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Abstract

We find the possible risk minimizing portfolio strategies in a two dimension-
al market consisting of a risk asset and risk-less asset. The investor in the
market is subjected to consumption, purchasing of life insurance and sto-
chastic income with inflation risk. The problem is formulated as zero sum
game problem between the market and the investor. The strategies are deter-
mined for the different generations of the life of an investor, that is before
the investor dies and after the investor dies. We used the concept of convex
risk measures and monetary utility maximizing problem-concept studied be-
fore finding the risk minimizing portfolios which was solved using the game
theoretic approach to obtain the strategies explicitly given in the propositions
in the study.

Keywords

Zero Sum Games, Inflation Risk, Convex Risk Measures, Stochastic
Optimization

1. Introduction

Portfolio theory was introduced by Markowitz [1]. The study was further ex-
tended by different scholars; Gabor and Kondor [2] did portfolios with nonli-
near constraints and spin glasses, Schroder and Skiadas [3] looked into optimal
consumption and portfolio selection with stochastic differential utility, Liu et
al. [4] studied optimal investment problem under non-extensive statistical me-
chanics. Recently, Campani et al [5] analysed optimal portfolio strategies with
the presence of regimes in asset returns, Diaz and Esparcia [6] built optimal dy-
namic portfolios under time-changing risk aversion and optimal portfolio dele-
veraging under market impact and margin restrictions was done by Edirisinghe

et al. [7]. Other scholars Holger et al. [8] studied consumption-portfolio optimi-
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zation with recursive utility in incomplete markets of Epstein-Zin type by appli-
cation of dynamic programming and given a proof of their verification theorem
result to prove their problem. Richard [9] generalized Merton’s [10] model to
study optimal consumption, portfolio and life insurance rules for an investor
with arbitrary but known distribution of lifetime in a continuous time model.
We apply game theory in formulation of our problem. Game theoretic concept
has always been applied to different fields, Thakor [11] says that game theory
was widely adopted in 1970s by economics after the study by Von Neumann and
Morgenstern [12] in 1944. The domination of game theory in economics was
also appreciated by Gibbons [13] on the applicability of game theory to model
implications of rationality, equilibrium in market interaction and non-market
interactions.

Von Neumann and Morgenstern [12] contributed significantly in applying
game theory in various fields, economics, statistical physics and social sciences.
With optimal portfolio not an exception, the theory of differential games has al-
so been viewed as a game to minimize the risk for high expected utility versus
minimization of the maximal expected utility of the opponent. @ksendal and
Sulem [14] studied a game theoretic approach to martingale measures in incom-
plete markets and showed that the optimal strategy for the market was to choose
an equivalent martingale measure in considering a stochastic differential game
in a financial jump diffusion market. The continued study is also seen in game
theory as theory of differential games, the zero sum differential and nonzero
sum differential games. A zero sum game is a competitive situation where one
cannot win unless the other loses and the expected value of the game is zero.
Many researchers have been applying the zero sum differential game to their
problems. Moon and Basar [15] studied zero sum game differential game on the
Wasserstein space by considering two player zero sum differential games with
state processes depending on random initial condition and state’s process’s dis-
tribution.

Moon and Basar [15] show that the set of probability measures and the set of
random variables both with finite second moments are equivalent and satisfies
the dynamic programming principle and the value functions are unique viscosity
solutions to their defined Hamilton-Jacobi-Isaacs equations. Bell and Cover [16]
studied game theoretic optimal portfolios by showing that for various payoff
functions the expected log optimal portfolio is also game theoretically optimal in
a single or multiple plays of the stock market. Their findings also show that by
maximizing the conditional expected log return you obtain a good short-term
and long run performance. Laraki and Solan [17] studied the value of zero-sum
stopping games in continuous time with no assumptions of conditions on the
relations between the payoff processes. They proved that the value in rando-
mized stopping times exists as soon as the payoff processes are right continuous.

Mataramvura and @ksendal [18] studied risk minimizing portfolios and HJBI

equations for stochastic differential games that minimizes the convex risk meas-

DOI: 10.4236/jmf.2022.124038

723 Journal of Mathematical Finance


https://doi.org/10.4236/jmf.2022.124038

G. S. Moagi, O. Doctor

ure of the terminal wealth in a jump diffusion market. They extended the ap-
proach to solving a zero-sum stochastic differential game between an agent and
a market as a min-max problem obtained in the process by proving the Hamil-
ton-Jacobi-Bellman-Isaacs (HJBI) equation. The continued application of game
theory in financial modelling is also shown by the study on non-zero sum games
as Xiong et al [19] as they studied a class of partially observed non-zero stochas-
tic differential game basing their study on forward and backward stochastic dif-
ferential equation (FBSDEs). They established a maximum principle as a must
have condition and derived the verification theorem as their sufficient condition
by applications of stochastic filtering theory and obtained the explicit investment
strategy of a partial information financial problem. Zhou ef al [20] studied an
interesting topic on non-zero games between two insurers on non-zero sum rein-
surance-investment game with delay and asymmetric information in which both
insurers can buy proportional reinsurance and have investments in the market
with a risky and risk-free asset. They considered the asymmetric information ef-
fect with an assumption that both insurers have access to different levels of in-
formation in the market. Each one’s aim is to maximize the expected utility rela-
tive to its competitor. Zhou et al [20] applied the dynamic programming prin-
ciple to derive the Hamilton-Jacobi Bellman’s equation (HJB) and obtained the
results that the insurer with less information completely ignores its own risk
aversion factor and imitates the investment strategy of its competitor who has
more information on the market.

