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Abstract 
This paper examines stop-loss reinsurance threshold for a pool of dependent 
risk, which is motivated by the fact that insurance penetration in Africa is far 
below the world’s average rate. The study applies convex combination of quan-
tile measures to produce a linear function with both insurer and reinsurer 
cost functions which are then minimized to arrive at an optimal retention 
threshold. Results indicate that threshold is determined by the proportion of 
risk-sharing, and that the model performs better even with small sample sizes 
based on Monte Carlo simulation. Finally, it is noted that sustainability of 
decentralized insurance requires modelling of dependence structure for rea-
listic pricing and reserving methods. 
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1. Introduction 

Recent decades have seen rapid growth of decentralized schemes in insurance 
which are supported by internet technology, with practices like online peer-to-peer 
insurance, mutual aid and micro-insurance. Decentralizes schemes arose as a 
solution to low insurance penetration rate in Africa at an average of 2% way below 
a world-average of 7%, which [1] stated was caused by low financial literacy, un-
affordable premiums and infancy of the insurance industry in Africa. Decentra-
lization disrupted traditional business with a goal to broaden penetration by 
complementing insurance operations, through revival of centuries-old commu-
nity loss sharing traditions that can be traced back to the Roman Empire, as per 
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[2]. However, decentralized insurance schemes have been plagued by high fail-
ure rate in short period of time. [3] provided an example of a giant Chinese on-
line mutual aid platform Xianghubao which collapsed in three years of opera-
tions after amassing more than 100 million policyholders within a year of opera-
tions, and other defunct peer-to-peer schemes. 

One theory put forward to explain high failure rate is nature of policyholders: 
while traditionally insurance collects large numbers of homogeneous people such 
that Central Limiting Theorem applies, [4] discerned that decentralized schemes 
have close relations such as co-workers and neighbours. This presents two prob-
lems: individual risks are not approximately independent and schemes have rel-
atively smaller number of members. Reinsurance was introduced to the schemes 
as a control strategy which has shown success in stabilizing decentralized finance, 
discussed in [5] and [6]. The superiority stop-loss reinsurance in minimizing the 
variance of insurer loss is well documented in actuarial literature such as [7]. 
Reinsurance threshold, known as retention limit, is a cut-off point between the 
two parties and a point of particular interest, because it determines how much a 
scheme has to pay as reinsurance premium. The threshold can be derived from a 
viewpoint of insurer, reinsurer or both (combined approach) acceptable by both 
sides. 

This paper proposes to apply a combined approach in constructing stop-loss 
retention threshold for a pool of dependent risks. The methodology is divided 
into two main stages: the first step is to leverage definition of reinsurance to build 
separate functions representing costs of insurer and reinsurer. This is achieved by 
using stop-loss reinsurance to reconstruct two aggregate random variables for 
insurer and reinsurer, which when added by premium form cost functions. The 
second step involves minimizing aggregate cost of the whole scheme. This is ac-
complished using convex combination of cost functions measured at quantile 
measures to produce a linear function, which is minimized to arrive at an op-
timal retention threshold. Gamma-distributed losses were used to demonstrate 
viability of the solution. Results are tested through Monte Carlo simulation by 
ensuring that optimized values loss tend to zero with each iteration and compar-
ison is performed with a variance-covariance method. The approach was se-
lected, because convex combination optimization increases the speed at which 
algorithm converges to the solution, and results can be extended to a system of 
linear equations. 

The suggested approach found that optimal threshold is defined within the 
survival function of the aggregate loss, which is consistent with the definition of 
quantile measure for non-negative random variables. Survival function is mo-
notone decreasing, thus providing natural upper and lower boundaries to the 
optimized loss function, and results to consistent threshold estimates for both 
small and large pools. An assumption of comonotonicity was applied to con-
struct the aggregate loss function, and since comonotonic vector provides the 
highest risk for any combination of individual risks, resulting threshold would 
exaggerate actual risk providing a safety loading for adverse experience. 
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Results showed that reinsurer has to bear larger portion of aggregate risk than 
insurer for a portfolio with high dependence, for stop-loss reinsurance to be ef-
fective. By extension, dependence structure influences optimal share of aggregate 
loss between an insurer and reinsurer. As reinsurance incurs a cost in form of 
the premium to an insurer, there is an incentive for higher threshold in order to 
attract low reinsurance premium. With comonotonic risks findings showed that 
optimal threshold was obtained when more weight was on the reinsurer than 
insurer, with little variation in relation to parameter controlling cost functions. 
This means that effective risk management of dependent risks calls for a lower 
reinsurance threshold than independent risks. 

