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Abstract 
In this paper, I consider insurers’ reinsurance strategies to find an optimal 
reinsurance cover ratio for underwritten insurance exposure. First, I describe 
the one-period model and the continuous time dynamic model by stochastic 
differential equation in the same structure. Second, I translate the one-period 
model solution, where VaR is used as a risk measure (a target function to mi-
nimize), into the kinked CRRA utility dynamic model for a reinsurance 
strategy. Numerical simulations are also performed. I show that the reinsur-
ance premium buffer divided by the variance of underwritten risk and di-
vided by the insurer’s risk averseness indicates the optimal ratio of how much 
risk should be mitigated by reinsurance. 
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1. Introduction 

The question of how to design a dynamic optimal reinsurance coverage for un-
derwritten insurance is an essential management topic for insurers. Many re-
searchers have used one-period model or dynamic model approaches of the sto-
chastic differential equation to examine this (as introduced in Section 2). Some 
researchers used VaR or CVaR as risk measures (a target function to be mini-
mized) because the cost of capital tends to be proportional to VaR or CVaR. This 
study makes use of the stochastic differential equation, Hamilton Jacobi Bellman 
(HJB) model, in an investment asset allocation area. I show that the expansion of 
one-period research is a dynamic model approach of stochastic differential equ-
ation research and that, based on the one-period solution with VaR constraint, 
the kinked utility model in [1] can be utilized for a dynamic reinsurance strate-
gy. 

Regarding the appropriate use of reinsurance, when insurers manage the risk 
they underwrite, if modeled as minimizing VaR, they use reinsurance which 
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takes the risk of loss above a certain level and below a certain upper level. From 
the insurer’s perspective, it takes the risk of loss below a certain lower level and 
above a certain upper level. When the reinsurance situation, which is taking the 
risk of loss above a certain level and below a certain upper level, is applied to in-
vestment management in terms of how many risky assets should be invested, it 
is a strategy of investing in so-called risk assets with buying put option (protec-
tive put) and selling a call option (covered call), to avoid a loss greater than a 
certain amount, while surrendering a certain level of profit. This study shows 
that both of the VaR-constrained models of one-period and dynamic stochastic 
differential equations for optimal reinsurance strategy are essentially related to 
the kinked utility approach of stochastic differential equations for optimal rein-
surance strategy. 

The remainder of the paper is structured as follows. Section 2 introduces typ-
ical one-period models and their optimal solutions. Section 3 explains the typical 
dynamic approach of stochastic differential equations for dynamic reinsurance 
strategy. Section 4 describes the investment model of the stochastic differential 
equations (HJB) approach. Section 5 shows how the basic one-period model, and 
the basic approach of the stochastic differential equation model can be set iden-
tically. Section 6 presents related stochastic investment solutions, where essen-
tially identical characteristics of the dynamic reinsurance strategies are pointed 
out, following their simulation results in Section 7. Section 8 is dedicated to the 
practical implementation of the strategy. And last, Section 9 concludes and de-
scribes future issues that need to be addressed. 

2. One-Period Models 
2.1. Notation and Implication for the Type of Insurance and 

Reinsurance 

In the context of decision-making for insurance, I use the following notations, 
with the explanations based on [2]. 

Xi or X: losses to the individual i 
x: x ∈ X 
d: a lower limit of loss 
l: an upper limit of loss 
f(Xi) or f(X): loss coverage to the individual i by the insurer 
Pfi: insurance premium 
Xi − f(Xi) or X − f(X): total retained loss for individual i 

( )1 ii
nY f X
=

= ∑ : total losses for the insurer 
PI or P: reinsurance premium determined by some premium principle 
I(Y): insurer’s ceded losses 
C = Y − I(Y) + PI: insurer’s total loss 
R = I(Y) − PI: reinsurer’s total loss 
wi or w: individual’s wealth 
w1: insurer’s wealth 
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w2: reinsurer’s wealth 
u( ): insurer’s utility 
v( ): reinsurer’s utility 
The risk is described by the loss X and its distribution is not specified. The 

insurer underwrites the insurance contract to cover the loss X. Depicting x as an 
outcome of X, in case f(x) = kx (0 < k < 1), the type of the reinsurance is propor-
tional reinsurance with the ratio k. If f(x) = (x − d)+, the type of the reinsurance 
is reinsurance with the deductible amount “d”. If f(x) = x∧l, the type of the rein-
surance is reinsurance with the excess loss amount, that is larger than “l”. 

2.2. Individuals Who Buy the Insurance 

I follow [3] concept of maximizing utility, namely individuals are risk-averse 
with the utility function U: 

( )( )Max E U w X f X Pfi − + −                      (1) 

The results show that: 

If ( )Pfi E f X =   , then ( )f x x=  for all x, and that         (2) 

If ( ) ( )1Pfi E f Xθ  = +   , where 0θ >  is a risk loading (insurance 

premium buffer), then ( ) ( )f x x d
+

= − .                     (3) 

Equation (3) shows that optimal reinsurance payoff has a deductible amount “d”. 

