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Abstract 
Inter-basin water transfer is a large-scale artificial method to transfer water 
from water-surplus areas to water-deficient areas, so as to promote the eco-
nomic development of water-deficient areas. In this paper, water call options 
are introduced to improve the management of inter-basin water transfer. As 
the seller of water call options, the water diversion area benefits from water 
call options, as well as bears the risk of a water shortage caused by the exercises 
of water call options. On the one hand, the economic benefit of the system 
can be maximized by choosing the maximum water availability and the exer-
cise prices of water call options. On the other hand, by using water call op-
tions, the water diversion area obtains certain economic compensation and 
the water receiving area gains additional water to ensure water security in dry 
seasons. By considering the uncertainties in the process of water resource man-
agement, an interval two-stage stochastic multi-objective mixed integer pro-
gramming (ITSMMIP) model is developed for supporting decisions of water 
resource allocation when water call options are applied in inter-basin water 
transfer. The results prove the effectiveness of the model. 
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1. Introduction 
Due to the rapid development of economy and society and the uneven temporal 
and spatial distribution of water resources, the water resources in many econom-
ically developed areas in China have been unable to meet the water demand. In 
order to solve the contradiction between the temporal and spatial distribution of 
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water resources and the imbalance of regional economic development, China has 
successively constructed dozens of inter-basin water transfer projects, such as a 
water diversion project from Luan River to Tianjin City, a water diversion project 
from Biliu River to Dalian City, Dongshen water supply project and south to North 
Water Transfer Project, which solved the problem of the uneven temporal and 
spatial distribution of water resources from the infrastructure level [1]. 

Inter-basin water transfer has been an important measure for water resource 
allocation, which has greatly alleviated the water shortage in municipal, industri-
al and agricultural, and ensured the growing water demand for economic and 
social development in water-deficient areas. However, there are still many man-
agement problems to be solved in the field of inter-basin water transfer. The first 
is the lack of effective management of water resources. Generally, there is no re-
levant water transfer agreement between the water diversion area and the water 
receiving area, and the responsibilities and obligations are not clear. Especially in 
the dry season, disputes between the two parties are easy to occur, and the water 
demand in the water receiving area can not be guaranteed, which increases the 
difficulty of water resource management. Second, the optimization of water re-
source allocation in each area is imperfect. Adjustment of the water consumption 
structure and balance of the priority of water resources utilization in the water 
diversion area and the water receiving area need to be considered in the water 
transfer process according to the economic and social development of each area. 
Third, the water resources trading system has not been established, and the water 
market is still a quasi-market. The establishment of water resources trading me-
chanism under the macro-control of government is more conducive to the op-
timal allocation of inter-basin water transfer, and can improve water use efficiency 
and provide more reasonable economic compensation for water diversion areas 
[2]. 

There are many uncertainties in the process of inter-basin water transfer, 
which increases water supply risk in both areas. For example, available water is 
the most uncertain factor affecting water transfer. In the high-water season, be-
cause the available water is sufficient in both areas, the water transfer willingness 
of the water receiving area is not strong even if the water price is decreased; in 
the low-water season, the available water is insufficient in the water diversion 
area, but the water receiving area has a strong willingness to transfer water even 
if the water price increases. In addition, complex relationships and uncertain in-
formation, such as economic benefit, water transfer cost and water shortage loss, 
have great impacts on the optimal allocation of inter-basin water transfer [3].  

In view of the above problems, water options can be introduced as risk manage-
ment tools in the optimal water allocation decisions of inter-basin water transfer 
[4] [5] [6] [7]. A water option is a sales contract for a certain amount of water 
between the water diversion area and the water receiving area, with clear respon-
sibilities and obligations for both parties [6]. Taking call options as an example, 
the water transfer area, as the seller of the call option, can obtain the option fee as 
compensation for the promise to sell a certain amount of water at a certain price. 
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At the same time, it has the obligation to sell a certain amount of water according 
to the contract. On the other hand, by paying the option fee, the water receiving 
area has the right to buy a certain amount of water at the agreed price. By execut-
ing the water option, the water demand of water in the receiving area (especially 
in low-water season) is guaranteed to a certain extent [8]. In this way, water op-
tions can facilitate water trade and benefit both water diversion areas and water 
receiving areas [9]. 

To deal with the complexities and uncertainties, many uncertain optimization 
methods are developed. Such as Jafarzadegan et al. [10] developed an integrated 
stochastic dynamic programming model to provide monthly policies for water 
allocation to users in water donors and receiving basins. Luo et al. [11] proposed 
an inexact two-stage stochastic nonlinear programming model for water resources 
management with water trading. Gu et al. [12] developed an interval parameter 
multistage joint-probability programming model to deal with water resource allo-
cation under joint probability and interval uncertainties. María et al. [13] pro-
posed a global optimisation model involving multiple supply sources and mul-
tiple users by considering the water distribution efficiency and the physical con-
nections between water supply sources and water users. Han et al. [14] developed 
a multi-objective linear programming model with interval parameters to improve 
the allocation of multi-source water resources to multiple users.  

Therefore, an interval two-stage stochastic multi-objective mixed integer pro-
gramming (ITSMMIP) model is established and applied to the optimal water al-
location of inter-basin water transfer based on options contracts. The model takes 
the economic benefit of the water diversion area and the water receiving area as 
the target, and can reflect the decision-making process of water transfer includ-
ing water call options. The rest of the paper is arranged as follows. In Section 2, 
the ITSMMIP model is presented. In Section 3, a case study is provided to illu-
strate the efficiency of the method. In Section 4, a conclusion is drawn. 