The implication of this work is to challenge assumption of independence in 
decentralized schemes, despite being acceptable on conventional insurance 
which has a larger group size with either homogeneous (independent and iden-
tically distributed) or heterogeneous risks (independent but not identically dis-
tributed). For industry regulators, reinsurance with decentralized insurance has 
to involve different set of margins owing to the nature of risks it undertakes. 
Such outcome is consistent with the hypothesis that traditional reinsurance may 
fail to stabilize decentralized insurance schemes because of use of traditional 
margins and not considering dependency structure. This regulation approach 
has shown success with decentralized finance in developing countries as investi-
gated by [8] using vehicles such as Savings and Credit Cooperative Societies 
(SaCCoS) and mobile money. [9] discusses similarities and differences between 
decentralization in finance versus insurance, and concludes that both are good 
candidates for inclusive financial practices. 

This paper relates to optimal reinsurance problems, which involve a class of 
infinite dimensional (constrained) optimization problems whose solution search 
for an optimal function in lieu of a parameter value. The solution is guided by 
Pareto Optimality pioneered by [10] [11] [12] [13]. Determination of retention 
threshold by minimization of cost is centred on measures of risk beyond classical 
variance/standard deviation methods with a goal of complementing risk mea-
surement applied in other financial institutions such as the banking sector’s Ba-
sel Accords. The method has been applied by several authors for single ([14] [15] 
[16]) and multiple risks ([17] [18] [19]). In addition, there are a number of con-
tributions to the literature. First this work adds to dependency analysis for mul-
tiple risks by establishing a connect between risk measures in [17] and cost anal-
ysis for non independent risks in [20]. The paper contributes to quantitative 
analysis of decentralized insurance in [21] by relaxing assumption of indepen-
dence which understates claims leading to liquidity problems. Finally this paper 
derives a simple threshold easily understood by practitioners, which is an im-
portant area of inclusive finance that encourage hybrid products between bank-
ing and insurance services; a merger which was suggested in [22]. 

The rest of paper is organized as follows: Section 2 is a background on sums of 
random variables, and Section 3 discusses definition of stop-loss reinsurance. 
Quantile risk measure is revisited in Section 4, before the optimal retention 
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threshold derived in Section 5. Section 6 presents numerical applications and a 
conclusion is done in Section 7. 

2. Sum of Random Variables 

Aggregate risk is made up of several individual risks, as such the sum of random 
variables is of special interest in risk aggregation. By extension, characteristics of 
S in (1) are determined by relationship between individual random variables, and 
a joint cumulative density function has all information on characteristics of a 
random variable. 

Definition 1 (Aggregate loss) Consider n individuals, 1,2, ,n i n∈ =   each 
facing risk iX  represented by distribution function ( ) ( )X iF x Pr X x= ≤  and 
a survival function ( ) ( )X iS x P X x= > ; the aggregate loss of the pool is a ran-
dom variable S defined as: 

1 2
1

n

n i
i

S X X X X
=

= + + + =∑                      (1) 

Assuming that risks iX  are independent, distribution of S is determined by 
well-known convolution methods with an aid of algebraic manipulation, where S 
is a product of marginal distributions shown in (2), with statistical properties 
similar to individual risks. The assumption is undertaken to simplify calculations 
for reasonable large pool which tends to normalization, since in real world risks 
cannot be completely independent. Note that, in cases where risks are signifi-
cantly dependent, independence assumption may understate or overstate aggre-
gate risk.  

( ) ( ) ( )1 2
1

, ,
n

S n i
i

F s F x x x F x
=

= =∏                    (2) 

Positive dependence means that individual iX ’s move in the same direction, 
such that when there is perfect positive dependence then distribution of S is said 
to be comonotonic with cumulative distribution is defined in (3). Comonotonic 
sum results into the riskiest portfolio in any combination of risks iX ’s, and has 
been studied by many such as [23] [24] [25] and [26], 

( ) ( ) ( ) ( ){ }1 21 2min , , ,
nS X X X nF s F x F x F x=               (3) 

Negative dependence results when random variables iX ’s move in opposite 
direction, effectively compensating each others’ risks therefore decreasing ag-
gregate loss S. When individual risks have perfectly negative dependency, dis-
tribution of S is said to be countermonotonic defined in (4). Counter-monotonic 
sum forms the lowest-risk portfolio and by extension, internal hedging mechan-
ism, which is an interesting problem in risk management. 