Savku and Weber [21] applied game theory to study stochastic differential
games for optimal investment problems in a Markov regime-switching jump-
diffusion market by applying the dynamic programming principle in two optim-
al investment problems by using zero sum and nonzero sum approaches of sto-
chastic games in continuous time Markov regime switching within the finance
frame work. The zero sum game is between the investor and the market and the
nonzero sum game is applied as the sensitivity of two investors terminal wealth/
gain. They further obtain the explicit portfolio strategies with Feynman-Kac re-
presentation of value functions. Karoui et al [22] studied Backward stochastic
differential equations (BSDEs) and risk sensitive control, zero sum and nonzero
sum game problems of stochastic functional differential equations by the use of
BSDEs to show the existence of an optimal control, saddle point and equilibrium
point for both games. Bensoussan et al [23] did a research on a class of nonzero
sum stochastic differential investment and reinsurance games by applying the
dynamic programming principle to solve the resulting nonzero sum game prob-
lem. In their study the nonzero sum game is between two insurance companies
where each company’s surplus process comprises of a proportional reinsurance
protection and investment in both risky and risk-free asset.

In the present problem the study is based on minimizing risk in an It6 Lévy
setting in an investment where consumption and purchasing of insurance is

made. The strategy consists of taking in consideration, inflation risk and sto-
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chastic income. The problem is formulated as a zero sum differential game where
two players including the investor and the market. It is the min-max problem we
get when the investor chooses a portfolio that minimizes the risk of the terminal
wealth while the market aims to minimize the maximal payoff of an investor.
We consider two player stochastic differential game and employ the Hamilton-
Jacobi-Bellman-Isaacs (HJBI) equation and prove it.

The article is structured as follows. In Section 2, the model framework is pre-
sented in detail with the characteristics of the positions of investment. Section 3
has the solutions to the different generations of the portfolio problem in obtain-

ing the optimal strategies. Section 4 concludes followed by the references.

2. Statement of the Problem

We suppose that our model is built in a filtered probability space (Q, FAFR}, ]P’)
which follows the characteristics of the Brownian motion

B = {Bto, B,B’,B,0<t ST} in a finite time horizon, ie. 0<t<T . to be con-
sidered. The Brownian motions <Bt°, B, B, Bt4> are all correlated in a correla-
tion matrix such that dB;-dB'=p, ;dt for i, je{0,1,3,4}, such that, i# j,
are correlated with the correlation coefficient -1<p <1.For p =1 then the
Brownian motions are strongly correlated and for o =-1 then they are nega-
tively correlated.

We take into account an important economic inflation factor, since the value
for money in a long term investment has to be considered as inflation can lead to
reduction in the value of investment returns of an investor. This was also dis-
cussed by Zhang and Zheng [24] that inflation could lead to diminution of fi-
nancial wealth of the insurer when studying optimal investment Reinsurance
policy with stochastic interest and inflation rates. We can measure inflation by
the inflation rate, by considering the consumer price index (CPI) which includes
the consumer price and retail price indices for any change in the index.

The investor inherits in three assets namely, a money market account, an in-
flation-linked index bond and stock at time t e [O,T]. The wealth of an insur-
ance policy holder is indicated by a portfolio distributing the wealth accordingly
with 7, being the fraction of the wealth held in stock, 7, being held in the in-
flation-linked index bond which shall be defined in depth along the descriptions
and (1-7,—7,) denotes the fraction held in the money market account. We
note that all the fractions held must add up to 1. We denote the market value of

the money market account R, ata giventime te [O,T] as
dR, =rRdt, (1

where r >0 denote the interest rate to be compounded over ¢

The dynamics of the stock follows an It6 Lévy process;

ds, = S,_[ adt+odB? + [ y(tn)J (dn,dt)] )

where o >0, o >0 are the stock’s drift and volatility rates respectively,

7>-1 and B? is the Brownian motion driving the stock. We assume the in-
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equality o —r >0 is satisfied for economic equilibrium purposes. J(dt,dz) is

a compensated random measure given by;
j(dt,dn)sJ(dt,dn)—v(dn)dt, (3)

with 7 being the generic jump size and v is the Lévy measure of a given Lévy

process. ¥ (t, 77) is a predictable process satisfying the following;
IOTJ.R|7(L77)|2 V(dﬂ)dt < o0. @