2. Methodology 
2.1. Problem Description and Hypothesis 

Inter-basin water transfer is a redistribution process of water resources among 
different areas, which has a great impact on the society, economy and environ-
ment of water diversion and receiving areas. The water manager should consider 
both the water shortage situation in the water receiving area and the transferable 
water volume in the water diversion area. The optimal water transfer volume 
should be determined on the premise that the water demand in the water diver-
sion area is basically met, and that the reasonable water transfer compensation 
mechanism is established. Therefore, it is necessary to establish a scientific and 
reasonable water allocation scheme taking into account the interests of various 
parties in the process of inter-basin water transfer, so as to maximize the utiliza-
tion of water resources [15]. 

It is assumed that the water receiving area is economically developed with se-
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rious shortage of water resources. The water diversion area is economically un-
derdeveloped with abundant water resources. Water users in both areas can be 
divided into various types (such as municipal, industrial and agricultural water 
users). In order to meet the water demand of the water receiving area, an in-
ter-basin water transfer project has been built. Through the project, water trans-
fer can be carried out and an inter-basin water market formed. It is assumed that 
the water receiving area, water diversion area and inter-basin water transfer project 
are uniformly managed by water manager. In order to maximize the system eco-
nomic benefit, avoid the risk of water shortage, and pay compensation to water 
diversion area, water manager decides to adopt water call options as a manage-
ment tool of inter-basin water transfer. 

The optimal water allocation of inter-basin water transfer based on water call 
options can be divided into two stages. In the first stage, before the beginning of 
a water transfer period, water manager sets the option premium, exercise price, 
maximum exercisable amount and determines the maximum amount of options 
to be sold by the water diversion area according to the relevant hydrological in-
formation. According to the relevant information of water call option, the water 
receiving area determines the purchase amount of water call options and pays the 
option fee. At the same time, water managers need to determine the water alloca-
tion targets for the water users in both areas. At this stage, water resources man-
agement is faced with uncertainties such as climate and economic benefit. If the 
amount of water call options sold by water diversion area is too large, once the 
water receiving area exercises the options, the cost of water transfer will be in-
creased, and the water demand in the water diversion area may not be met, re-
sulting in water shortage loss. As the goal of water manager is to maximize the 
system economic benefit, it is needed to reduce the risk of water shortage in the 
water receiving area and provide appropriate economic compensation to the wa-
ter diversion area by reasonably setting the maximum exercisable amount and 
exercise price of the water call options. 

In the second stage, the available water as a random event has been deter-
mined. If the execution conditions of the water call options are met, the wa-
ter receiving area shall determine the amount of water gained by exercising 
water call options and cover the expense. According to the available water and 
the principle of maximum economic benefit, water manager revises the deci-
sion-making in the first stage and allocate water resources to water users in each 
area. 

Through the above analysis, in addition to the relevant parameters of water 
call option, the model should also include water allocation targets, water supply 
benefit, water shortage, water shortage loss, water transfer volume, water transfer 
cost and other parameters. The decision-making objective of the model is to 
maximize the economic net benefit of both areas. The parameters and variables 
used in the mathematical model established in this chapter are defined as fol-
lows: 

Af : System net benefit of the water receiving area ($); 
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Bf : System net benefit of the water diversion area ($); 

Au : Number of water users in the water receiving area; 

Bu : Number of water users in the water diversion area; 

AjNB : Net benefit per unit water of water users j in the water receiving area 
($/m3); 

BjNB : Net benefit per unit water of water users j in the water diversion area 
($/m3); 

AjT : Water allocation target promised to users j in the water receiving area 
(m3); 

BjT : Water allocation target promised to users in the water diversion area 
(m3); 

[ ]E ⋅ : Expectation of random variables; 

AQ : Random variable, the available water quantity of water receiving area 
(m3); 

BQ : Random variable, the available water quantity of water diversion area 
(m3); 

PQ : Maximum water transfer capacity of the water diversion project (m3); 

AjC : Loss to user j per unit of water caused by water shortage in the water re-
ceiving area ($/m3);  

BjC : Loss to user j per unit of water caused by water shortage in the water di-
version area ($/m3); 

AjQD : Shortage volume of user j by which the water allocation target AjT  is 
not met when present flow is Q ( AQ , BQ ) (m3); 

BjQD : Shortage volume of user j by which the water allocation target BjT  is 
not met when present flow is Q ( AQ , BQ ) (m3); 

maxAjT : Maximum water demand of water user j in the water receiving area 
(m3);  

maxBjT : Maximum water demand of water user j in the water diversion area 
(m3); 

minAjT : Minimum amount that should be allocated to user j to ensure the basic 
needs in the water receiving area (m3); 

minBjT : Minimum amount that should be allocated to user j to ensure the basic 
needs in the water diversion area (m3); 

iR : Binary variable, 0 means not to buy the water call option i, 1 otherwise 
( 1,2, ,i n=  ); 

iNO : The maximum exercisable amount of the water call option i  
( 1,2, ,i n=  ); 

maxiNO : The upper bound of the maximum exercisable amount of water call 
options i ( 1,2, ,i n=  ); 

miniNO : The lower bound of the maximum exercisable amount of water call 
options i ( 1,2, ,i n=  ); 

iM : Preestablished value, the water call option can be exercised if the inflow 

BQ  is larger than iM  ( 1,2, ,i n=  ); 
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iWO : Number of calls executed ( 1,2, ,i n=  ); 

iPO : The strike price of the water call option i ($/m3, 1,2, ,i n=  ); 

iOP : Premium of the water call option i ($/m3); 
PC: Water transfer cost ($/m3). 

