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Abstract 
A modified Black-Scholes (B-S) model with time fractional derivative is stu-
died when the price change of the underlying is considered as a fractal trans-
mission system. It is very practical in application to study the numerical 
computation of this time fractional B-S model (TFBSM) governing European 
options. This paper constructs mixed alternative segment Crank-Nicolson 
(MASC-N) parallel difference scheme, which accuracy is spatially 2 order and 
temporally 2-α order. In addition, we have provided a theoretical proof for 
the stability and convergence of the MASC-N scheme, and demonstrated the 
accuracy and effectiveness of the proposed method through numerical expe-
riments. The numerical results show that the MASC-N scheme is easy to im-
plement when applied to time fractional B-S model. 
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1. Introduction 

Option is one of the most widely used financial derivatives, and it has shown 
very important significance in both theory and practice to study the option pricing. 
The Black-Scholes (B-S) model, which was proposed by Black F., Scholes M. and 
Merton R. (1973) [1] [2], led to a boom in options trading and scientifically legi-
timized the activities of the Chicago board options exchange and other option 
markets around the world. The classical B-S model is of seven basic assumptions, 
sometimes not meet the actual financial market applications. Therefore, the re-
searchers improved the classical B-S model and obtained some new models such 
as B-S model with transaction cost [3] [4], jump-diffusion model [5], stochastic 

How to cite this paper: Yang, X.B., Wu, 
L.F. and Zhang, Y. (2022) A New Parallel 
Difference Method for Solving Time Frac-
tional Black-Scholes Model. Journal of Ma-
thematical Finance, 12, 683-701. 
https://doi.org/10.4236/jmf.2022.124036 
 
Received: September 21, 2022 
Accepted: October 31, 2022 
Published: November 3, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2022.124036
https://www.scirp.org/
https://doi.org/10.4236/jmf.2022.124036
http://creativecommons.org/licenses/by/4.0/


X. B. Yang et al. 
 

 

DOI: 10.4236/jmf.2022.124036 684 Journal of Mathematical Finance 
 

volatility model [6] and fractional B-S model [7] [8]. 
Through observation and research on the stock market, it is found that the 

most fundamental characteristics and basic state of the capital market are ran-
dom fluctuations, and some complex dynamic systems are usually fractional, 
such as fractional Brownian motion, continuous time walk, etc. Based on the 
fractional stochastic differential equation driven by fractional Brownian motion, 
many scholars have made some progress in the research of fractional B-S equa-
tion in recent years. W. Wyss (2000) [9] deduced a time fractional B-S equation 
governing European call option. Cartea A. and Del-Castillo-Negrete D. (2007) [10] 
obtained several fractional diffusion models for pricing option in market with 
jumps. By considering the fractional dynamics driven, Jumarie G. (2008, 2010) [11] 
[12] derived time fractional B-S model and time-and-space fractional B-S model. 
Soon after that, Zhang J.R. et al. (2010) [13] assumed that the underlying price 
change follows a fractional Itô process and the change in option price with time is 
a fractal transmission system, obtained a bi-fractional Black-Scholes-Merton mod-
el. Chen W. et al. (2015) [14] proposed a simplified version of Liang et al.’s model, 
they assumed that the underlying price change still follows the classical Brow-
nian motion, but considered fractal transmission system. As a result, they ob-
tained double barrier options pricing based on time fractional B-S model. 

The analytical solution of the fractional B-S models is usually via integral 
transform methods [9] [12] [13] [14], homotopy perturbation methods [15], 
wavelet based hybrid methods [16], or via Lie symmetry transformations [17] 
and so on. The solutions usually are difficult to calculate, because they usually 
contain the form of convolution of some special functions or infinite series with 
an integral. Therefore, studying numerical approximate solutions of fractional 
B-S models is a very practical and important research project. The existing nu-
merical algorithms for solving the fractional order differential equations mainly 
include: finite difference method, finite element method, spectral method, mov-
ing mesh method, series approximation method, matrix transformation method 
and so on [18] [19] [20]. Roughly speaking, finite difference method has been 
well established. 

