )θ= −

nn nC n C C . A rejection of H0 is made 
if the statistic leads to large values. 

Computing p-values based on test statistic in the empirical process required 
generating N as the large number of size n independent sample from θn

C  and 
further computing the statistics corresponding values. Cn

nS  test statistics de-
pending on copula under H0 with the parameter θ  being unknown. 

3. Main Results 
3.1. Descriptive Statistics 

From Table 1 the results showed that none of the crypto was normally distri-
buted since Jarque-Bera statistics are statistically significant, and the data series 
are negatively skewed except for Bitcoin in addition the data also exhibit excess 
kurtosis. The summary statistics suggest that the probability distribution for 
Cryptocurrencies are negatively skewed indicating that left tails are bigger than 
the right tails except for Bitcoin which is positively skewed 

Figure 1 shows that there is a medium to high correlation between the cur-
rencies. Interestingly, the currencies are positively correlated with each other. 
These currencies (Litecoin, Dogecoin and Bitcoin) have a very strong correlation. 
First, Litecoin has a positive fairly strong correlation with Bitcoin namely Bitcoin 
(0.63). Second, Dogecoin has a positive very strong correlation with Binance coin, 
namely, Binance (0.82). Third, Bitcoin has a positive strong correlation with Bi-
nance (0.85). Therefore from the results there is no stable cryptocurrency. 

3.2. Testing for ARCH Effects 

The Box-Ljung test is used to test for the existence of ARCH effects using the 
squared residuals from the fitted mean equation. The tests null hypothesis is that 
there are no ARCH effects, while the alternative hypothesis is that there are 
ARCH effects. Since the p-value’s are less than 0.05, ARCH effects are present in 
the four Cryptocurrencies. Thus we reject the null hypothesis that there are no 
ARCH effects as indicated in Table 2. This provides evidence of presence of 
conditional heteroscedasticity in the mean of cryptocurrencies (Bitcoin, Binance, 
Litecoin and Dogecoin) returns hence GARCH model that accounts for volatility 
needs to be employed in modeling Binance, Litecoin, Dogecoin and Bitcoin. 

3.3. Selection of the GARCH Models 

We observe that the standard GARCH specification of order (1,1) under the 
highly flexible ARMA-GARCH model is appropriate to identify the true patterns  
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Table 1. Descriptive statistics. 

Cryptocurrency N Min Max Mean JB Df P-value Skeweness Kurtosis 

Bitcoin 1264 32.29 635.41 123.95 1187570.6 2 2.2 × 1016 1.13 15.76 

Binance coin 1264 1.49 598.62 35.55 12029.8 2 2.2 × 1016 −0.491043 15.06 

Dogecoin 1264 0.001 0.41 0.01 10810112.8 2 2.2 × 1016 −0.32 10.01 

Litecoin 1264 23.12 359.40 90.99 13531.5 2 2.2 × 1016 −0.47 426.53 

 
Table 2. Box-Lyung test for ARCH effects. 

Cryptocurrency Chi-Square Value Df P-value 

Bitcoin 11.234 1 0.0008033 

Binance coin 102.08 1 2.2 × 1016 

Dogecoin 102.08 1 2.2 × 1016 

Litecoin 114.05 1 2.2 × 1016 

 

 
Figure 1. Correlation matrix. 

 
of the studied index returns, Table 3. And having a well specified marginal model 
is central to robust copula construction. 

3.4. Copula Parameter Estimation 

After obtaining standardized residuals from the different specifications of 
GARCH models, next step was to model the marginals distribution using copula. 
Since our interest is on dependence structure between Litecoin, Dogecoin and 
Binance coin prices and Bitcoin prices, we consider the following currency pric-
es pairs; Binance - Bitcoin, Litecoin - Bitcoin and Dogecoin - Bitcoin and we es-
timate copula model parameters. The best fit copula parameter was determined 
using AIC, BIC and the log likelihood function. 
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Table 3. Selected sGARCH Models. 

 ArmaOrder sGARCH Order AIC 

Bitcoin (2, 2) (1, 1) −3.9475 

Binance coin (1, 2) (1, 1) −3.1221 

Dogecoin (1, 2) (1, 1) −3.1490 

Litecoin (2, 2) (1, 1) −3.1885 

3.4.1. Copula Parameters Binance - Bitcoin Prices 
Table 4 presents a summary of BB8 copula parameters. The BB8 provides the 
best fit since it has the lowest AIC and BIC. The bivariate BB8 copula has two 
parameters. 

3.4.2. Copula Parameters Dogecoin - Bitcoin Prices 
Table 5 presents a summary of BB8 copula parameters. The BB8 provides the 
best fit since it has the lowest AIC and BIC. The bivariate BB8 copula has two 
parameters. 

3.4.3. Copula Parameters Litecoin - Bitcoin Prices 
Table 6 presents a summary of BB1 copula parameters. The BB8 provides the 
best fit since it has the lowest AIC and BIC. The bivariate BB1 copula has two 
parameters.  