( ) ( ) ( ) ( ){ }1 21 2max , , ,
nS X X X nF s F x F x F x=              (4) 

However, research in counter monotonicity beyond two dimensions ( 3n ≥ ) is 
limited by absence of universal mathematical definition; including pairwise 
counter monotonicity, d-countermonotonicity, joint mixability, complete mixa-
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bility and cx∑ -countermonotonicity as investigated by [27] [28] [29] [30] and 
[31]. 

3. Stop-Loss Reinsurance 

Reinsurance divides an individual risk iX  between insurer and reinsurer, ei-
ther proportionally or non-proportionally, which are further discussed as rein-
surance types in [32]. The Broker Model illustrated in Figure 1 was coined by 
[33] for a decentralized insurance setting, and has similar structure to reinsur-
ance in traditional insurance. 

Under Broker Model, aggregate loss S is divided amongst individuals using a 
Pareto-efficient and financially fair rule called the Conditional Mean Risk Shar-
ing by [26]. Using this method, a participant i must contribute expected value of 
loss iX  brought into the pool conditional to total loss S experienced by all 
members, i.e. the contribution of each participant is the average part of total loss 
attributed to the risk added to the pool. 

Definition 2 (Conditional Mean Risk Sharing) Let ix  be realizations of loss 

iX  and 1
n

iis x
=

= ∑  be the realization of S. There exists measurable functions 

1, 2, ,, , ,n n n nh h h  such that: 

( ) [ ], E | , 1,2, , .i n ih S X S i n= = 

                 (5) 

Conditional Mean Risk Sharing is Pareto efficient because the whole loss is 
allocated as shown in (6), and financially fair because mean of individual con-
tribution is the expected value of the whole pool as in (7). 

( ) [ ],
1 1

E | .
n n

i n i
i i

h S X S s s
= =

= = =∑ ∑                   (6) 

( ) [ ] [ ],E E E | E for 1,2, ,i n i i ih S X S X i nµ   = = = =   

         (7) 

Now to define stop-loss random variables, let the proportion of insurer be 

IX  and that of reinsurer be RX , then each individual loss is a combination of 
component random variables detailed in (8). 

i I RX X X= +                          (8) 

Definition 3 (Stop-loss random variables) Let an individual risk threshold be 

iw , such that insurer covers ( )0, iw  of the loss and retain ( )min ,i iX w  while 
the reinsurer cover ( ),iw ∞ , the stop-loss random variables are defined in (9): 

( )

( ){ } ( )

,
min ,

,
and

0,
max ,0

,

i i i
I i i i i

i i i

i i
R i i i i

i i i i

X X w
X X w X w

w X w

X w
X X w X w

X w X w +

≤
= = = ∧ >

≤
= = − = − − >

       (9) 

Assumptions 
1) Losses resulting from 1 2, , , nX X X  obey zero-augmented probability 

distributions i.e. [ ]0 0iPr X = >  for each i. 
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(a) Model visualization                                     (b) Model working 

Figure 1. Illustration of broker model. 
 
2) The mean and variance of individual losses iX  are finite and non-negative, 

that is, [ ]E 0i iXµ = >  and [ ]2 Var 0i iXσ = >  respectively. 
3) For the pool S, retention threshold nw  is the sum of individual retentions, 

that is, there exists 1, 2, ,, , ,n n n nw w w  such that ,1
n

n i niw w
=

= ∑  

From definition of RX  the distribution function can be derived as 
( ) ( )

RX XF x F x w= + . For the insurer, distribution function of IX  is derived in 
(10). 