For solving the time fractional B-S equation, a few achievements on the nu-
merical methods are as follow. Song L.N. and Wang W.G. (2013) [21] employed 
implicit finite difference method to solve the time fractional B-S equation to-
gether with the conditions satisfied by the standard put option. Kumar S. and 
Singh D. (2014) [22] presented a numerical algorithm for the time fractional 
B-S equation with boundary condition by homotopy perturbation method and 
homotopy analysis method. Bhowmik S.K. (2014) [23] proposed an explicit- 
implicit numerical scheme with a low order of convergence for a partial inte-
gro-differential equation that arises in option pricing theory by using a finite 
difference technique. Yang X.Z. et al. (2015) [24] deduced an Explicit-Implicit 
and Implicit-Explicit difference scheme for time fractional B-S equation. Zhang 
H. et al. (2016) [25] derived an implicit difference scheme for the time fractional 
B-S equation governing European options. Phaochoo P. et al. (2016) [26] pro-
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posed a meshless local Petrov-Galerkin method, which involves not only a mesh-
less interpolation for the trial functions, but also a meshless integration of the 
weak-form. Nuugulu S.M. et al. (2021) [27] propose a corresponding robust nu-
merical method which is based on the extension of a Crank-Nicolson (C-N) fi-
nite difference method. For solving time-fractional B-S equation, An X. et al. 
(2021) [28] proposed space-time spectral method employs the Jacobi polyno-
mials for the temporal discretisation and Fourier-like basis functions for the spa-
tial discretisation. Based on the alternating segment technology, Yan R.F. et al. 
(2021) [29] applied C-N format, and four kinds of Saul’yev asymmetric format 
to construct the alternating segmented C-N parallel scheme. Sarboland M. and 
Aminataei A. (2022) [30] applied the multiquadric quasi-interpolation scheme 
and the integrated radial basis function networks scheme to provide a numerical 
method to approximate the solution of the time fractional Black-Sholes equa-
tion. 

With the rapid development of multi-core and cluster technology, it is of great 
theoretical significance and practical value to construct the parallel difference 
scheme with good stability for solving time fractional B-S model (TFBSM). In 
combination with the call option, we construct the mixed alternative segment 
C-N (MASC-N) scheme for TFBSM. The stability and convergence of the MASC- 
N scheme are analyzed. Finally, numerical examples demonstrate the effective-
ness and accuracy of the MASC-N scheme for solving the TFBSM. 

2. MASC-N Parallel Difference Method 
2.1. Time Fractional Black-Scholes Model 

In the present work, the option price ( ),P S t  is suggested to be subject to the 
time fractional Black-Scholes equation with the following form [25] [31]: 

( ) ( ) ( ) ( )
2

2 2
2

, , ,1 , 0.
2

P S t P S t P S t
S rS rP S t

St S

α

α σ
∂ ∂ ∂

+ + − =
∂∂ ∂

        (1) 

where 0t > , 0 1α< ≤ , P is the price of European call option; S and t are asset 
price and time; r is risk free interest rate; σ  represents volatility of underlying 
asset. The fractional derivative ( ) ( ),tP S tα  is Riemann-Liouville time fractional 
derivative with respect to t; SP  and SSP  refer to first derivative and second 
derivative with respect to S. 

The value of European call option is taken as a solution of (1) with the fol-
lowing terminal and boundary conditions [1]: 

1) ( ) { }, max ,0P S T S K= − . The profit and loss when the option expires is its 
price. Here K is the exercise price; 

2) S →∞ , ( ) ( ), ~ e r T tP S t S K − −− . When S is sufficiently large, the option 
price is close to ( )e r T tS K − −− , T is the due date of the options; 

3) ( )0, 0P t = , which implies that the option price is approaching to zero 
when S is zero. 

The European call option pricing model is to solve the follow time fractional 
B-S equation: 
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( ) ( ) ( ) ( )

( ) { }

2
2 2

2

, , ,1 , 0,
2

, max ,0 .

P S t P S t P S t
S rS rP S t

St S
P S T S K

α

α σ
∂ ∂ ∂

+ + − =
∂∂ ∂

 = −

       (2) 

The boundary conditions ( )0, 0P t = , ( ) ( )lim , e r T t

S
P S t S K − −

→∞
= − , and the so-

lution region is { }0 ,0S t TΣ = ≤ ≤ ∞ ≤ ≤ . 
Equation (2) is an anti-variable coefficient parabolic equation. With the change 

of variables [2] [25]: ( ) ( )e , , , e ,x xS t T V x P Tτ τ τ= = − = − . 
Equation (2) can be transformed into the parabolic equations as follows: 

( ) ( ) ( ) ( ) ( )

( ) { }

2 21 1, , , , 0,
2 2

,0 max e ,0 .

x xx

x

V x r V x V x rV x

V x K

α
τ τ σ τ σ τ τ  + − − − =   

 = −

     (3) 

The solution region converses into: { }0 ,0x TτΣ = −∞ ≤ ≤ +∞ ≤ ≤ . 
To solve the TFBSM numerically it is necessary to truncate the original un-

bounded domain into a finite interval. Here we truncate the range of variable x 
in problem (1) to a finite interval ,M M− +   . Then the solution region we con-
sider is of the following finite domain: { }1 ,0M x M Tτ− +Σ = ≤ ≤ ≤ ≤ . 