We consider the consumer good' an investor purchases in their time of life in

the economy over a time interval satisfying a stochastic process:
dQ(t)=Q(t)[ Z(t)dt+o(t)dB (t)], Q(0)=Q, (5)

for all te[0,T] with B (t) being a Brownian motion driving the consump-
tion good, p(t) is the volatility price index rate of the commodity good and
Z(t) is the stochastic drift rate representing the expected inflation rate over
time governed by the time dependent Ornstein-Uhlenbeck (OU) process also
applied by Chaiyapo and Phewchean [25] and is given by:

dZ (t)=g(t)[ B(t)-Z(t)]dt+a(t)dB (1), (6)

where A(t) is the long-run mean of the inflation rate, g (t) is the volatility
rate and ¢(t) is the rate of mean reversion of the inflation rate. The quantity
functions o(t), 8(t),c(t) and p(t) are continuous and deterministic with
te[0,T]. We have the index bond M (t) which is linked to inflation and has
the price level process,

dM (t)

M) =k(t)dt+ dQ(t) =(k(t)+2Z(t))dt+o(t)dB' (t), (7)

Q(t)

where k(t) is the interest rate at time £

The insured have an incoming source of funds which comes in at different
time intervals therefore we consider it to be random over a given period of time.
The income rate at time #is given by y (Y,,t) where Y, is referred to as the

state variable which is an It6 process such that,
dY, = B, (Y,.t)dt+o,(Y,,t)dB, (8)

and follows the properties of Itd processes and B, is the Brownian motion
driving the process. With the assumption that g (Y,,t) and o, (Y,,t) satisfies
Lipschitz and growth conditions in Y, and are continuous so we obtain a
unique solution.

The policy holder purchases an insurance policy that pays premiums P, >0
over a unit time interval, (supposedly on monthly basis) which is an F adapted

and measurable process with,

IOT P(s)ds <. (9)

'Ttems that individuals and households buy, (they include packaged goods, clothing, beverages, au-
tomobiles, and electronics) for their own use and enjoyment.
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Life insurance can be purchased for different purposes, covering mortgages,
personal loans and also leaving your family with a non taxable amount when one
dies. Bayraktar et al [26] looked into buying life insurance to reach bequest goal
by separating it from the wealth of an investor. We consider the lifetime of the
policy holder at t>0 defined on a probability space (€, F,P). The insurance
is determined by the retirement and the time of death of the policy holder 7
which is finite.

Interesting studies on how to develop optimal retirement plan using stochastic
programming approach and multi-stage stochastic programming have been
considered. Bonsoo Koo et al [27] developed a model to improve the standard
of living in retirement and Owadally ef al [28] developed an optimal investment
for a retirement plan with deferred annuities assumed to be bought over the
continuous working lifetime of an investor. In our case, death benefit is paid to
the beneficiaries at the time of death of the policy holder. The continuation of
the policy can be renegotiated by the family members when the holder dies
based on the predetermined terms and conditions of the insurance policy. We
consider the probability mass function f(t;) to be the lifetime of the holder,
then the cumulative mass function of ¢is given by,

F(t)=P(t<t)=["f(s)ds,
then the probability that t >t is the survival function given by,
G(t)=P(t>t)=1-F(t).
The instantaneous force of mortality 4(t;) for a policy holder to be alive at
time t, is given by,
P(t, St<t +At [t>t)
At —0 Atl
_lim P(t, <t<t +At)
S0 ARP(E21)

f(t) _ _i(m (1— F(t, )))

1-F(t) dt

which is the hazard rate function. The conditional probability of survival of the
holder is defined as,

F(t)=1-F(4)=P(t>1 | %) =exp(-[; u(s)ds). (10)

and the conditional survival probability density of the death of the holder is giv-
en by,

f(4) = a(t)exp(~ u(s)ds).

With the conditions above, the wealth process is given below where;
S, is the price of the stock, R, being the price of the bond, W, is the

wealth of the investor at time te[0,T] and 7, 7,,(1-7 —7,) are as defined
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previously.

The total wealth process at time te[0,T], where 7'is the time of retirement
is given by:

1) Pre-death case

For t<z AT thatis te[0,zAT] we have,

AW, = W, (dt + o dB? + [ 7 (t,7) 3 (dn,dt))-C (t)dt
—u(t)(P(t)-W, )dt+z,W (1) (k(t)+Z (t))dt+o(t)dB (1) | (11)
+(1-7, — 7, ) rW,dt +y (Y, t) dt

=[ W (z (@ =)+, (K(O)+Z ()= 1)+ 1+ () +w (Yo )
—u(t)P(t)-C(t)]dt+W, | 7,008 - 7,0(t)dB} | (12)
+7r1Wt-[R;/(t,77)j(d77,dt).

2) Post-death case

We have;
AW, = W, (et + odBY + [y (t,7) I (dt,dp))+(1- 7, — 7, ) rW,dt .
+ W ()] (k(t)+Z (1)) dt+ o (t)dB! (1) ] - C(t)dt +y (¥, t)dt :
= (WI [z (a—r)+m, (K()+Z(t)-r)+ r]—C(t)+z//(Yt,t))dt ”

+W, [a;zldBto —ﬁzg(t)dB‘l:I-f- W, IRy(t,n)j(dt,dn)

where zAT =min{z, T}, and ,u(t)(P(t)—Wt)dt corresponds to the risk
premium rate to pay for the life insurance at time £ w(Y,,t) is the stochastic
income rate and the consumption rate C(t) which are non negative and con-

tinuous.