2.2. Model Establishment and Solution 

The decision-making objective is to maximize the economic benefit in each area, 
that is 

1 1 1 1

A Aun n

A Aj Aj i i i i Aj Aj
j i

u

i j
f NB T OP R E WO PO E C D

= = = =

  = × − × − × − ×     
∑ ∑ ∑ ∑ .  (2.1) 
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∑ ∑ ∑

∑ ∑
          (2.2) 

The constraints of the model include 
1) Water availability: 

( )
1 1

,
Au n

Aj Aj A i
j i

T D Q WO
= =

− ≤ +∑ ∑                   (2.3) 

( )
1 1

.
Bu n

Bj Bj B i
j i

T D Q WO
= =

− ≤ −∑ ∑                   (2.4) 

2) Water allocation targets:  

max 0,Aj Aj AjT T D j≥ ≥ ≥ ∀ ,                   (2.5) 

min ,Aj Aj AjT D T j− ≥ ∀ .                     (2.6) 

max 0,B Bj BjjT T D j≥ ≥ ≥ ∀ ,                   (2.7) 

min ,Bj Bj jBT D T j− ≥ ∀ .                     (2.8) 

3) Water call options: 
Since the holder of the water call options has the right to exercise the options, 

it is necessary to set up exercise conditions for the water call options to avoid the 
impact on the basic water needs in the water diversion area because of excessive 
exercise of the options. In order to meet the water transfer demand of the water 
receiving area under different available conditions, the water diversion area can 
sell several options with different parameters, but the total exercisable amount 
cannot exceed the maximum water transfer capacity of the water diversion project. 
It can be expressed as 

, ,
, ,0

i i B i

i B i

iWO NO Q M
WO Q M

R×
<=

≤ ≥

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                  (2.9) 

1
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To sum up, the optimal allocation model of inter-basin water transfer based 
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on the call water options can be expressed as follows: 

1 1 1 1

1 1 1
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 (2.11a) 

Subject to: 
Water receiving area: 

( )
1 1

,
Au n

Aj Aj A i
j i

T D Q WO
= =

− ≤ +∑ ∑                 (2.11b) 

max 0,Aj Aj AjT T D j≥ ≥ ≥ ∀ ,                  (2.11c) 

min ,Aj Aj AjT D T j− ≥ ∀ .                    (2.11d) 

Water diversion area: 

( )
1 1

,
Bu n

Bj Bj B i
j i

T D Q WO
= =

− ≤ −∑ ∑                 (2.11e) 

max 0,B Bj BjjT T D j≥ ≥ ≥ ∀ ,                  (2.11f) 

min ,Bj Bj jBT D T j− ≥ ∀ .                   (2.11g) 

Water call options:  

, ,
0, ,

i i B i
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1
.

n

i P
i

WO Q
=

≤∑                       (2.11i) 

Non-negative constraint: 

, , , , 0, 0 1 ., ,,Aj Bj Ai j BjT T WO D D R i j= ∀≥ .          (2.11j) 

To solve this model, suppose 
AQ  and 

BQ  take discrete values Akq  and Bkq  
with probabilities klp  ( 1,2, , Ak n=  , 1,2, , Bl n=  , 
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Subject to: 
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Water receiving area: 

( )
1 1

, ,
Au n

Aj Ajkl Ak ikl
j i

T D q WO k l
= =

− ≤ + ∀∑ ∑ ,            (2.12b) 

max 0, , ,Aj Aj AjklT T D j k l≥ ≥ ≥ ∀ ,               (2.12c) 

min , , ,Aj Ajkl AjT D T j k l− ≥ ∀ .                (2.12d) 

Water diversion area: 

( )
1 1

, ,
Bu n

Bj Bjkl Bl ikl
j i

T D q WO k l
= =

− ≤ − ∀∑ ∑ ,            (2.12e) 

max 0, , ,Bj Bj BjklT T D j k l≥ ≥ ≥ ∀ ,               (2.12f) 

min , , ,Bj Bjkl BjT D T j k l− ≥ ∀ .                (2.12g) 

Water call options:  

, ,

0, ,
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i
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WO NO q M

WO q M
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× ≤ ≥


= <
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1
.

n

ikl P
i

WO Q
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≤∑                       (2.12i) 

Non-negative constraint: 

, , , , 0, 0,1, , , ,ikl Ajkl BA jklj BjT T WO D i j k lD R ∀≥ = .         (2.12j) 

The above model can effectively reflect stochastic uncertainties, but the water 
manager may find it difficult to make deterministic water allocation targets ( jT



) 
and the economic parameters ( jC



 and jNB


) may not be described by deter-
ministic values or random variable but intervals. To reflect such uncertainties, 
interval parameters can be introduced into the model [16]. This results in an in-
terval two-stage stochastic multi-objective mixed integer programming (ITSMMIP) 
model: 
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Subject to: 
Water receiving area: 
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min , , ,Aj Ajkl AjT D T j k l± ±− ≥ ∀ .                 (2.13d) 

Water diversion area: 

( )
1 1
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Bu n

Bj Bjkl Bl ikl
j i

T D q WO k l± ± ± ±

= =

− ≤ − ∀∑ ∑ ,             (2.13e) 

max 0, , ,Bj Bj BjklT T D j k l± ±≥ ≥ ≥ ∀ ,                (2.13f) 

min , , ,Bj Bjkl BjT D T j k l± ±− ≥ ∀ .                 (2.13g) 