2.3. Insurers 

Researches of [4] and [5] minimized value-at-risk:  
( ) ( )( ) ( ){ }1 :VaR Y F Y inf y Fα α α α−= = ≥ . 

( )( )Min VaR w Y I Y Pα  − + −   with ( ) ( )1P E I Yθ  = +            (4) 

Roughly, 

( ) ( )( )1* *
Yy S lI y θ−

+
= − ∧ , where ( )* 1 1θ θ= + .             (5) 

The illustrative I(y) is in Figure 1, as quoted from [2] page 17’s Figure 3. In 
general, also refer to [6]. Equation (5) means that optimal reinsurance payoff has 
both a deductible amount d and loss cover limit (max) at level l ( ( )1

Yd S θ− ∗= ). 

2.4. Insurers and Reinsurers 
2.4.1. Pareto Optimal 
The research [7] studied Pareto optimality using the following problem of J(I, P). 

For k ≥ 0, 

( ) ( )( ) ( )( ){ }1 1 2 2,Max J I P Max E u w Y I Y P kE v w I Y P   = − + − + − +      (6) 

Subject to ( )( ) ( )1 1 1 1E u w Y I Y P E u w Y   − + − ≥ −   , and to       (7) 

( )( ) ( )2 2 2 E v w I Y P v w − + ≥                    (8) 
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Figure 1. VaR Optimal I(Y). The vertical axis 
is I(Y), and the horizontal axis is Y. Quoted 
from [2], page 17, Figure 3. 

 
By changing the value of k, one gets a set of Pareto optimal policies (efficiency 

frontier). For other generalizations, see [8]. 

2.4.2. Nash Equilibrium 
To obtain the best policy, one can apply the classical game-theoretical equili-
brium introduced by [9], where the reinsurance policy solves: 

{ } ( )( ) ( ){ }
( )( ) ( ){ }

1 1 1 1 10, ,

2 2 2

P min w PMax E u w Y I Y P E u w Y

E v w I Y P v w

 ∈ 
   − + − − −  

 × − + − 

        (9) 

For other generalizations, please see [10]. 

3. Dynamic Model Approach of the Stochastic Differential 
Equation 

To obtain the best policy, one can apply the classical game-theoretical equili-
brium. I follow [11] and assume that (Ω, F, (Ft), P) denotes a complete filtered 
probability space that satisfies the general condition with a reference filtration Ft  
≥ 0. P is a martingale probability measure equivalent to the real-world probabil-
ity, and T > 0 is a time horizon. 

I suppose that the surplus of the insurance company follows Brownian motion 
with drift. For a better understanding of the model’s formulation, I introduce the 
Cramér-Lundberg model as follows: 

( ) ( )0 , 0R t x ct Z t t= + − >                      (10) 

R(t) denotes the insurer’s capital at time t, x0 is the initial capital, and c > 0 
and Z(t) denotes the premium income rate and claims, respectively. The basis 
for calculating the premium rate of an insurer is based on the expected value 
principle. Therefore, the respective mathematical expressions are: 

( ) ( ) ( )1 and 1it
N tZ t Y c θ λµ
=

= = +∑                 (11) 

where N(t) is the number of claims up to time t and follows a Poisson process 
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with intensity λ > 0. In addition, E[Yi] = 𝜇𝜇. Moreover, θ > 0 is the safety loading 
interpreted as a risk premium buffer, and Yi denotes the i-th claim, and they are 
independent and identically distributed random variables. I assume c > λµ as the 
necessary condition to instantly avoid the insurer’s bankruptcy. Let the claim 
process Z(t) follow the Brownian motion with drift based on [12] [13] and [14]: 

( ) ( )d dZ t t W tµλ σ= − .                      (12) 

Therefore, the surplus process for insurance becomes: 

( ) ( )d d d dR t c t Z t t Wλµθ σ= − = + .                 (13) 

Thus, the risk process is perturbed by Brownian motion, and the insurer can 
choose proportional reinsurance over other types of reinsurance. 

Furthermore, I denote risk exposure by ( ) [ ]0,1tα α= = , the proportional 
reinsurance level by (1 − α), and the premium buffer for reinsurance by 

( )1c φ λµ= + . Therefore, the insurer diverts a portion of the premium to the 
reinsurer at the rate with buffer ( ) ( )1 1φ λµ α+ − , where 0φ >  is the safety 
loading of the reinsurer and 0φ > . Thus, the surplus process R(t) without in-
vestment satisfies the stochastic differential equation: 

( ) ( ) ( ) ( ) ( )d d dR t t t t W tµλ φ θ α φ α σ = − − + +  .            (14) 

See [14] and [15] for other generalizations. 
With the comparison of the description in 2.1., the risk is counted by loss X’s 

deviation from expected value of X, and its motion is expressed by Brownian 
motion. The insurer underwrites the insurance contract to cover the loss X and 
the expected value of X is covered by part of the insurance premium for sure. 