3. Minimizing Portfolios

Our main interest is to find the portfolio 7, (t),7,(t),c(t), p(t) that minimiz-
es the risk of the wealth of an investor. We will use the concept of convex risk
measure defined by Mataramvura and Qksendal [18] generalized from the co-
herent risk measure definition considered by Foellmer and Schied [29].

We refer the reader to [18] [29] for the definitions of the quantitative risk
measure and utility monetary function.

Our risk minimizing portfolios given the convex risk measure p, involves
finding =, 7,,C, p that minimizes the risk of the terminal wealth,

p, = sup {Eq [-W!n =0 (T) |- K(Q)}. (15)

QeQ!

where Q' is a family of measures Q on a set Q and k() is a certain “pe-
nalty function” on P. Note that K:Q'— R. The choice of penalty function
KC(Q) is the relative entropy of Q with respect to P. See [18]. E, being the
expectation with respect to Q.

With the risk minimizing portfolio established in Equation (15), this will be
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equivalent to the monetary utility maximizing problem given below;

infl{EQ [W(m,nz,c,p) (T )J.ﬂC(Q)}j. (16)

O= sup (
Q<Q

m1,72,C, P

We find the optimal portfolios 7, ,7,,c", p" which are the controls of player
1 which is the investor and the measure Q" is the control of player 2 which is
the market and the problem will be solved in a game theoretic concept, such
that:

©=E, [W(”f‘”;‘c*“’*)(T)}FIC(Q*). (17)

We suppose that the measure Q" is the control of player 2 which is the mar-
ketand 7,,7,,Cc, p are the controls of player 1 who is the investor in this case.

Given the functions f:R, xk >R and g:R—R with & being a given
subset of R . We let f be the profit rate and g be a bequest function. Sup-

pose that given a family of admissible controls we have:
E UO fy, (t))‘ dt +‘g (% (e, ))H <o, WyeS. (18)

S c R¥ is the given solvency region and 7, is the exit time defined as:

7, =inf{t>0Y, (t) e S}, (19)

We define the performance function J(y) as:
3(y)=E[ [7]F (% @)]at+]o (% (=) | (20)

Note that g(Y (7, ))=O if 7, =00. We present the value function V(t)
defined by:

V(t)= sup (inf J<”1’”2'°'P"’°’91)(t)):J(”I'”E‘C*’P*ﬂg‘(’f)(t) (21)

(y,72,C,P)ey \tb:1<0

and 7,,7,,C",P",6,,6, as the optimal controls. We present the BSDE with a

diffusion jump as:
f(tH (1), Y(t))dt=[ Y(t,)J (dp,dt)—dH (t). (22)
where the following conditions are considered:

1) The terminal condition & e 2 (Q, {.7-:} P, R) ,where H(T)=¢.
2) A mapping f(generator) f :Qx [O,T ] xR x 2 (R)> R is predictable.

3) EUOT| f(t,0,0)° dt} <o0; with
[ (tyov) = T Ly ) <h(y=y T+ [ V)= () v(dn))-

The parameter Y is a control process that controls the process H so that the

first condition above is satisfied.

4. Main Results
4.1. Pre-Death Case

Let dV =(dV,(t),dV,(t),dV,(t)) where we have,
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dVv, (t) =dt, (23)
dVl(t)=[V1(7zl(a—r)+7r2(k(t)+Z(t)—r)+r+,u(t))+://(Yt,t)
—,u(t)P(t ~C(t)]dt+V,[ 7,00B? - 7,0(t)dB} | (24)
+mVs [y (t) 3 (dn.dt)
dV, (t) = 6V, (t)dB +V, 6, (t.7) I (dn,dt). (25)

In consideration with the conditions above, we are certain that there is a
unique solution (H,Y) to (22). Let ¢:R* R where peC] (]Rk) be a twice
differentiable function. Suppose its partial derivatives exists, then the generator
of V(t) will be given by:

E”lv”ZYCvplglﬂZ [w(thlVZ! Z, yu h):l

1
=p+o, [Vl(r+u)+w(yﬂt)—uP—C]+¢yﬁ1(yt,t)+§¢yyaf(yt,t)

1
+p,5[B- Z]+E¢ZZQZ = Py Po.s0: (Yo, 1)V, (7,0 = 7,0)

22,2

_ 1
~ 0,00V (”10' - ”2@)/70,1 Py P4101 (Yt 't)Q P 2 5Py 0 MYy

1 1
+o, V7, (a—T) JrEHZVZgDVZV2 5 Do O° VL + 9, Vi, (K+2 1)

+ @, 090NV, (10— m,0) — @, f (8 H (1), Y (1)) +U (C)+U (P)
+j [ tVVZ+¢92,Z,y,h)—g0(t,V1V2,Z,y,h)—V1V292§0V2]V(d77)

(26)
+[ [o(tvv, (1+ ), 2.y, 0) = p(tvv,,2,y,h) - mvv,pp, Jv(dn)
+IR[¢ t,vlvz,z,y,h+Y)—go(t,v1v2,z,y,h)—Y(pvl:lv(dn).