Water call options:  
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ikl Bl i
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WO q
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M

± ±

± ±

 ≤ ≥


= ≥
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=
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Non-negative constraint: 

, , , , 0, 0,1, , , ,Aj Bj ikl Ajkl BjklT T WO D D jR i k l± ± ± ± = ∀≥ .         (2.13j) 

There are two different methods to solve the stochastic multi-objevtive pro-
gramming prolem [17] [18]. One is called multi-objective method by Ben Abde-
laziz [19] that transforms the stochastic multi-objective problem into its equiva-
lent multi-objective deterministic problem. This method transforms each sto-
chastic objective into its equivalent deterministic separately by selecting a crite-
rion, but not take the stochastic correlation between stochastic objectives into 
considration. The other method is called stochastic method that transform the sto-
chastic multi-objective problem into a stochastic single-objective problem, and 
then into a deterministic single objective optimization problem. For practical prob-
lems with correlation, this method is more appropriate [20]. Therefore, for the 
interval two-stage stochastic mixed integer programming model, we will trans-
form it into a single objective interval two-stage stochastic mixed integer pro-
gramming problem to solve. Because the water receiving area is the holder of the 
call option and has the right to exercise the option, it has a higher priority in the 
multi-objective problem, our model can be solved by using the hierarchical or-
dering method. In this method, the objective functons are ranked in order of im-
portance, and then a series of single-objective problems are solved to obtain effi-
cient solutions. The specific steps are as follows:  

Step 1: According to the water availability, water demand and related econom-
ic data, the water manager determines the upper and lower bounds of the maxi-
mum exercisable amount min max,i iNO NO  and the strike price min max,i iPO PO  
of the water call option i. Let [ ]min max,i i iPO PO PO∈ , [ ]min max,i i iNO NO NO∈ . 

Step 2: Solve the optimization problem of the water receiving area. 
1) Since the objective function of the water receiving area is the system net 

benefit, the upper bound of the objective function Af +  can be solved first. Let 

( )AAj Aj Aj AjjT T y T T± − + −= + − , [ ]0,1Ajy ∈ , then the sub model of Af +  can be expressed 
as follows: 
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( )( )
1 1

1 1 1 1 1 1

max

.

A

A B A B A

n

A Aj Aj i i
j i

n n n n un

kl ikl i kl Aj A

u

Aj A

jkl
k l i

j Aj

k l j

f NB T y T T OP R

p WO PO p C D

+ + − + −

= =

− − −

= = = = = =

= × + − − ×

  − × × − × ×     

∑ ∑

∑∑ ∑ ∑∑ ∑
 (2.14a) 

Subject to: 

( )( )
1 1

, , ,
Au

A

n

Aj Ajj Ajkl Ak iklj
j i

AT y T T D q WO k l− + − − + −

= =

+ − − ≤ + ∀∑ ∑       (2.14b) 

( )max 0, , , ,Aj AAj Ajj AjklAjT T y T T D j k l− + − −≥ + − ≥ ≥ ∀          (2.14c) 

( ) min , , , ,Aj AjklAj A Aj Aj jT y T T D T j k l− + − −+ − − ≥ ∀           (2.14d) 

( )( )
1 1

, , ,
Bu

B

n

Bj Bjj Bjkl Bk iklj
j i

BT y T T D q WO k l− + − − + −

= =

+ − − ≤ + ∀∑ ∑       (2.14e) 

( )max 0, , , ,B Bj Bj Bj B lj jkBjT T y T T D j k l− + − −≥ + − ≥ ≥ ∀           (2.14f) 

( ) min , , , ,Bj BjklBj B Bj Bj jT y T T D T j k l− + − −+ − − ≥ ∀            (2.14g) 

, ,

0, ,
iikl i Bl i

ikl Bl i

WO NO q M

WO q

R

M

− ±

− ±

 ≤ ≥


= <

×


                 (2.14h) 

1
,

n

ikl P
i

WO Q−

=

≤∑                        (2.14i) 

, 0, 0,, 01, 1, 1, .0 , , ,ikl iAjkl Bjkl Aj BjW D D y y i j k lO R− −− ≤ ∀≤≤≥ = ≤  (2.14j) 

2) Let Aoptf + , ioptR , ikloptWO− , AjkloptD− , Ajopty  be the solution of the model in 
1), then the optimal decision to buy the water call options is ioptR , and the op-
timal water allocation targets are 

( ).Ajopt AjoptAj Aj AjT T y T T± − + −= + −                   (2.15) 

3) Based on above results, the optimization model of the lower bound of the 
objective function Af −  is established as follows: 

( )( )
1 1

1 1 1 1 1 1

max

.
A B A B

A

A

n

A Aj Ajopt i iopt
j i

n n n n un

kl ikl i kl Aj Ajkl
k l i k l j

u

Aj Aj Ajf NB T y T T OP R

p WO PO p C D

− − − + −

= =

+ + +

= = = = = =

= × + − − ×

  − × × − × ×     

∑ ∑

∑∑ ∑ ∑∑ ∑
 (2.16a) 

Subject to: 

( )( )
1 1

, , ,
Au

A

n

Aj Ajj Ajkl Ak iklj
j i

AT y T T D q WO k l− + − + − +

= =

+ − − ≤ + ∀∑ ∑         (2.16b) 