4. Investment Model 
4.1. Model Basics 

I use the investment model and follow [1]. The objective is set to maximize the 
expected utility (denoted by U) of end-of-period investor wealth by Tw  allo-
cating wealth tw  between two assets, a risky security (risky asset) and a riskless 
security (risk-free asset), over some investment horizon [0, T], which is called a 
strategy and expressed by the risky asset weight tφ . In Section 3, the character 
φ  is used for another parameter but here I use [1] notation. Section 4’s tφ  is 
Section 3’s α(t). tw  does not become 0 or negative. Other assumptions are as 
follows. 

1) A strategy process Xt manages the portfolio, and it consists of investing in 
both risky and risk-free assets. 

2) The asset amount wt consists of portfolio assets and derivatives (options), if 
any. 

3) The risky asset’s characteristic is set as price S under geometric Brownian 
motion with drift and volatility. 

Brownian motion tB  is on a complete filtered probability space (Ω, F, (Ft), P) 
with an initial value of 0, almost certain. Filtration tF  is all available time t in-
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formation for the pension fund. In Section 3, Brownian motion is written as W(t) 
and I use another description tB  when I discuss an investment model. Setting a 
finite time T, ( )0t t T

F
≤ ≤

 satisfies the usual conditions, and the augmented sig-
mafield generated by tB  up to time t. In general, X is a controlled state process 
valued in R and satisfies the following equation: 

( ) ( )d , , d , , ds s s s s sX b s X s s X Bφ σ φ= + .                  (15) 

The decision of the risky asset weight sφ  is the control. Generally, the con-
trol is set as ( )0s s T

φ φ
≤ ≤

= , and it is a progressively measurable process valued in 
the control set A, a subset of R. The Borelian functions b, σ on [ ]0,T R A× ×  sa-
tisfy the usual conditions to ensure the existence of a strong solution to the 
above stochastic process. This is typically satisfied when b and σ satisfy a Lipschitz 
condition on (s, x) uniformly in A, and α satisfies a square integrability condition. 

In this study, the risky asset’s characteristics, which are set as price S is under 
geometric Brownian motion with drift Sµ  and volatility Sσ , and the risk-free 
asset’s interest rate is assumed fixed at fr . 

d d df S
t t t tS S t S Bµ σ= + , Sµ , Sσ , and .fr const=          (16) 

( )d d dS f f S
t t t t t tX X r r t X Bφ µ φ σ +

 = − + .            (17) 

Regarding the risky asset, the P measure of dSt and its equivalent martingale Q 
measure are assumed to exist. I analyze the following stochastic process: 

d d d ˆf S
t t tS S r t S Bσ= + .                    (18) 

where B̂  is defined by 
S f

S
rµθ

σ
−

=  and d ˆ d dB B tθ= + . 

Again, in Section 3, I use φ  as the reinsurance premium buffer and in this 
section, character tφ  is used as the ratio of risky assets. I use another descrip-
tion when I discuss an investment model. 

4.2. Merton Model 

The utility functions treated in this study are shown in their mathematical form 
below. The CRRA utility maximization problem is set as follows: 

( )
t

STD
TSup E U w

φ
                           (19) 

where 

( )
1 1
1

STD twU x
γ

γ

− −
=

−
 (risk averseness γ  is set as a constant)     (20) 

Subject to: 

( ) [ ]0 ,0 e
fr T

Q TV w E w−=                       (21) 

where P is the market measure, and Q is the risk-neutral measure. (See [1]) 

4.3. Kinked Utility Model 

The kinked utility functions are shown in a mathematical form below. Setting 
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the CRRA utility maximization problem, I denote two utility function features: 
kinks at the minimum level (M) and the target level (L) of asset wealth. M is for 
modeling a minimum solvency level, and L is for liability, which should be con-
stant. I describe the minimum and target levels in one equation and aim to do 
this simultaneously. In Yamashita [1], they are not treated simultaneously. The 
mathematical expression is as follows: 

( ),

t

M L
TSup E U w

φ
                           (22)

 

( )

( )

1
,

,

if

if

i

0
1

1
f

M L t

M L

x M
wU x

U L L x

M x L
γ

γ

−

−∞ < ≤


−=  −
 ≤

< <                    (23) 

Risk averseness γ  is set as a constant. 
Subject to: 

( ) [ ]0 ,0 e
fr T

Q TV w E w−=                       (24) 

( ) ( ), ,M L M L
P TE U w U M  >                      (25) 

( ) ( ), ,M L M L
P TE U w U L  <                       (26) 

where P is the market measure, and Q is the risk-neutral measure. 