Differentiating Equation (26) with respectto € and we obtain:
g =——+—= —71,0). 27
1 Y, P Pos (7710' ”z@) (27)

Differentiating Equation (26) with respect to 6, we obtain the following, 6,

as the solution of:

J {5619 ( (t vV, +6, (t 77) z,y,h)—¢(t,vv2, Y, h)
(28)

—v,0, (t.7)e, )}V(dﬂ) =0.

Substituting Equation (27) into Equation (26) and differentiating to find the
controls 7, and 7z, we obtain:

7z, as the solution of the equation below;
2 2 —
O=¢,0mV +o,V, (0‘ - I‘) + @,y 00110 4,0 + @, ,00V100,

2 gz)V1V2

opy s (mo —m,0)+ IR[¢ﬁ1 (tv,+mvy.z,y,H)  (29)

VaV2

—vy (tn) e, Jv(dn).
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The fraction invested in the inflation linked bond is given by;

“ 1 ?,Puy, (k +Z- r) +2p, 3§l’v21v2 v, 71,00

Ty =—— ’ (30)

v,0 2 Lo §0v21\,2 - (pvlvl (pVZ vy

for
2p0,3¢\/21v2 _¢v1v1¢v2v2 #0 (31)

respectively.
We have the following general differentials of the optimal controls for con-

sumption and premium payment:
U'(c)=g, (32)
and

U'(p)=wup, (33)

respectively.

4.2. Constant Relative Risk Aversion (CRRA)

We choose the value function as,

A
¢(v1,v2)=%e‘("l>”(‘>, A eR\{0}. (34)

Therefore we have the controls given by:

. APy 5 (ﬂlo'g(l —1)+,00'3 (k +z- I’))

2 (35)
' o(222-(2-1))

We have @, as the solution of the equation below;

I e [ Vv, +6,) 7 -y (vlvz)qv(dn):o (36)
from (36) e MO 20 therefore we have;
(W, +6,) 7 v (v, )" =0. (37)
We obtain 6, as;
a4

6, =Vv/vit —vv,. (38)

We have the proportion invested in the stock being the solution of the equa-

tion below;
—(vv, ) e IO (g )
o )4 po’sefufl)H(t) [0'271'1 — oA (mo - ”29)J (39)

+_f[ (v, ) e M ()((1+7z17/) )—1” v(dn).

The proportion invested in the inflation linked bond is given by;

. 2Apyamoo+(k+z- r)(A-1)pys

T 0*(24% -(2-1)) o
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We present the controls below for consumption and premiums to be paid
given by;

A
C" =vyj e, (41)

1
P"=v, (uv; ) 1e™, (42)

respectively.

We obtain the functions f(t,H,Y) and H(t) by substituting the consi-
dered differentials and the controls 7,,7,,C",P" above into Equation (26).
Note that (v,V, )'1 e ™" 20 therefore diving both sides with the term we ob-

tain;

W(\T:’t)+%az(ﬂf)2(/l—1)

f(t,H,Y) :%{(r+y)+

Pos(A-1) (24w oo+(k+2-T1)(A-1))
2(247 - (2-1)")

Lo (k+z-r)(22* 700+ (k+2-1)(2-1))
0*(222~(2-1)’)

puoA (1) (kv 2=r) ~(zioe(2-D)) )
0*(222~(2-1))

L Post (A1) ((k 2~ r)+moo(2-1))
207 (227 —(/1—1)2)2

[IR((1+ 7[1*7/)/1 —1—7[1*)//1)1/(d77)

-%G”“P@MM)

N "
0 w0 (43)
' Kl—J - ;]VW)]

A A A
A

+7 (a—1)+

+

2 A -1 -1 1
A V. —V. _
= (uv, )it +v5t _% el

the function H(t) is given by;

1

A A A
-1 A-1,,A-1
Vit —vitu

A

H(t)=—In
2 A
PALREE

Y,t) 1 «\2 «
Vll )+EGZ(7Z'1) (/1—1)+7r1 (a—l’)

X((Hy)ﬂ”(

DOI: 10.4236/jmf.2022.124038

732 Journal of Mathematical Finance


https://doi.org/10.4236/jmf.2022.124038

G. S. Moagi, O. Doctor

pos(A-1)(24 ;00 +(k+2-1)(A-1))
2(222~(2-1)")
Pos(k+2- r)(2ﬂﬁr§ag+(k +2- r)(/l—l))
: 0* (222 ~(2-1)")
o5 (A —1)((|< v2-1) ~(ro0(4 —1))2)
0* (227 =(2-1)")
ot (A-1)((k+2- 1)+ moo(A-1))
' 20* (222~ (2-1)° )2