( )max 0, , , ,Aj AAj Ajj AjklAjT T y T T D j k l− + − +≥ + − ≥ ≥ ∀           (2.16c) 

( ) min , , , ,Aj AjklAj A Aj Aj jT y T T D T j k l− + − ++ − − ≥ ∀            (2.16d) 

( )( )
1 1

, , ,
Bu

B

n

Bj Bjj Bjkl Bk iklj
j i

BT y T T D q WO k l− + − + − +

= =

+ − − ≤ + ∀∑ ∑        (2.16e) 
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( )max 0, , , ,Bj BBj Bjj BjklBjT T y T T D j k l− + − +≥ + − ≥ ≥ ∀           (2.16f) 

( ) min , , , ,Bj BjklBj B Bj Bj jT y T T D T j k l− + − ++ − − ≥ ∀            (2.16g) 

, ,

0, ,
ikl i Bl i

ikl

iop

Bl i

tRWO NO q M

WO q M

+ ±

+ ±

 ≤ ≥


= <

×


                (2.16h) 

1
,

n

ikl P
i

WO Q+

=

≤∑                        (2.16i) 

, 0, ., , , ,Ajkl Bjikl klWO D D i j k l+ + + ∀≥                 (2.16j) 

4) Let Aoptf − , ikloptWO+ , AjkloptD+

 
be the solution of the model in 3), then we 

have 

, ,Aopt Aopt Aoptf f f± − + =                        (2.17a) 

, , , , ,Ajklopt Ajklopt AjkloptD D D j k l± − + = ∀                (2.17b) 

, , , .iklopt iklopt ikloptW W W k l± − + = ∀                   (2.17c) 

Step 3: Solve the optimization problem of the water diversion area. 
1) Since the objective function is the system net benefit, the upper bound of 

the objective function can be solved first. Let ( )BBj Bj Bj BjjT T y T T± − + −= + − , [ ]0,1Bjy ∈ , 
and put the optimal solution obtained in step1 into the sub model of Bf

+ , we 
have 

( )( )
1 1

1 1 1 1 1 1

max

.

B

A B A B B

n

B Bj Bj i iopt
j i

n n n n un

kl iklopt i kl Bj Bjkl
k l i k l

B

j

u

Bj Bj jf NB T y T T OP NO

p WO PO p C D

+ + − + −

= =

− − −

= = = = = =

= × + − − ×

  − × × − × ×     

∑ ∑

∑∑ ∑ ∑∑ ∑
 (2.18a) 

Subject to: 

( )( )
1 1

, , ,
Au n

Aj Ajkl Ak ikloptAj
j

Aj Aj
i

T y T T D q WO k l− + − − + −

= =

+ − − ≤ + ∀∑ ∑      (2.18b) 

( )max 0, , , ,Aj AAj Ajj AjklAjT T y T T D j k l− + − −≥ + − ≥ ≥ ∀          (2.18c) 

( ) min , , , ,Aj AjklAj A Aj Aj jT y T T D T j k l− + − −+ − − ≥ ∀           (2.18d) 

( )( )
1 1

, , ,
Bu n

Bj Bjkl Bk ikloptBj
j

Bj Bj
i

T y T T D q WO k l− + − − + −

= =

+ − − ≤ + ∀∑ ∑       (2.18e) 

( )max 0, , , ,B Bj Bj Bj B lj jkBjT T y T T D j k l− + − −≥ + − ≥ ≥ ∀           (2.18f) 

( ) min , , , ,Bj BjklBj B Bj Bj jT y T T D T j k l− + − −+ − − ≥ ∀            (2.18g) 

, ,

0, ,
iklopt i Bl i

iklopt Bl

i

i

optRWO NO q M

WO q M

− ±

− ±

× ≤ ≥


= <
              (2.18h) 

1
,

n

iklopt P
i

WO Q−

=

≤∑                       (2.18i) 

0 , ,0, 1, .Bjkl BjD y j k l− ∀≤≤≥                  (2.18j) 
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2) Let Boptf + , BjkloptD− , Bjopty  be the solution of the model in 1), then the op-
timal water allocation targets in the water diversion area is as follows: 

( ).Bjopt BjoptBj Bj BjT T y T T± − + −= + −                     (2.19) 

3) Based on the above results, the optimization model of the lower bound of 
the objective function Bf

−  is established as follows:  

( )( )
1 1

1 1 1 1 1 1

max

.
A B A

B

B B

n

B Bj Bjopt i iopt
j i

n n n n un

kl iklopt i kl Bj Bjkl
k

u

Bj

l i k l j

Bj Bjf NB T y T T OP NO

p WO PO p C D

− − − + −

= =

+ + +

= = = = = =

= × + − − ×

  − × × − × ×     

∑ ∑

∑∑ ∑ ∑∑ ∑
 (2.20a) 

Subject to: 

( )( )
1 1

, , ,
Au

A

n

Aj jopt Ajkl Ak iklopt
j i

Aj AjT y T T D q WO k l− + − + − +

= =

+ − − ≤ + ∀∑ ∑      (2.20b) 

( )max 0, , , ,Aj AAj Ajj AjklAjT T y T T D j k l− + − +≥ + − ≥ ≥ ∀           (2.20c) 

( ) min , , , ,Aj AjklAj A Aj Aj jT y T T D T j k l− + − ++ − − ≥ ∀            (2.20d) 

( )( )
1 1

, , ,
Bu n

Bj Bjkl Bk ikloptBj
j

Bj Bj
i

T y T T D q WO k l− + − + − +

= =

+ − − ≤ + ∀∑ ∑       (2.20e) 