5. The Model 
5.1. One-Period Model 

As a one-period model, the following applies for the [7] type problem setting 
and is rewritten as follows: 

Wi: insurer wealth with t = 0, W0i; 
Wr: insurer wealth with t = 0, W0r; 
X: losses; 
I(X): losses covered by reinsurance; 
θ: insurance premium buffer, meaning premium with risk loading = 

( ) [ ]1 E Xθ+ ; 
φ : reinsurance premium buffer, meaning premium with risk loading = 

( ) ( )1 E I Xφ  +   ; 
α: risk retention, 1 − α is receded risk portion (in this section, I use α diffe-

rently from the way in Section 4). 
The wealth and wealth changes of the insurer and reinsurer in the case of no 

reinsurance and in the case of reinsurance (ratio α), are presented as follows. 

[ ]( ) [ ] [ ]( ){ }no reinsurance 0 1i iW W E X E X X E Xθ= + + − + −      (27) 

[ ] [ ]( )d no reinsuranceiW E X X E Xθ= − −               (28) 

( ) ( ) ( ) ( ) ( )( ){ }reinsurance 0 1r rW W E I X E I X I X E I Xφ     = + + − + −       (29) 
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( ) ( ) ( )( )d reinsuranceiW E I X I X E I Xφ    = − −               (30) 

[ ] [ ]( ){ } ( ) ( ) ( ) ( ){ }
( ) [ ]{ } ( )

[ ]( ) ( ) ( )( ){ } ( ) ( )( )

d with reinsurance

1

iW

E X X E X E I X I X E I X

E I X E X E I X

X E X I X E I X I X E I X

θ α φ

φ θ αφ

α

    = − − − − − −    
    = − − +    
    − − − − + −    

    (31) 

( ) ( ) ( ){ }d reinsurancerW E I X I X E I Xφ    = − −               (32) 

5.2. Stochastic Differential Equation Model 

I describe the stochastic differential equation based on the previous section. 
B: (geometric) Brownian motion: 

( ) ( )d no reinsurance 1 d d d d diW t t B t Bθ λµ λµ σ θλµ σ= + − − = +      (33) 

( ) ( )d reinsurance 1 d d d d diW t t B t Bφ λµ λµ σ φλµ σ= + − − = +       (34) 

α = α(t): risk retention 
1 − α: receded risk portion 

{ } ( ){ }
( ){ }

d with reinsurance d d 1 d d

d d

iW t B t B

t B

θλµ σ α φλµ σ

φ θ αφ ασ

= + − − +

= − − + +
     (35) 

d reinsurance d drW t Bφλµ σ= +                    (36) 

The one-period model (Equations (31) and (32)) and the stochastic differen-
tial equation model (Equations (35) and (36)) are essentially identical. Further-
more, Equation (35) is also essentially identical to the investment model de-
picted in Equation (37): 

( )d d dS f f S
t t t t t tX X r r t X Bφ µ φ σ = − + +               (37) 

where fr  is ( )φ θ− −  (and usually negative) and S frµ −  is φ , and dXt/Xt 
is dWi, and tφ  is ( )tα α=  (in this sense, I use arithmetic Brownian motion 
instead of a geometric one). 

5.3. VaR as Risk Measure 

In Section 4, I use CRRA utility, and even in this case, it is related to using va-
riance as a risk measure. Here I use the Taylor series of the difference wt and 
wt+dt as follows as used in [16]: 

( ) ( )d d 1S S
t dt t t tt t ttt

fw w t b t r wφ µ σ φ+
 − = + + −              (38) 

( ) ( ) ( )( ) ( )( )21
2t dt t t t dt t t t dt tU w U w U w w w U w w w+ + +′ ′′≈ + − + −       (39) 

( )( ) ( ) ( ) ( )

( ) ( )22

d 1

1 d
2

S f
t tdt t dt t t t t t

t t
S
t

E U w U w U w w t r

U w w t

φ µ φ

σ

+  ′≈ + + − 

′′+
         (40) 
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( ) ( )
( )
( )

( )
( ) ( ) ( )

( )

2

2

2

1d
2

1
2

S f
t t

S
tf

t

S f
t t

S

t t t
t

t
t

t
t t

t t

tS
t

t
t

S
t

r

U w w tU w r
U w

w
U w

r
U w

w
U w U w

w
U w

µ
σ

µ
σ

σ φ
σ

 − 
 ′≈ + + ′′  −  ′  

  −    ′′    − − −   

 
 
 

′ ′′      −  ′    

            (41) 