( )
( ) ,

1,
i

I

X i
X

i

F x x w
F x

x w

≤= 
>

                   (10) 

When a reinsurer has no knowledge of underlying claim distribution, reten-
tion threshold is derived from a conditional random variable  

|R i i i iX X w X w= − > . By setting i i iZ X w= −  simplifies to | 0R i iX Z Z= > . 
The distribution of threshold is given by: 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )

|

1

RX R i i i

i i i i

i i i

F x Pr X x Pr X x w X w

F x w F w F x w F w
F w Pr X w

= ≤ = ≤ + >

+ − + −
= =

− >

         (11) 

Estimation of threshold from reinsurer point of view applies Extreme Value 
Theorem (EVT) for right-tailed distributions, since EVT models extreme events 
using statistical tools. For instance, eyeball inspection approach (EIA) uses mean 
excess plot to determine appropriate threshold, which has a disadvantage of 
testing individual risk thresholds in isolation, therefore neglecting diversification 
effect in the pool. Other methods incorporate aggregate loss function for better 
approximations. 

4. Quantile Risk Measure 

α-quantile risk measure is also known as value-at-risk (VaR) in financial models, 
and mathematically defined as (12). 
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Definition 4 (Value-at-Risk) The α-quantile measure for a random variable X 
where ( ) [ ]XF x Pr X x= ≤  is defined as: 

( ) ( ){ } ( )
( ) ( ){ } ( )

VaR inf | , 0,1

VaR sup | , 0,1
X

X

X x F x

X x F x
α

α

α α

α α

= ∈ ≥ ∈

= ∈ ≤ ∈




          (12) 

A solution to the equation 

( ){ } ( ){ }VaR VaR 1Pr X X Pr X Xα αα α> = ⇔ ≤ = −      (13) 

4.1. Properties 

Value-at-risk satisfies the following properties for a risk measure ( )ρ ⋅ : 
Normalization: The risk of nothing is zero, hence [ ]0 0ρ = . 
Positive homogeinity: Risk of a portfolio is proportional to the size, such that 

for any positive constant β  the equation [ ] [ ]X Xρ β βρ=  applies. By exten-
sion, let X and ( )g X  be real-valued random variables, if g is continuous and 
non-decreasing then ( )( ) ( )( )VaR VaRg X g Xα α= . 

Monotonicity: A random variable preceding another in the convex order has 
a higher risk between the two, i.e. for two risks X and Y if X Y<  then 
[ ] [ ]X Yρ ρ> . 
Translation Invariance: Addition of a constant (or risk-free asset) to a port-

folio changes total risk by similar proportion, that is, for any positive constant 
γ , [ ] [ ]X Xρ γ ρ γ+ = − . 

VaR is a not a coherent risk measure because of not satisfying additivity 
property. Under some special cases such as elliptic distributions VaR satisfies the 
property: 

Subadditivity: Additivity is the risk reducing property, also known as diversi-
fication property where for two risks X and Y, ( ) ( ) ( )X Y X Yρ ρ ρ+ ≤ + . 

4.2. VaR for Comonotonic Risks 

In place of independence assumption, when the sum (1) has a complicated de-
pendency structure that may be too tedious to calculate, there is an acceptable 
practice to replace it with a less desirable sum using prudential assumption. 
Comonotonic sum of S denoted as cS  belongs to the same FrÃ©chet class and 
has similar properties ([26]), but cS  has heavier tails which means larger va-
riance, resulting into higher aggregate risk. 

Theorem 1 (for comonotonic risks). Assume the risks iX ’s are comono-
tonic and form a random vector ( )1 2, , ,c c c

nX X X  whose sum  

1 2
c c c c

nS X X X= + + +  is also comonotonic, then: 

( ) ( ) [ ] ( )1 2
1

VaR VaR VaR , 0,1
n

c c c c
n i

i
S X X X Xα α α α

=

= + + + = ∈∑    (14) 

Proof. Sum is the addition of individual comonotonic variables; let U be a 
uniform random variable in the interval [ ]0,1  such that: 

( ) ( ) ( ) ( )
1 2

1 1 1
n

dc
X X XS F U F U F U g U− − −= + + + =  
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Now let g be a non-decreasing, left continuous function and ( )0,1α ∈ , then 

( ) ( ) ( )( )1 1
Xg XF g Fα α− −=  

( ) ( ) ( )( )1 1 1Xg XF g Fα α− + −= −  

It follows, from the definitions, that:  