( )max 0, , , ,j Bj Bj BjB Bjopt BjklT T y T T D j k l− + − +≥ + − ≥ ≥ ∀          (2.20f) 

( ) min , , , ,Bjopt BjklBj j BBj B jT y T T D T j k l− + − ++ − − ≥ ∀           (2.20g) 

,

,

,

0 ,
ikl i Bl i

ikl

iop

Bl i

tRWO NO q M

WO q M

+ ±

+ ±

 ≤ ≥


= <

×


               (2.20h) 

1
,

n

ikl P
i

WO Q+

=

≤∑                      (2.20i) 

0, ., ,BjklD j k l+ ∀≥                     (2.20j) 

4) Let Boptf − , ikloptWO+ , BjkloptD+  be the solution in 3), then we have:  

, ,Bopt Bopt Boptf f f± − + =                      (2.21a) 

, , , , .Bjklopt Bjklopt BjkloptD D D j k l± − + = ∀               (2.21b) 

Step 4: Repeat steps 1 to 3 for ( )min max,i i iPO PO PO∈ , ( )min max,i i iNO NO NO∈

and the solution with the largest net benefit of the whole system ( A Bf f± ±+ ) is the 
optimal water allocation strategy. 

In order to illustrate the advantages of water call options in inter-basin water 
resource management, we will compare our model with other inter-basin water 
resource management models. 

Model 1: An interval two-stage stochastic programming model for inter-basin 
water resources management under uncertainty without water diversion 

In this model, the water receiving area and the water diversion area allocate 
the water resources to water users (such as municipal, industrial and agricultural) 
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within their areas respectively, and there is no water transfer between areas. The 
model can be expressed as follows: 

1 1

1 1 1 1

max

.
A A B

B

B

Au u

Aj Aj Bj Bj
j j

n u n u

Ak Aj Ajk Bl Bj Bjl
k j l j

f NB T NB T

p C D p C D

± ± ± ± ±

= =

± ± ± ±

= = = =

= × + ×

   
− × × − × ×   

   

∑ ∑

∑ ∑ ∑ ∑
     (2.22a) 

Subject to: 
Water availability: 

( )
1

, ,
Au

Aj Ajk Ak
j

T D q k± ± ±

=

− ≤ ∀∑                   (2.22b) 

( )
1

, .
Bu

Bj Bjl Bl
j

T D q l± ± ±

=

− ≤ ∀∑                    (2.22c) 

Water allocation targets: 

max 0, , ,Aj Aj AjkT T D j k± ±≥ ≥ ≥ ∀                  (2.22d) 

min , , ,Aj Ajk AjT D T j k± ±− ≥ ∀                    (2.22e) 

max 0, , ,B Bj lj BjT T D j l± ±≥ ≥ ≥ ∀                   (2.22f) 

min , , , .Bj Bjl BjT D T j k l± ±− ≥ ∀                   (2.22g) 

Non-negative constraint: 

, , , ,, .,0Aj Bj Ajkl Bjkl j k lT T D D± ± ± ± ∀≥                 (2.22h) 

Model 2: An interval two-stage stochastic programming model for inter-basin 
water resources management under uncertainty by treating the two areas as a 
whole 

In this model, the water resources in the water receiving area and the water 
diversion area are uniformly allocated by the water manager. The water manager 
can transfer water between areas with the objective of maximizing the overall 
economic benefit. Let klL±  be the water quantity transfered from the water di-
version area to the water receiving area. Then the model can be expressed as fol-
lows: 

[ ]

1 1 1 1 1

1 1 1 1 1

max

.

A B A

A

B

B

A

B B A

n n u

Aj Aj Bj Bj kl Aj Ajkl
j j k l j

n n u n n

kl Bj Bjkl kl kl
k l j k l

u u

f NB T NB T p C D

p C D p PC L

± ± ± ± ± ± ±

= = = = =

± ±

= = = = =

 
= × + × − × × 

 
 

− × × − × × 
 

∑ ∑ ∑∑ ∑

∑∑ ∑ ∑∑
  (2.23a) 

Subject to: 
Water availability: 

( )
1

, , ,
Au

Aj Ajkl Ak kl
j

T D q L k l± ± ± ±

=

− ≤ + ∀∑                 (2.23b) 
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( )
1

, , .
Bu

Bj Bjkl Bl kl
j

T D q L k l± ± ± ±

=

− ≤ − ∀∑                  (2.23c) 

Water allocation targets: 

max 0, , , ,Aj Aj AjkT T D j k l± ±≥ ≥ ≥ ∀                  (2.23d) 

min , , , ,Aj Ajk AjT D T j k l± ±− ≥ ∀                    (2.23e) 

max 0, , , ,B Bj Bjj klT T D j k l± ±≥ ≥ ≥ ∀                  (2.23f) 

min , , , .Bj Bjl BjT D T j k l± ±− ≥ ∀                   (2.23g) 

Non-negative constraint: 

, , , , 0, , .,Aj Bj Ajkl Bj kkl lL jT D lT kD ±± ± ± ± ≥ ∀               (2.23h) 

The above models are interval two-stage stochastic programming models, and 
the solving process can be divided into two steps. The first step is to solve the 
sub model for the upper bound of the objective function f +  to obtain the op-
timal water allocation targets ,Aj BjT T ; the second step is to solve the sub model 
for the lower bound of the objective function f −  based on the results of the 
first step. The optimal solutions are obtained in the following form: 