In case ( )STD
tU U w= , 

( ) ( ) ( )

22

21 1d
2 2

S f S f

S S
f S

t t t t S

r r

U w w tU w r

µ µ
σ σ

γ σ φ
γ γσ

       − −       
      ′≈ + + − −    
    
       

(42) 

The risk is related to variance (later part of [ ] in the second term’s coefficient 

of [ ]). Note that tφ  with maximizes ( )( )dt t dtE U w +  is 

S f

S

t S

rµ
σ

φ
γσ

 −
 
 =  ( tφ  is 

time independent and constant). Brownian motion means that VaR is propor-
tionate to the standard deviation, the square root of variance; so here, using the 
CRRA utility and using VaR as a risk measure is essentially the same. If the 
VaR-constrained solution is an option type (a buy put option and a sell call op-
tion), kinked utility using CRRA utility matches for dynamic strategy optimiza-
tion using a stochastic differential equation. Using VaR as a major part of the 
utility, as in the case of [17] (Appendix A), does not reflect its use in the 
one-period model, where VaR is used as a risk constraint. Moreover, from the 
perspective of the Arrow-Pratt measure, the variance of wt can be treated as a 
risk (see Appendix B). 

6. Solutions 
6.1. Merton Model Solution 

I solve the problem below. Equation (47) indicates that the optimal dynamic 
reinsurance strategy is to keep the reinsurance cover ratio constant (time inde-
pendent). The ratio can be calculated from the following parameters. 

( )
t

STD
TSup E U w

φ
                             (43) 

Subject to: ( ) ( ),STD STD
T TV w T U w=                       (44) 

( ) ( ),
t

STD STD
t tV w t Sup E U w

φ
 =                        (45) 

( ) ( )2 2 2 2 0STD STD S f f STD s
t w t t ww t tV V w r r V wφ µ σ φ + − + + =             (46) 
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( ) ( )
( )

( ) ( )2 2S f S S f S

t STD STD
ww t w

r r

V wV

µ σ µ σ
φ

γ

− −
==

−
 (Constant, independent from t) (47) 

(See Appendix A). 

6.2. Kinked Utility Model Solution 

The illustrative solution can be described as follows. The utility of the reinsurer 
should not be below or equal to minimum M—it would be like buying a put op-
tion and not necessarily above L, the upper limit, or selling a call option. This is 
related (similar) to Figure 1’s I(y) payoff; moreover, see the next section’s simu-
lation results for buying a put option and selling a call option. The upper limit l 
is L, and the lower limit d is M. 

Equation (5), Figure 2, and Figure 3 show that the optimal reinsurance strat-
egy has the lower and upper limit of risk taking. In a dynamic model context of 
an investment model, the solution of the case of both constraints (lower and 
upper bounds) is described below, following [1] calculated the optimal solution 

tw , which sets Tw∗∗∗  at t = T, tw∗∗∗ : 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2e e
r rr T t r T tSTD STD

t t t t tw X N d L N d X N d L N dζ ζ− − − −∗∗∗ = + − − − +   (48) 

tζ  = scalar, varies if time varies. This is decided by self-financing constraints. 

( ) ( )2

1

1ln
2e

f

STD
St

r T t

t
S

X

L

d

σ

ζ
σ

− −

 
 
  + 
 
 
 = , 

( ) ( )2

2

1ln
2e

f

STD
St

r T t

t
S

X

L

d

σ

ζ
σ

− −

 
 
  − 
 
 
 = ,      (49) 

where the utility function is: 

( )

( )

1
,

,

if

if

i

0
1

1
f

M L t

M L

x M
wU x

U L L x

M x L
γ

γ

−

−∞ < ≤


−=  −
 ≤

< <                   (50) 

7. Simulations 

I performed a Monte Carlo simulation, using the solution of the case of the 
kinked utility at both an upper limit and a lower limit. The solution is for its 
reinsurer. The solution strategy means that the reinsurer’s wealth is generated 
from the dynamic payoff between insurance underwriting and reinsurance 
strategy results. In the simulation, 10,000 return patterns are generated for un-
derwritten insurance’s risk using arithmetic Brownian motion. The details of the 
parameters are as follows. Each period means one year, and the total number of 
years is 20. I denote the Merton model solution as a benchmark as “standard 
strategy (STD)”. The solution of our strategy is a “conventional reinsurance 
cover strategy (CC)”. The target “L” and “M” are exogenously given as 150 and  
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Figure 2. An illustration of the utility function U(w) with 
the kink at w  =  M. Quoted from [1], page 57, Figure 2. 
(U is the utility function, and w is the asset value. The 
utility’s value goes to −∞ when w approaches the mini-
mum asset value level M) 

 

 
Figure 3. An illustration of the utility function U(w) with 
the kink at w = L. Quoted from [1], page 57, Figure 3. (U 
is the utility function, and w is the asset value. L is the 
target level of the asset value, and the utility becomes flat 
for w  >  L). 