( ) [ ] ( )
1

VaR VaR , 0,1
n

c
i

i
S Xα α α

=

= ∈∑
 

□ 

5. Retention Threshold Using Quantile Measure 

For a comonotonic portfolio of risks cS  which follows assumption 3, the stop- 
loss aggregate random variables IS  and RS  for an insurer and reinsurer re-
spectively are defined as sum of individual random variables in (9) such that: 

c
I RS S S= +                          (15) 

Reinsurance requires a fee, which in this paper will be defined as pure pre-
mium P without a loading as shown in (16): 

( ) ( ) ( )d
n

R n w
P S S w S s s

∞

+
 = = − =  ∫                   (16) 

Note that P is a decreasing function of nw : a higher threshold attracts low 
premium and a lower threshold has a higher premium margin. 

5.1. Cost Functions 

Decentralized insurance has no capital requirements therefore total cost is the 
aggregate loss random variable, and any division into component variables should 
equal the aggregate loss in order to satisfy Pareto Optimality. Let the total cost of 
insurance be a random variable T: define the component costs of insurer and 
reinsurer as random variables IT  and RT  respectively as in (17). 

       I I R RT S P T S P= + = −                        (17) 

Next is to construct a cost model as convex combination of cost functions in 
(17) measured at their respective values-at-risk: 

Theorem 2 (loss function). Let VaR p  and VaRq  be portfolio VaR for in-
surer and reinsurer respectively with random variables denoting costs of a in-
surer and reinsurer defined in (17); then aggregate loss function is a convex 
combination of the random variables defined in (18): 

( ) ( ) ( ) [ ]VaR 1 VaR ; 0,1p I q RL T Tη η η= + − ∈             (18) 

Parameter η  determines the division of total loss between the insurer and 
reinsurer: if 0η =  then reinsurance company carries all costs while if 1η =  
then there are no reinsurance arrangements applied; hence it sets optimal ag-
gregate cost of the pool subject to the set value-at-risk levels for players. 

5.2. Optimal Threshold 

The objective of cost approach is minimization of the total cost subject to quan-
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tile risk measure in order to obtain an optimal retention level, *w . Breaking 
down (18) to components: 

( ) ( ) ( )
( ) ( ) ( )

VaR 1 VaR

VaR 1 VaR
p I q R

p n q n

L T T

S w P S w P

η η

η η
+

= + −

  = ∧ + + − − −   
        (19) 

where the premium P is defined in (16). Define ( )VaRp pa S=  and  
( )VaRq qa S=  and rewrite objective function (19) such that; 

( )( ) ( )1 2 1p n q nL a w a w Pη η η
+

 = ∧ + − − + −               (20) 

Optimization problem becomes: 

( )
[ ]

min

s.t. , 0,1n

p q

L

w
a a

η∈
≠

                          (21) 

Naturally, since the problem aims to align the interests of both reinsurer and 
insurer, four cases arise: n qw a< , n qw a> , pw a<  and n pw a> . If optimal 

n qw a<  then the pool loss is within insurer’s safety margin while n qw a>  in-
dicate that the optimal level might be unacceptable to the insurer, and n pw a>  
shows that the reinsurer requires (re-)insurance to manage costs. The cases are 
combined into three distinct ones: n qw a< , n pw a>  and q n pa w a< ≤ . 

Theorem 3 (loss Retention Threshold). The optimal retention level *
nw  is a 

piecewise-function (22): 

( )
( )

( )( )

1

* 1

1

,
,

1 ,

n q

n q n p

n p

S s w a
w S a w a

S w a
ηβ
β η

−

−

−

 <


= < ≤
 − >

                  (22) 

where the parameter β  is defined as: 
1

2 1
β

η
=

−
                             (23) 

Proof. The derivative of function (20), with premium P in (16) is given as: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

2 1 2 1 ,
2 1 ,
1 2 1 ,

n n q

n q n p

n n p

S w w a
L S w a w a

S w w a

η η
η η
η η

 − − − <
′ = − − < ≤
 − − − >

              (24) 

Set 0L′ =  to arrive at equations: 

( )

( )

( )

1

2 1
1

2 1

n

n

n

S w

S w

S w

η
η
η
η

=

=
−
−

=
−

                          (25) 

For the sufficient condition for minimization 0L′′ > , recall that the deriva-
tive of a survival function ( )S x  is a hazard function characterized by 
non-decreasing nature; which confirms that the threshold is a minimum thre-
shold. 
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A special case of 0.5η =  for model in (22) where β = ∞ . 