3.5. Dependence 
Tail Dependence 
Tables 4-6 also report the estimated tail dependence coefficients of BB8 and BB1 
copulas. The results indicate that for all the studied pairs of returns, the tail de-
pendence parameters, τu  and τ l  of the BB1 copulas are statistically significant, 
suggesting that the dependence at the lower and upper tails is symmetric. The 
results also show that the pair Litecoin and Bitcoin has the highest tail depen-
dence among the the selected cryptocurrencies, this implies that change in prices 
of Litecoin will influence the prices of Bitcoin and vice versa is true. There was 
no tail dependence is detected for the pair Binance and Bitcoin, and Dogecoin 
and Bitcoin. The BB1 copula is the most suitable to describe the dependence 
structure in the cryptocurrencies. 

3.6. Optimization of Cryptocurrency Portfolio 

The optimization process produces 24 different portfolios and displays the op-
timal portfolio investment, which was constructed by maximizing the Sharpe ra-
tio (Figure 2 and Figure 3). The optimal coin portfolio shows a Sharpe ratio of 
0.101. These portfolios are optimal as they locate at the efficient frontier. This 
observation confirms the assumption of the Markowitz model that allocating as-
sets to a portfolio reduces the overall risk compared to the individual risk of 
these related assets. The optimization process results into a mean of 0.70% and a 
volatility of 10.38% for the optimal coin portfolio. Further, the maximized return  
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Table 4. Copula parameter estimation Binance - Bitcoin. 

Copula Family Estimates AIC BIC Kendall’s tau p-value 

BB8 par1 = 3.44 −722 −712.05 0.48 ( 0τ =u , 0τ =l ) 0.01 

 par2 = 0.9 −722 −712.05   

 
Table 5. Copula parameter estimation Dogecoin - Bitcoin. 

Copula Family Estimates AIC BIC Kendall’s tau p-value 

BB8 Par 1 = 4.14 −558.57 −518.19 0.45 ( 0τ =u , 0τ =l ) 0.01 

 par2=0.78 −558.57 −518.19   

 
Table 6. Copula parameter estimation Litecoin - Bitcoin. 

Copula  
Family 

Estimates AIC BIC Kendall’s tau p-value 

BB1 par1 = 0.09 −1404.2 −1404.2 0.59 ( 0.66τ =u , 0.04τ =l ) 0.01 

 par2 = 0.78 −1393.82 −1393.82   

 

 
Figure 2. Coin efficient frontier. 
 
portfolios comprise the full invested (i.e. 100%) of Dogecoin portfolio. However, 
the maximized return portfolio will not serve as a benchmark portfolio in this 
analysis. The diversification effect of constructing portfolios of cryptocurrencies, 
in this case coins significantly reduces risk irrespective of significant correlation 
among the cryptocurrencies chosen in this analysis. 

3.7. Discussion 

Exploratory data analysis was first carried out on cryptocurrencies to verify their 
properties of returns such as normality. It was found that the returns were heav-
ily tailed and negatively skewed except for Bitcoin with presence of ARCH  
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Figure 3. Portfolio optimization plot. 

 
effects which was examine by using by Ljung box test. sGARCH(1,1) was se-
lected with different specifications where AIC was used to select the most viable 
GARCH(1,1) model for each cryptocurrency returns. The standardized residuals 
were used to estimate the marginal distribution for each series. The results 
showed that BB8 and BB1 copula provides the best fit for the combinations of 
Litecoin, Binance and Dogecoin and Bitcoin return. Copula GARCH was used to 
model dependence structure between Litecoin, Binance and Dogecoin returns 
and Bitcoin returns, where BB1 copula was found to be the most appropriate for 
examining the dependence between the cryptocurrencies. Optimization of the 
cryptocurrencies showed that Dogecoin have the best optimization and investing 
on this coin significantly reduces risk irrespective of significant correlation 
among Litecoin, Bitcoin and Binance. 

4. Conclusions and Suggestions 

Cryptocurrencies has attracted a lot of attention to digital market investor and 
currently there more than 50 cryptocurrencies are actively traded in the market. 
Economists, financial analysts and investors have focused largely on Bitcoin 
since it accounts for more than 60% market capitalization. Currently the market 
knowledge points to the fact that Bitcoin is the most preferred asset in optimiza-
tion of a portfolio. The study focuses on modelling cryptocurrencies, investigat-
ing the currency dependencies and determining an optimal portfolio. Crypto-
currencies are high-risk assets; however, an optimal portfolio eliminates high-risk. 
The study showed that, standard GARCH of order (1,1) under highly flexible 
ARMA-GARCH model is the most appropriate model in modelling the crypto-
currency prices and can identify the true pattern of index returns. Cryptocur-
rency in the market is also highly dependent as Bitcoin, Binance coin, Dogecoin 
and Litecoin were correlated. Litecoin and Bitcoin have a higher tail dependence 
and this implied that a change in prices of Litecoin will affect the prices of Bit-
coin and vice versa. On optimizing a portfolio composed of cryptocurrencies 
that is more than necessary for potential investment decisions, Dogecoin has the 
best optimization. The research contributes to the literature on modelling cryp-
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tocurrencies and estimating risk management. 
The author of this paper invites scientific community to perform a similar 

study as this one by considering Bayesian copula Garch which allows model to 
be data driven and compare the findings. 
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