 
50, respectively, for all instances as an upper limit and a lower limit, with wealth 
starting at 100. CC is an optimal strategy under the kinked utility and STD is an 
optimal strategy under the “normal” utility, which means the reinsurance strat-
egy is a constant ratio of reinsurance to buy and insurance to be underwritten. 
Utility is γ = 1.411 as in the research of Yamashita [1]. 

In the equations of: 

( ) ( ) ( ) ( ) ( )d d dR t t t t W tφ θ µλ φµλ α α σ = − − + × + ×  , and         (51) 
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( )d d df S f S
t t t t tX X r r t Bµ φ φ σ = + − × + ×  ,             (52) 

I set the following Table 1’s cases and parameters. Equations (51) and (52) are 
identical to Equations (35) and (37), respectively, and only the order of the pa-
rameters have changed. In Equation (52), Equation (51)’s ( )tα  is treated as tφ , 
Equation (51)’s φµλ  is treated as ( S frµ − ), and Equation (51)’s ( )φ θ µλ− −  
is treated as fr . The table of (a) shows the parameters of Equation (51) and the 
table of (b) shows the parameters of Equation (52). Figure 4 shows Case 1. The 
vertical axis shows the CC strategy’s wealth return at the end of t = 20, and the 
horizontal axis shows the STD strategy’s wealth at the end of t = 20. The red line 
(45-degree line) shows that CC and STD ultimately have the same as wealth 
performance. Table 2’s WIN is the percentage of the samples in which CC is 
superior to STD from the end wealth growth viewpoint. The return is calculated 
by an annualized return of the change in wealth from t = 0 to t = 20. Some of the 
characteristics are explained below. 

The data assumptions used in μ, λ, ϕ, θ are as follows. Regarding μ and λ, I use 
typical risk of 0.50 and 0.20. Regarding ϕ and θ, taking typical insurance pre-
mium buffer rates into account, I decided 0.20 and 0.10 respectively. 

1) How reinsurance premium buffer is larger than insurance premium buffer 
is naturally matters as ( )φ θ µλ− −  of Equation (51) is always reduce the wealth. 

2) STD keeps the reinsurance ratio at 0.89 whatever the value of the wealth is. 
The number 0.89 means the insurer usually (neither VaR constraints nor risk 
measure burden) reinsures 11% of the underwritten and keeps 89% of the risk. 

3) The condition for CC is, from a dynamic strategy point of view, avoiding 
more than the value of 50 (translated as upper VaR limit = (150 − 100)/100/20% 
= 2.5 (2.5σ)) and giving up more than the additional value of 50 units. So the 
reinsurance ratio is not always 0.89. 

4) The distribution of returns shows upper and lower limit characteristics. 
This is because the reinsurer’s insurance result is limited bad results, which is 
that loss is larger than premium inflow and limited good results, which is that 
loss is smaller than premium inflow. This simulation is discrete time base and 
that is the reason the plots are bounded to some extent. 

5) In Case 1, WIN is 21.5%, which means that because of VaR constraints or 
the risk measure burden, for the reinsurer, the CC result (final term’s wealth) is 
inferior to the STD case with a 78.5% chance. Instead, the insurer gets the merit. 

The results of Cases 1 to 4 are shown in Figure 5 and Table 2. Comparing 
Cases 1 and 4 (or/and Cases 2 and 3) reveals the reinsurance costs—Case 1 costs 
more than Case 4, and Case 2 costs more than Case 3. Comparing Cases 1 and 2 
(or/and Cases 3 and 4) reveals risk volatility. Case 1 shows greater volatility than 
Case 2, and Case 3 greater volatility than Case 3. 

Figure 5 shows the four cases: Case 1 (upper right): (μS − rf) = 3%, rf = −2%, σ  
=  20%, Merton model solution 0.89; Case 2 (upper left): (μS − rf) = 3%, rf = −2%, 
σ  =  15%, Merton model solution 1.57; Case 3 (lower left): (μS − rf) = 2%, rf = 
−1%, σ  =  15%, Merton model solution 0.95); Case 4 (lower right): (μS − rf) = 2%, 
rf = −1%, σ  =  20%, Merton model solution 0.53). 
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Table 1. Parameter settings of Equations (51) (left) and (52) (right). 