+

+ JR[e(Al)y vi- WLJ‘/(d’]) (44)

Vi

+jR[[1+%T —1—%]4@)}} :

With the procedure followed we obtain the following proposition using the
CRRA utility function defined in (4.2) with different value functions:
Proposition 1 Given the optimal investment-consumption-insurance prob-

lem with inflation risk and stochastic income in an Ité Lévy setting, and the val-

ue function
o(tviv,,z,y,h) = (Vl‘;z )/I o H
then,
g P )
@(2/12 —(/1—1)2)
() T s (2 n)(AmY)

0*(222~(2-1)’)
1
P*(t)=V,(av,' )71 e™ and 7 (t) solves;

~(vy, ) e MO (g )

= (W, )" py,e MY [627[1 —-oA* (mo - ﬂZQ):I
# L ) e (@) -1) v (am)

where (V,V, )/I eI L0,
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4.3. Constant Absolute Risk-Aversion (CARA)

Under CARA we choose the following value function;
l—g H-avyvy
(v, V,)=———, ¢, 20 (45)
21
Following the same procedure we obtain the following strategies;
6, is given by;
g P (1-evyy, )[(k +z-1)- g;zfaalvlvz]

' 20 (1_ AND )2 - 90512\/12\/22

(46)

0; solves the following equation;
J‘R|:eH—a1v1vz (efalﬂz —V12V2 ):|V(d 77) =0. (47)
Since e" """ %0 wehave e % —v’v, =0 thus,

0, =;—1In [Vsz]- (48)
1

The proportion invested in stock is the solution of the following equation;
* * 2
0P 3 (771 - 772@)(1_ a\,V,)

0=V, (a—r)-VVim 0% pys +
o (49)

+ IR [Vlye_alﬂfm VAAY: :| vdn,

for e" M2 20,
z, is given by the following;

*:ivlzpo,s(k+Z—r)+2p0’3iz1*0'g(1—alvlvz)2

2,,2,,2

(50)
20 2(1-2a\,V, ) + Vi V;

We have the following strategies for the consumption and premiums to be
paid as follows;
—(H=-avyv,)In(v,)

C'(t)= , 51
(t) o (51)
P (1) = —(H —alvlvz)ln(,uvz)' (52)
o
respectively. We have the function f (t,H,Y) given by;
f(tH, ) =—aiV, (r+ 1) —aVop (Yo, t) = uv, In( v, ) (H — gy, )
1, . 2 .
—(H —alvlvz)In(v2)+5(a7zlalv1v2) AN
a2 L, [ 27 o0 (1- vy, ) — vV, (K +2—T) ’
+7Z';r0!lV1V2_ 1 122 0,3 1 17172 > 11222 -
0 2(1-avy, )" — 0V, v,

Vo0 P05 (k+2-1) 2,00 (1- ViV, ) — vy, (K +2 )
0 2(1- Wy, ) - 0avAv?
Pos [(k +z-1)- ﬁfagalvlsz[alvlvz (k+z-r) —afvazzﬂfag]

2 2,,2,,2
2(1-avv, )" — 0o ViV,
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vV, (1- vy, )2

- l—e"’lgg—vvé’*aJv dn
e —oatid kL il | (47)

. PosViV o (1-aqvv, )[(k +2-1)- 7[1*090‘1\/1\/2] 53
2 2(1-a, ) —oafviv: o
- LR [1— gy _ alvlvzzﬂ;)/J v(dn)- _[R [1— e — alvzyJ v(dn)

+V, + pv, — 28121

following above;
2e“M: M 4 H (ﬂVz In[ v, ]=In(v, ))

1, . 2 .
=—a VY, (I + ) —aVp (Y, t) +E(aﬂl 0‘1V1V2) AR ANA

2

2 2,22 * 2 2
 PosiVs [ 2mo0(l-anviv, ) g, (K +2 1)
0

2(1- Wy, ) - 0afvAv2

_ PogVivoe (K+2-1) 2700 (1- vy, ) — ey, (k+2-r)

o 2(1- Wy, ) - 0afviv?

_ Pos [(k +7-1)- 7z1*agozlvlv2][oclv1v2 (k+z-r)- fvazzzrfag]

2 2,,2,,2
2(1- vV, )" — 00 ViV,

ViV, (1_0‘1\/1\/2 )2 |: el N :|
X - |1-e2 —vv,0,a, |v(dn
2(1-avy, )’ VAv2 I]R b Jv (A7)

—oo ViV,
+ po,svlzvzzalz (1_ ViV, )[(k +ti-= r) - ”IO'Qalvlvz}
2 2(1-awy, )’ —0atvAv2 (54)

—J-R[l—e""l"m”fy —alvlvzzﬂl*y}v(dn)—J.R[l—ey —alvzy]v(dn)
AL A AR LA

Let;