Meanwhile, boundary conditions are transformed into the form: 

( ) ( ), e e , , 0M rV M K V Mττ τ
++ − −= − = . 

2.2. Construction of the MASC-N Scheme 

Let ( )h M M M+ −= −  and k T N= , ( ),M N Z+∈  be space and time steps. 
The computation domain 1Σ  is discretized by uniform grid ( ),i nx τ : 

( )
( )

1 , 1,2, , 1,

1 , 1, 2, , 1.
i

n

x M i h i M

n k n Nτ

− = + − = +


= − = +





 

( ),n
i i nV V x τ=  denotes an approximate solution (exact solution of MASC-N 

scheme) of (3) in ix  and nτ . The corresponding initial and boundary condi-
tions are: 

( ) { }1 max e ,0ix
i iV f x K= = − , ( ) ( )1

1 2 e e r n kn M
M nV f Kτ

+ − −
+ = = − . 

The discrete format of time fractional derivative ( ) ( ),tP S tα  in the point  
( )1,i nx τ +  using L1 interpolation approximation of the modified Riemann- 
Liouville fractional derivative is as follows [32] [33]: 

( )

( ) ( ) ( ) ( ) ( )

1

11 2
2 1

1

,

, , 1 .
2

i n

n

i n j i n j
j

V x

k V x V x j j O k

α

α

α
αα α

τ
τ

τ τ
α

+

−
−− −

+ − + −
=

∂

∂

  = − − − +   Γ − ∑
 

Letting ( )11 1jl j j αα −−= − − , we can define the operator ( )1,i nL V xα
τ τ +  as: 

( ) ( ) ( ) ( )1 2 1
1

, , , .
2

n

i n j i n j i n j
j

kL V x l V x V x
α

α
τ τ τ τ

α

−

+ + − + −
=

 = − Γ − ∑         (4) 

Moreover, the discrete formats of the space derivatives are: 
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( ) ( )
( ) ( )

21 1

2
21 1

2 2

,
,

2
, 2

.

n n
i n i i

n n n
i n i i i

V x V V
O h

x h
V x V V V

O h
x h

τ

τ

+ −

+ −

∂ −
= +

∂
∂ − +

= +
∂

                 (5) 

Substituting (4) and (5) into (3), we can derive the classical explicit scheme, 
implicit scheme and C-N scheme of time fractional B-S Equation (3): 

The classical explicit scheme of time fractional B-S Equation (3) is 

( )

( )
1

2 2 2 21 1 1 1
2

,

21 1 .
2 2 2

i n

n n n n n
ni i i i i

i

L V x

V V V V V
r rV O k h

hh

α
τ

α

τ

σ σ

+

−+ − + −− + − = + − − + + 
 

 

After combining similar terms and omitting the truncation errors, it can be 
rewritten as 

1
1 1 1

1 1
1

2 .
n

n n n n n j
i i i i j i n i

j
V aV bV cV w V l V

−
+ + −

− +
=

= − + + +∑              (6) 

The classical implicit scheme of time fractional B-S Equation (3) gives 

( )

( )

1 1 1 1 1
2 21 1 1 1

1 2

1 2 2

21 1,
2 2 2

.

n n n n n
i i i i i

i n

n
i

V V V V V
L V x r

hh

rV O k h

α
τ

α

τ σ σ
+ + + + +

+ − + −
+

+ −

− + − = + − 
 

− + +

 

It can be rewritten as 

( )
1

1 1 1 1 1
1 1

1
1 2 .

n
n n n n j

i i i j i n i
j

aV b V cV w V l V
−

+ + + + −
− +

=

− + + − = +∑             (7) 

The classical C-N scheme of time fractional B-S Equation (3) gives 

( )1 1 1
1 1

1
1 1

1 1
1

1 11
2 2
1 1 .
2 2

n n n
i i i

n
n n n n j

i i i j i n i
j

aV b V cV

aV bV cV w V l V

+ + +
− +

−
+ −

− +
=

− + + −

= − + + +∑
              (8) 

where 

( ) ( )