(a) 

 
Case 2 

 
Case 1 

μ = 50% μ = 50% 

λ = 20% λ = 20% 

φ = 30% φ = 30% 

θ = 10% θ = 10% 

 
Case 3 

 
Case 4 

μ = 50% μ = 50% 

λ = 20% λ = 20% 

φ = 20% φ = 20% 

θ = 10% θ = 10% 

(b) 

 
Case 2 

 
Case 1 

μS − rf = 3% μS − rf = 3% 

rf = −2% rf = −2% 

σ = 15% σ = 20% 

 
Case 3 

 
Case 4 

μS − rf = 2% μS − rf = 2% 

rf = −1% rf = −1% 

σ = 15% σ = 20% 

 
Table 2. How much CC is better than STD? 

 
Case 2 

 
Case 1 

Upper 2.0% Upper 2.0% 

Lower −3.4% Lower −3.4% 

STD 1.57 STD 0.89 

WIN 16.7% WIN 21.5% 

 
Case 3 

 
Case 4 

Upper 2.0% Upper 2.0% 

Lower −3.4% Lower −3.4% 

STD 0.95 STD 0.53 

WIN 26.2% WIN 27.3% 

 
The four cases tell us the following. 
1) In each case, as seen in the previous description regarding Case 1, the dis-

tribution of returns shows upper and lower limit characteristics. This is because 
the reinsurer’s insurance result is limited bad results, which is that loss is larger 
than premium inflow and limited good results, which is that loss is smaller than 
premium inflow. 
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Figure 4. An illustration of the results of the reinsurance strategy (Case 1), 
where (μS − rf) = 3%, rf = −2%, σ  =  20%, and the Merton model solution 
is 0.71. The vertical axis shows the CC strategy’s wealth return at the end 
of t = 20 and the horizontal axis shows the STD strategy’ wealth at the end 
of t = 20. The red line (45-degree line) shows that CC and STD ultimately 
have the same as wealth performance. 

 

 
Figure 5. An illustration of the result of the reinsurance strategy (CC), Cases 1 to 4. 
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2) The Merton model solution shows that the value of insurers’ risk-taking 
matters regarding the wide variety of returns, which means a smaller WIN rate 
(VaR constraint cost is larger.) The order of Case 1 to Case 4 is as follows: 

Case 4 < Case 3 ≈ Case 1 < Case 2. 
Merton model solution (reinsurance ratio) is calculated by ϕμλ/σ2 divided by 

risk averseness if described by Equation (51) parameters. 
3) Suppose the Merton model solution figure is almost the same; volatility 

matters. Larger volatility (Case 1) has a wider variety of returns (smaller WIN 
rate, larger VaR constraint cost), comparing Case 3. 

Last, the limitation of the proposed strategy is that the model assumes the in-
surance premium consists of the expected loss value and the buffer which is 
proportion to the expected loss value. The simpleness of Equation (58) comes 
from the premise. 

8. Practical Use of the Strategy 
8.1. Reinsurance Strategy of the Insurance Industry 

The reinsurance strategy depends on many factors such as if the insurance is 
non-life or life. However, typically, insurers use reinsurance from the following 
reasons: 
- The risk is so huge that it is natural to share the risk among several insurers. 
- The insurer needs to reduce risk exposure because of insufficient economic 

capital, because of risk management requirement, or because of improve-
ment of cash flow and return of equity. 

- The insurer needs to diversify underwriting risks. 
Regarding the type of reinsurance, proportional type is the industry’s tradi-

tional and non-proportional type like excess loss cover, is increasing. From con-
tract type point of view, there are facultative reinsurance and treaty reinsurance. 
The prior is that the insurance contract decision is made case by case and the 
latter is that the reinsurance contract lasts usually for a long term and its condi-
tions don’t change often. 

The dynamic reinsurance strategy solution in this paper considers non-propor- 
tional type of reinsurance and, in addition, the strategy dynamically changes 
reinsurance exposure. It is not a traditional way and whether facultative rein-
surance and treaty reinsurance, it needs some tactics to fit for a dynamic strate-
gy. 

8.2. Implication of the Solution and Simulation Results 

The implications and potential impact of the results on the insurance industry 
are that, in the case risk deviation is larger, the reinsurer suffers more, even 
though the reinsurer takes only the middle range of risk, because the dynamic 
strategy costs the reinsurer which comes from VaR constraint. There is a lucky 
opportunity to save the loss below expected value. The reinsurer welcomes a 
larger reinsurance premium buffer but the merit is limited. 
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There are some external factors that affect the results. One of those is that the 
model supposes the insurance premium buffer and reinsurance buffer is time 
independently constant to expected loss value. In addition, current regulatory 
economic capital requirement amount is basically proportion to VaR and that is 
the reason I treated VaR constrained problem. The regulation change might 
change the needed problem setting. 

9. Conclusions 

I show that one-period model research and the dynamic model approach of the 
stochastic differential equation can be described as having the same structure. I 
made use of the investment model for the dynamic model approach, which gives 
us a wider variety of reinsurer strategies. I also noted that the optimal VaR mi-
nimization measure model under a certain condition relates to the kinked CRRA 
utility dynamic investment strategy. 