, ,opt opt optf f f± − + =                         (2.24a) 

, , , , ,Aijklopt Ajklopt AjkloptD D D j k l± − + = ∀                (2.24b) 

, , , , ,Bijklopt Bjklopt BjkloptD D D j k l± − + = ∀                (2.24c) 

, , , .klopt klopt kloptL L L k l± − + = ∀                   (2.24d) 

3. Case Study 
Suppose a water manager is responsible for managing water resource in two areas: 
the water receiving area and the water diversion area. There are three users in 
each area: a municipality, an industrial concern and an agricultural sector. The 
available water in the water receiving area is scarce, but the water diversion area 
has abundant water resources. Table 1 shows the water availability data, which is 
divided into three levels with relative appearance probability. Table 2 provides 
the water allocation targets of each area, and Table 3 presents the economic data 
of each area. The case data in this section partly refers to the literature [21]. The 
water manager must make a effective plan to minimize the risk of water shortage 
and maximize the expectation of economic benefit in the two areas.  

 
Table 1. Available water distribution. 

 
Probability 

Water availability (106 m3) 

Water receiving area Water diversion area 

Low (L) 0.2 [5, 7] [12, 14] 

Medium (M) 0.6 [7, 10] [14, 17] 

High (H) 0.2 [10, 12] [17, 20] 
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Table 2. Water allocation targets. 

 
Users 

Water allocation targets jT ±
⋅  (106 m3) Municipal ( 1j = ) Industrial ( 2j = ) Agricaltural ( 3j = ) 

Water receiving area [3.5, 5.0] [5.5, 7.0] [2.0, 3.0] 

Water diversion area [1.5, 2.5] [2.0, 3.0] [3.0, 4.5] 
Maximum allowable allocation of the  
water receiving area maxAjT  (106 m3) 

5.5 7.5 3.5 

Minimum allowable allocation of the  
Water diversion area minBjT  (106 m3) 

1.0 1.5 2.5 

 
Table 3. Economic data. 

 
Users   

Municipal ( 1j = ) Industrial ( 2j = ) Agricaltural ( 3j = ) 

Net benefit when water demand is satisfied jNB±
⋅  ($/m3) 

Area A [100, 120] [70, 90] [45, 60] 

Area B [80, 95] [55, 70] [35, 55] 

Penalty when water is not delivered jC±
⋅  ($/m3) 

Area A [200, 240] [130, 160] [80, 100] 

Area B [160, 200] [110, 150] [70, 95] 

Cost for water diversion CP  ($/m3)  [20, 25]   
 

Assumes that there is only one kind of water call option that can be purchased 
by the water receiving area. The upper and lower bound of the maximum exer-
cisable amount of the water call option are 7.0 × 106 m3 and 3.0 × 106 m3, the 
variation range of the strike price is $40/m3 - $80/m3, and the variation range of 
the option premium is $4.0/m3 - $8.0/m3. The specific analysis is as follows. 

1) The optimal maximum exercisable amount and strike price of the water call 
option  

Figure 1 presents the relationship between the system net benefit and the 
maximum exercisable amount when the strike price is $40/m3. When the maxi-
mum exercisable amount increases 3.0 × 106 m3 from to 5.0 × 106 m3, the system 
net benefit increases from $ [953.5, 1857] × 106 to $ [1093.5, 1951] × 106, while 
the maximum exercisable amount is 7.0 × 106 m3, the system net benefit is 
$ [1015, 1939] × 106. It can be seen that the system net benefit first increases with 
the increase of the maximum exercisable amount, and then turns to decrease. 
This is because the larger maximum exercisable amount reduces the available 
water in the water diversion area, resulting in larger water shortage loss and wa-
ter transfer cost. 

Figure 2 shows the relationship between the system net benefit and the strike 
price when the maximum exercisable amount is 5.0 × 106 m3. When the strike 
price is $40/m3, the system net benefit is $ [1093.5, 1951] × 106, and the net ben-
efit of the water diversion area is $ [492.5, 793] × 106, the net benefit of the water 
receiving area is $ [601, 1158] × 106. When the strike price moves up to $80/m3, 
the net benefit is $ [712.5, 877] × 106 for the water diversion area and $ [381, 974] 
× 106 for the water receiving area. It can be seen that the system net benefit de-
creases with the increase of the strike price, the net benefit of the water diversion 
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area increases with the increase of the strike price, and the net benefit of the wa-
ter receiving area decreases with the increase of the strike price. This is because 
with the increase of the strike price, the water diversion area can obtain more 
income from selling water resources, but the water demand of the water receiv-
ing area is restrained by the high water price, which leads to the decrease of the 
overall net benefit of the system. 

 

 
Figure 1. Relationship between system net benefit and maximum exercisable amount. 

 

 
Figure 2. Relationship between system net benefit and strike price. 
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Through the above analysis, when the strike price is $40/m3, the maximum 
exercisable amount is 5.0 × 106 m3, the overall system net benefit is the maximum, 
and the corresponding optimal water allocation strategy is optimal. 