* 1, . 2 .
K :—alvlvz(r+,u)—alvzl//(Yt,t)+5(07rla1v1v2) A CEIEAAA

2

. 2
Do VPV: {an co(l-a\vyy, ) —avy, (k+2 - r)}
0

2(1- Wy, )’ — 0atvAv?
PosViV,0t (K +2-1) 27 00 (1- vy, ) — vy, (k +2 )
B o 2(L- Wy, )’ — 0atvAv?
Pos [(k +2-r)- 7r1*ogoclvlv2J[oclv1v2 (k+z-r)- afvazzzzl*og]

2 2,,2,,2
2(1-avy,)” — 0o vy v,

vV, (1- vy, )2

[ [1-e % _vv 0 a Jv d
2(1_a1V1V2)2_Qa12V12V§ IR[ e ( 77)

+ P0,3V12v§a12 (1— LAAD )[(k +Z— r) — ﬂfo-palvlvz :|

2 2(1- vy, )2 —0aV{V;
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- IR [1— gy _ alvlvzzﬂfy}v(d 1) —jR [1— e - alvz}/]v(d n)

(55)
+ vV, Inf v, |+ v,a0v, Infv, ],
K = uv, In[uv, |- In(v,) (56)
and
K, =WV, (57)
therefore we have;
K" +HK, -2 =0. (58)

Using the Lambert W(.) function/omega function in finding the solution of
H(t) we obtain

-2
K™ —K K5
K
K,e

H(t)=W (59)

for the constants K”,K,, K, defined above.
We obtain the following proposition;
Proposition 2 Given the optimal investment-consumption-insurance prob-

lem with inflation risk and stochastic income in an Ité Lévy setting, and the val-

ue function
1_eH—a1v1v2
P(t\vyv,,2,y,h) =
o
then,
-V, )| (k+2-1)—om ooy Vv, -
g -l es)l(ke2on)-oromun] o ra g g
20(1-aVV, ) — 00 Vi V; %
¢ (1) - e ) oy S(Heiv )i g
o !
P =ipo,3V12(k+Z—r)+2/)0,3”:09(1_a1\/1v2)2 (62)
27 2(1-2aVpVv, ) + ViV, ,

The proportion invested in stock is the solution of the following equation;
. . 2
0Py 3 (7[1 o- 72'29) (I-avy,)
24) (63)
+ .[R [vl;/e"“””Vl A J v(dn), fore" "2 0.

2,,2 * 2
0=wV, (a—r)-ViVia,m 0% pys +

Following the same procedure in the post-death case with the Constant abso-
lute risk aversion utility we obtain the same strategies beneficiaries will hold

when the investor dies.

4.4. Post-Death Case

When the investor dies at time 7 after the retirement time 7, thatis z>T.

The investor does not pay premiums thus p =0. We have the wealth process as
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given by Equation (14) and the beneficiaries obtain a share as given by the fol-

lowing;

w(e)+ P, (64)

rj(r)

7z

where 7(7) is the premium insurance ratio, is the insurance benefit

and W (r) is the wealth of the investor in their time of life to their time of
death 7. We have the investment-consumption strategy for the beneficiaries
given by

2=(7,75,,¢,) (65)

where 7,7, are the proportions of wealth to be obtained by the beneficiaries
from stock and the inflation linked bond respectively and c, is the consump-

tion rate after the investor dies. It is defined by;

_[OT c, (s)ds <o (66)

The performance function is given below as:
J(LW (1), 7.7,.¢,)
AT

= sup Et‘WD‘ el

(m.,72.0a)ex

((u)+a(u))ou (Uy(c.(s)))as (67)
we MO (U, (w ()|

where U, and U, are the utility functions for the consumption of the benefi-
ciaries and the terminal wealth of an investor respectively. The set (7,7,,c,)
is F adapted.

Let;
dV = (dV, (t),dV, (t),dV, (t)) (68)
where,
dV, (t) =dt (69)
AV, (t) = (Vs [ (@ = 1)+ 7, (K(1) +Z (1) = 1) + 1 |- C (1) + (Y, 1)) dt
. (70)
+V, [ovrldBto —ﬂzg(t)dBtl:'+721V1J.R}/(t,77)J (dt,dn)
dV, (t) = 6V, (t)dB? +V, [_ 6, (t,7) I (dt,d7). (71)
The generator is given by;
L7 [ o(tvy,,2,y,h)]
1
=g+, [Vl(r+ﬂ)+t//(yt,t)—Ca]+(ﬂyﬂ1(y“t)+§¢Wdf (Virt)
1 _ _ _
+¢zg[ﬂ_ Z]+E¢21Q2 _govlypOAQO-l(yt ’t)vl (72'10'—71'2@)
_ _ _ _ 1 _
—®,,00Y% (7[10' - 7729) Por T Py, Ps101 (yt ,t) o+ vamo_zﬂlzvlz
+ ¢V1V1771 (a - r)+%012\/§¢)v2v2 +%¢V1V1Q27?22v12 + q)vlvlﬁz (k +tz- r)
DOI: 10.4236/jmf.2022.124038 737 Journal of Mathematical Finance


https://doi.org/10.4236/jmf.2022.124038

G. S. Moagi, O. Doctor

+ @, 000V, (T~ 7,0) -, T (L H (1), Y (1)) +U (c,)
+ _f}R[go(t,vlv2 +6,,2,y,h)=p(t,vv,,2,y,h)-vv,6,0, ]v(dn)