( )( ) ( )

( ) ( )

1 2 1

1
2

p n q n

p n q n

L a w a w P

a w a w

η η η
+

+

 = ∧ + − − + − 

 = ∧ + − 

             (26) 

Here, two cases arise which are described below: 
when q pa a<  

1 ,
2
1 ,
2
1 ,
2

q n q

n q n p

p n p

a w a

L w a w a

a w a

 <

= < ≤

 >

                      (27) 

which means that 

[ )0,

1min
2n

qw
L a

∈ ∞
=                          (28) 

and 
* 0,n qw a ∈                            (29) 

when q pa a>  

( )

1 ,
2
1 ,
2
1 ,
2

q n p

p q n p n q

p n q

a w a

L a a w a w a

a w a

 <

= + − < ≤

 >

                (30) 

which means that 

[ )0,

1min
2n

pw
L a

∈ ∞
=                         (31) 

and 
* 0,n pw a ∈                           (32) 

Therefore, aggregate function is reduced to depend on values-of-risk only as 
shown in (26), and threshold depends solely on the values of risk. In this case, 
retention has indirect relationship with the VaR of insurer pa  but direct rela-
tionship with that of reinsurer qa . 

6. Numerical Example 

Gamma distribution was used to demonstrate application because of possession 
of many useful and tractable mathematical properties, such that a sum of gamma 
random variables is also a Gamma distribution. This means that comonotonic 
random variables in (8) shall be gamma as well with density function in (33). 

( ) ( )
1e; , for 0 , 0

xxf x x
α β

αα β α β
β α

− −

= > >
Γ

             (33) 
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6.1. Comparison 

The model was a quantile-measure extension of [21] which applied variance 
measures for threshold determination by using two approaches: a minimum va-
riance derived by maximizing the covariance between insurer and reinsurer in 
Proposition 3.1. such that: 

( ) ( ) ( )max s.t 0
w

w w S w wπ π − + >              (34) 

where ( )w Pπ =  defined in (16); which was compared to results obtained by 
similar approach of correlation coefficient defined as ρ , a standardized meas-
ure in Proposition 3.3 such that: 

( ) [ ]
[ ] [ ]

Cov ,
max , s.t 0

Var Var
I R

I Rw
R I

S S
S S w

S S
ρ = >          (35) 

where 

( ) ( ) [ ] [ ]min ,I RS S w S S = = −      

[ ] [ ] [ ] [ ]Var Var Var 2Cov ,I R I RS S S S S= − −  

[ ] [ ] [ ]( ) ( )( )Var 2 2 1 dR R R Sw
S S w S s F s s

∞
= − − + −∫   

[ ] ( ) ( ) ( )Cov ,I R R RS S S w S S = − +     

The comparison applied a Gamma distribution with a mean 1, variance 2 and 

skewness of 3
2

 where a set of values-at-risk were chosen for insurer and 

reinsurer with pool sizes as little as 30 individuals up to 100,000 members, and 
using Monte Carlo simulation was applied to model retention thresholds. Para-
meter values of risk simulated were upper-quartile, 0.75p ≥  with .05 step. [21] 
obtained 2.19654w =  using covariance measure and 1.3598w =  for correla-
tion coefficient, when 0.326122cov =  and 0.499926ρ =  respectively using 
analytical methods. 

Results were compared with this paper’s model using numerical approxima-
tion, and noted [21] fails to perform for small samples (less than 500), but our 
model provides several optimal thresholds for smaller groups, as shown in Table 
1. When 0.5η =  retention threshold does not depend on the survival function 
(constant for combinations of parameters) as summarized in Table 2. 

6.2. Discussion 

It is noted that optimal retention took values of 0.5η <  which suggest that op-
timality is achieved by ceding more risk to reinsurer. This result confirms find-
ings of [34] and [9] that decentralised insurance benefits from stop-loss rein-
surance of any form, be it losses below insurer’s deductible or selective risks in 
the portfolio, both of which result into relatively smaller losses. 