2) System net benefit under different inter-basin water allocation models 
Figure 3 shows the system net benefit under different inter-basin water alloca-

tion models. When there is no water diversion between the two areas (Model 1), 
the system net benefit is $ [799.5, 1644] × 106, in which the net benefit of the wa-
ter diversion area is $ [522.5, 695] × 106, the net benefit of the water receiving area 
is $ [277, 949] × 106. When the water resources were allocated by treating the two 
areas as a whole (Model 2), the system net benefit is $ [1096.5, 1951] × 106, which 
is [18.7%, 37.1%] higher than the model of no water diversion. The net benefit of 
the water diversion area is $ [427.5, 681] × 106, [18.2%, 2.0%] lower; the net bene-
fit of the water receiving area is $ [669, 1270] × 106, [33.8%, 141.5%] higher. It can 
be seen that by treating the two areas as a whole the system net benefit increase 
significantly. However, due to the overall water shortage, the lower bound of the 
net benefit of the water diversion area is reduced significantly. 

As shown in Figure 3, the maximum exercisable amount of the water call op-
tion is 5.0 × 106 m3, the strike price is $40/m3, and the option premium is $4/m3. 
By using this option, the system net benefit is $ [1093.5, 1951] × 106, in which 
the upper bound is equal to the system net benefit of Model 2 , and the lower 
bound is 0.55% less than Model 2. The net benefit of the water receiving area is 
$ [601, 1158] × 106, [22%, 117%] higher than that of Model 1, and [8.8%, 10.2%] 
lower than that of Model 2. The net benefit of the water diversion area is $ [492.5, 
793] × 106, which is increased [−5.7%, 10.8%] by compared with Model 1, and is 
increased [15.2%, 16.4%] compared with Model 2. It can be seen that compared 
with the no water diversion model, the use of water call option can significantly 
increase the system net benefit, and the upper bounds of the net benefit of both 
areas have a greater growth. Compared with the model treating the two areas as a 
whole, the system net benefit is almost equal, and especially, the water diversion 
area obtains economic compensation through the water call option. 

3) Optimal water allocation under different inter-basin water allocation mod-
els 

Suppose that the maximum exercisable quantity of the water call option is 5.0 
× 106 m3, the exercise price is $40/m3, and the option premium is $4/m3. Figure 4 
shows the water allocation targets under different inter-basin water allocation 
models. Without water diversion, the water allocation targets of industrial, agri-
cultural and municipal water users in the receiving area are 4.5 × 106 m3, 5.5 × 
106 m3 and 2.0 × 106 m3 respectively. The water allocation targets by using water 
call option are 5.0 × 106 m3, 7.0 × 106 m3 and 3.0 × 106 m3, which is the same as 
that by treating the two areas as a whole and increased by 11.1%, 27.3% and 50.0%. 
The water allocation targets of the water diversion area remain unchanged under 
different inter-basin water allocation models, and the use of water call option 
doesn’t affect the targets of this area. 
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Figure 3. Net benefit under different inter-basin water allocation models. 

 

 
Figure 4. Water allocation targets under different inter-basin water allocation models. 

 
Figure 5 and Figure 6 show the optimal water allocation results under dif-

ferent inter-basin water allocation models. Compared with no water diversion, 
the water allocation in the water receiving area has been greatly improved by us-
ing the water call option. For example, in the dry season, the optimal water allo-
cation of industrial water users increases from [0.5, 2.5] × 106 m3 to [5.0, 7.0] × 
106 m3. Different from the water receiving area, the water allocation of agricul-
tural water users and industrial water users in the water diversion area 
slightly decreased. For example, in the dry season, the optimal water allocation 
of agricultural water users decreased from 4.5 × 106 m3 to [2.5, 3.5] × 106 m3. It 
can be seen that through the use of the water call option, water resources can be 
transferred from agricultural users with low value in the water diversion area to 
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the municipal and industrial users with high value in the water receiving area, 
and especially in the dry season, the water demand in the water receiving area is 
guaranteed to a certain extent. 

 

 
Figure 5. Lower bounds of the optimal water allocation under different inter-basin water allocation models. 

 

 
Figure 6. Upper bounds of the optimal water allocation under different inter-basin water allocation models. 
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Figure 7. Water diversion under different inter-basin water allocation models. 

 
Figure 7 shows the amount of water diversion under different inter-basin wa-

ter allocation models. There is little difference between the two models in the wet 
and normal seasons, and the difference is mainly reflected in the dry season. In 
the wet season, the water diversion corresponding to the upper bound of the 
available water is 3.0 × 106 m3 and that corresponding to the lower bound of the 
available water is 5.0 × 106 m3. This is because there is more local water available 
during the wet season, so it is only needed to buy less water by exercising the op-
tion. In the dry season, when the available water reaches the lower bound, the 
amount of water bought by exercising the water call option is 5.0 × 106 m3, which 
is more than the amount 4.0 × 106 m3 under Model 2. This is because the water 
receiving area, as the holder of the water call option, has the right to purchase a 
certain amount of water by the exercise of the option, while the water transfer 
area, as the seller of the option, has the obligation to sell the corresponding water 
to the water receiving area even in the face of local water shortage. 

4. Conclusion 
In this paper, an interval two-stage stochastic multi-objective mixed integer pro-
gramming (ITSMMIP) model has been established to solve the problem of op-
timal allocation of water resources in inter-basin water transfer based on the wa-
ter call option. This model uses the methods of interval programming, two-stage 
stochastic programming and multi-objective stochastic programming, which can 
reflect the economic benefit of the water diversion and receiving areas compre-
hensively and give the optimal water allocation scheme at the same time. The pro-
posed model has been applied to a case study of inter-basin water resource allo-
cation. By comparing with other inter-basin water resource management methods, 
the amount of water transferred by using the water call option in the dry season 
is greater, and the water diversion area obtains economic compensation. There-
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fore, it is shown that the water call option is a valuable, flexible and low-cost in-
strument for inter-basin water resource management.  
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