_ _ (72)
+[ [o(twy, 1+ 7p),2,y,h) = (t vy, 2,y,h) - 2wy, 0, |v(dn)
+ Lo, 2,y,h+ 1) -p(tvy,, 2, y,h)—Y(pvl]v(dn).
We obtain the optimal control 6, given by;
g = L% _ , 73
1 Y, P Pos (7710' ”2@) (73)
0, is the solution of the equation below;
0
8_6?2<IR[¢(t’V1VZ +6,(t,7),2,y,h)—(t,v,v,,2,y,h) o

-V,v,0, (t,n)gDVZ ]v(dn)) =0.

Substituting Equation (73) into the generator above we obtain the following
general controls;

771* is the solution of the equation below;

2—.,2
0= (ovlvlo- v+ (Dlel (a - r) + ¢v1yaalvlp0,4g

2
Viva

+ 0y, 00V,00y, — V12 0Py 3 (7710' - 7?2@) (75)

VoV

+ J.]R|:¢’71 (t’vl +my,2,Y, H )—Vl}/(t, ’7)%1 ]V(dl]).
The fraction held in the inflation linked bond is given by;

. k+z-r)+2 2 \.TO
7?2 _ 12 q)vl(ovzvz( . ) pO,Sgovlvz "1 0 , fOI‘ (76)
v,0 2p0,3(pv1v2 _(pvlvlgovzvz

2/00,3¢vzlv2 _¢)v1v1 (pvzvz #0.
The optimal control for consumption is given by:

u'(c,)=9,- (77)

Following the same procedure as in the pre-death case we obtain the following
theorem;

Proposition 3 Given the optimal investment-consumption-insurance prob-
lem with inflation risk and stochastic income in an Ité Lévy setting, and the val-

A
ue function go(t,vlvz, Z,Y, h) = %e—u—wm , then,
- _ p0’3/1(7710'9(ﬂ,—1)+p0'3(k+Z—I‘)) . =

6,

, C(t) =V, M
o(222-(2-1)") (H=\s

22X pyamoo+(k+z-r)(A-1)py, . A1
02(212_(1_1)2)

7 (1)
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7?1* (t) solves;
—(vv, ) e M (g 1)
=(v,V, ))' Po, 3e_(/H)H(t) [027?1 oA’ (mo - 7?29)]
+_f [ 7 (v, )" )((1+ 7?17/)“71) —1)}v(d77)

where (V,V, )'1 e "MW 20,

Using the proposition above we obtain the function f(t,H,Y) as follows;

(r+ﬂ)+M+;a( Y (2-1)+ 7 (a-)

f(t,H,Y):m "

2

(A-1)(1-0)| 2pp A’ 00+ pys(k+2-1)(2-1)
2

T (222 -(2-1)")

. Pos(k+z-r)| 2227, 00 +(k+2-1)(21-1)
o* (222-(2-1))

(78)

+% IR((1+ 7?1*7)1 —1—771*7//1V2)v(d77)

(A yA
o 2

vl
A
- o . e [sz“—v;l]
(1) 1_ﬁiv(dn)] |
AR A A
with H(t) be given by;

H =il (e YD L ey (2

- P H v, 2 !

(/UVZ )E 4'\/2/177l
(A-1)(2p5s2° 7 00+ pos (k+2-1) (A1)
2(222~(2-1)")

(k+z- I’)(2/12p0'377l*ag+(k +z- r)(/l—l)pm)
0 (2/12 —(/1—1)2)
7ps (-1 (k+ 2-r) ~(Foo(2-D) )
0*(227~(2-1))
22(A=1) pys (k+2-1)+ T o0(2-1))
207 (227 —(/1—1)2)2

+7, (a-r)+

+

+

+
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+% jR((1+ﬁ;y)l—1—ﬁ;y/1)v(dn)
+J']R£e'()"'1)7 —l—%}v(d 1) (79)

. \4 "
o v, 0
14 2| —1—-222 d
+.|.]R{ ( +V1V2j ﬂ/ V( 77)

5. Conclusions and Suggestions

In the study, a game theoretic problem is formulated with incorporation to the
risk minimizing portfolio strategies when investment is made on the two models,
pre-death and post-death of the investor. The investor and the market are in
competition that the investor wants to minimize the risk of his/her terminal
wealth to maximize the monetary returns while the market is minimizing the
chances of the investor maximizing from the investment. The strategies for each
case are presented in the propositions (1) and (3) using the different utility func-
tions, the constant relative risk aversion (CRRA) and the constant absolute risk
aversion (CARA) functions. In both cases, the defined function H (t) is also
obtained from the solutions of the strategies obtained in the study.

The study can be extended by using other approaches or techniques in finding
the optimal strategies. A nonzero sum game approach can be applied to compare
with the solutions obtained when using this approach. The portfolio of an in-

vestor can further be expanded and consider a specific type of insurance to buy.
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