Loss function reduces with subsequent iterations (Figure 2) which suggests 
convergence into a true minimum, which also happens relatively fast within a 
few iterations as the number of risks grows, a fact that is consistent with the  
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Table 1. Threshold determined by the two models. 

Pool size 
Castaner (2016) Mandia (2023) 

variance correlation Parameters Retention 

n *w  cov *w  cor pa  qa  η  *w  Loss 

30 - - - - 
0.75 0.95 0.2 0.95 

0.7717 0.8 0.75 0.3 0.75 
0.9 0.85 0.4 0.85 

50 - - - - 
0.85 0.8 0.2 0.8 

0.7160 
0.9 0.85 0.4 0.85 

100 - - - - 
0.85 0.8 0.1 0.8 

0.7812 0.85 0.95 0.3 0.95 
0.9 0.85 0.4 0.85 

500 2.0336 0.314 1.1652 0.4889 
0.85 0.8 0.2 0.8 

0.8718 
0.85 0.95 0.3 0.95 

750 2.3809 0.346 1.1541 0.4803 

0.9 0.95 0.1 0.95 

0.8807 
0.95 0.9 0.2 0.9 
0.9 0.75 0.3 0.75 
0.9 0.85 0.4 0.85 

1000 2.4027 0.352 1.1494 0.4837 
0.85 0.75 0.2 0.75 

0.9002 0.85 0.8 0.3 0.8 
0.95 0.85 0.4 0.85 

5000 2.0817 0.3205 1.1733 0.5094 
0.9 0.8 0.2 0.8 

0.8774 
0.9 0.95 0.4 0.95 

10,000 2.1016 0.3178 .2004 0.5121 

0.85 0.8 0.1 0.8 

0.8796 
0.95 0.85 0.2 0.85 
0.85 0.95 0.3 0.95 
0.95 0.9 0.4 0.9 

50,000 2.1664 0.326 1.3719 0.5066 

0.85 0.95 0.1 0.95 

0.8956 
0.85 0.75 0.2 0.75 
0.9 0.85 0.3 0.85 
0.95 0.9 0.4 0.9 

100,000 2.1838 0.3216 1.3407 0.502 
0.95 0.9 0.2 0.9 

0.8984 0.9 0.85 0.3 0.85 
0.85 0.75 0.4 0.75 

N 2.19654 0.326122 1.3598 0.499926  
 
Table 2. Optimal retention parameters when 0.5η = . 

pa  qa  *
nw  

0.8 0.75 0.382019 

0.85 0.8 0.6181 

0.95 0.9 0.763998 

0.75 0.8 0.854155 

0.75 0.9 0.909883 

0.75 0.95 0.965214 
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(a) n = 30                                              (b) n = 50 

 
(c) n = 100                                            (d) n = 500 

 
(e) n = 1000                                           (f) n = 5000 
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(g) n = 10,000                                         (h) n = 50,000 

 
(i) n = 100,000 

Figure 2. Loss functions. 

 
Central Limit Theorem. [21] variance-covariance approximation fails to perform 
with small samples (less than 500), but the model provides several optimal thre-
sholds for smaller groups. 

Results of the model show that threshold closely relate to reinsurer’s value at 
risk. Combined with the behaviour of larger samples discussed above, it suggests 
that decentralised insurance depends on efficient modelling of reinsurer’s val-
ue-at-risk. The stability offered by the risk sharing between the two parties is 
only as beneficial if insurer quotes the correct risk profile for the model, includ-
ing dependency structure of its composition. 

7. Conclusions 

This paper presents a model for selecting retention threshold for dependent risks 
using value-at-risk, which was demonstrated using a numerical example. In 
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comparison to variance measures, value-at-risk presented a better threshold for 
pools of all sizes and in particular it provides reliable estimation of retention 
threshold for small groups. This is an important result for decentralized insur-
ance characterized by small groups which are closely-related. The fact that it is 
based on an arbitrary selected parameter rather than distribution function sim-
plifies calculations and provides flexibility on application of the model.  

Possible future research may consider information asymmetry between rein-
surer and insurer where the two parties have different beliefs on the type and/or 
behaviour of aggregate loss, using either a parametric, semi-parametric or non- 
parametric approach. That is, the distribution of loss may present different cha-
racteristics for a reinsurer such that optimization criteria combining Extreme 
Value Theorem approach provides improved approximation for dependent risks. 
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