Generally, and naturally, higher reinsurance cost (reinsurance premium bur-
den) makes using reinsurance less attractive. From an optimal dynamic strategy 
point of view, the reinsurance premium burden divided by the risk’s volatility 
and divided by the insurer’s risk averseness affects how much insurance expo-
sure should be covered by reinsurance. 

There are additional challenges in this area that should be addressed in future 
studies. One of them is to test a stochastic volatility case. 
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Appendix A 

The following description is following [16] [17] (henceforth, H-V) analyzed the 
utility maximization problem below. At first sight, it differs from the Merton 
model. 

( )
[ ] [ ]( )

t
T T

w
Sup E w Var w
φ

α−                      (A.1) 

Subject to: 0tw w= , 0tw ≥ , 1,2, ,t T=  . 
Using d d dS S

t t t tS S t S Bµ σ= +  and solving the Hamilton-Jacobi-Bellman 
equation, they derive the equation below. 

( )
( )

( )

2

2
0

e 1 1
2 e

S f
f

S

f

rr T t
S f

t r
tS t

rw
w w w

µ
σµφ

ασ

 −
−  

 
 

− +
 
 −  = ⋅ + −
 
 
 

         (A.2) 

Just in case, Merton Model is solved in the following way. The equation below 
is solved by Lagrangian L: 

( ) |
t

STD
PSup E U w t T

φ
 =                       (A.3) 

Subject to: ( ) [ ]0 ,0 e
fr T

Q TV w E w−=                       (A.4) 

( ) [ ] ( )( )0e ,0
fSTD r T

P T Q TL E U w E w V wλ − = − −               (A.5) 

Radon-Nikodym derivative is set as tg : 

( )| | |STD
t

w
w Sup U w t T g t T

w
λ∂ = = ⋅ = ∂ 

 

The optimal solution Tw∗  is shown below. 

( ) ( )
1 1

| |STD
T t tw U g t T g t T

w
γλ λ

−
−∗ ∂ = = = = ∂ 

           (A.6) 

( )
1

0e |
fr T

P tw E g t T
γγγ

γλ
−− −  = =    

               (A.7) 

The Black-Sholes premise produces the equation below. 

( ) ( )
( )

( )

2
2

2 2

1 1
2 2

0e

S f S f S fS S
S S S

r r rT T
Sg s
s

µ µ µµ ο
σ σ σ

   − − − − + −     

 
   =    
  

, 0 0tS S constant== =  (A.8) 

[ ] ( )211
2

0
0

e
f Sr

T
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Sw w
S

φ
φ φ σ

 
− ⋅ + ∗    

=  
 

, 
( )2

f

S

rµ

σ
φ

γ

−

=              (A.9) 

Next, I discuss the difference between the two models. I set ( ) logSTDU x x=  
with Brownian motion for the price of the risky asset. For the risky asset, 

d d dt t t tS S t S Bµ σ= +                     (A.10) 
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21
2

0e
tB

tS S
µ σ σ − + 
 =                       (A.11) 

For the strategy portfolio, 

( ) ( ), ,t tX f t B f t x= =                     (A.12) 

2

2
1d d d d
2t t

f f fX t B t
t x x

∂ ∂ ∂
= + +
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                (A.13) 

( )d d dt t t t t tX X r r t X Bφ µ φ σ  += − +              (A.14) 

t
f f
x

φσ∂
=

∂
 leads ( ) ( ), ,0 e t xf t x f t φ σ=              (A.15) 
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2

2
1
2 t
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φ µ∂ ∂
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Regarding the Merton model: 

( )
( ) 2 2

0

1
2 d
1t

t t
STD

T T
t

r r
Sup E U w Sup w E t B

x
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φ φ

φ µ σ φ
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Regarding the H-V model: 
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If 0t

t
φ∂

=
∂

, tφ  is φ  (independent from t). In addition, 

( ) ( ) ( )2 2,0 1 ,0
2

f t
r r f t

t
φ µ σ φ

∂  = − + − ∂  
           (A.22) 

( )
( ) 2 21

2
0, e

tr r t B

t tX f t B X
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The Merton model with ( ) logSTDU x x= : 

( ) ( ) 2 2
0

1
2t

STD
T TSup E U w Sup w E r r T B

φ φ
φ µ σ φ σφ    = − + − +      

   (A.24) 

2
rµφ

σ
−

=  maximize the U. 
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For the case H-V, tφ φ=  means: 
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Argφ  indicates: 
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         (A.29) 

The Merton model solution is the case of 1γ = , and above ( ) =  1. Therefore, 
they are different. 

Appendix B 

The explanation of the common risk variance by Arrow-Platt measure is 
described below. See [18] and [19]. 
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The risk is approximated as: 
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