( ) ( ) ( )

2 22 2 2

2 2 2

1 11

0.5 0.5
, , ,

2 2 22 2 2
2 , 2 1 1 .j

m r m rm m mr ma b c
h hh h h

m k w j j jα αα α

σ σσ σ σ

α − −−

− −
= − = + = +

= Γ − = − + − −

 

Simulating the method of alternating explicit and implicit scheme [34], the de-
sign of MASC-N scheme we construct is as follows. Let ( )1 2 1M s l ql− = + = , 
here q  and l  are positive integers , 3q l ≥ , we can divide the points on each 
time level into q  sections which are sequentially recorded as 1 2, , , qS S S . 

On the odd level, we apply explicit scheme (6) to calculate points  
( )1 2 3 4 2 1 2, , , , , ,i s sx i i i i i i i−′′ ′ ′′ ′ ′′ ′=  , at points ( )2 3 4 5 2 2 1, , , , , ,i s sx i i i i i i i +′′ ′ ′′ ′ ′′ ′=  , we apply 

explicit scheme (7) to calculate. At the remaining points, we apply C-N scheme 
(8). When it turns to the even level, we apply explicit scheme (6) to calculate 
points ( )2 3 4 5 2 2 1, , , , , ,i s sx i i i i i i i +′′ ′ ′′ ′ ′′ ′=  , at points ( )1 2 3 4 2 1 2, , , , , ,i s sx i i i i i i i−′′ ′ ′′ ′ ′′ ′=  , we 
apply explicit scheme (7) to calculate. At the remaining points, we apply C-N 
scheme (8). The schematic design of the MASC-N scheme is shown in Figure 1. 
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Figure 1. Schematic design with segment nodes of the MASC-N 
scheme. 

 
Then the approximate discrete (MASC-N) scheme of Equation (1) can be ex-

pressed in the matrix form: 

( )
( )

1 2 1
1 2 1 1

2 1 1 2 1 1
2 1 1 1

,

.

n n n n
n n

n n n n
n n

I A G V A GV wV w V l V b

I A G V A GV wV w V l V b

+
−

+ + + +
+

 + = − + + + + +


+ = − + + + + +





      (9) 

where 1,3,n =  , ( )T

2 3 1
n n n n n

M MV V V V V−=  ,  

( ) ( )1 1
1 1 1 10 0

2 2
n n n n n

M M
a cb V V V V+ +

+ +

′
 = + + 
 

 . 

1A  and 2A  are (M-1)-order diagonal matrices and they meet 1 2A A I+ = ,
( )1 1 2 2 1, , , ,M MA diag θ θ θ θ− −=  . 

2 1 2

2 2 1

0, , ,0
1, , ,0
1 ,elsewhere
2

l l

l l
i

i i i l s
i i i l sθ

−

+

′′ ′= < ≤
 ′′ ′ = < ≤= 



, 

1

2
2

2
2 M

b c
a b c

G
a b c

a b −

− 
 − − 
 =
 

− − 
 − 

  
. 

Here I is an ( )1M −  order unit matrix. 

3. Theoretical Analysis of MASC-N Scheme 
3.1. Existence and Uniqueness of the MASC-N Scheme Solution 

Lemma 1. The matrices defined by the MASC-N scheme (9) are the non-
negative real matrices. 

Proof. 

( )
( ) ( )

( ) ( )
( )

T

4
4

4
4

b a c
a c b a c

G G
a c b a c

a c b

 − + 
 − + − + 
 + =
 

− + − + 
 − + 

   , 

where 
2

22 mb mr
h
σ

= + , ( )
2

2

ma c
h
σ

− + = − , ( )2m kα α= Γ − , we have G G′+   

as a strictly diagonally dominant three diagonal matrix, since the main di-
agonal elements are positive real numbers, G G′+  is a positive definite ma-
trix, G G′+  is nonnegative definite matrix, G is nonnegative definite matrix. 
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Combined with lemma 1, ( ) 1
1I A G −+  and ( ) 1

2I A G −+  exist, and then we 
have following theorem: 

Theorem 1. Solution of the MASC-N scheme (9) of time fractional Black- 
Scholes Equation (1) is existing and unique. 

3.2. Stability of the MASC-N Scheme 

Lemma 2 (Kellogg [35] [36]). If the matrix C is a nonnegative real matrix, 
that is, TC C+ meet the nonnegative, then for any parameter 0ρ ≥ , there are 
estimators ( ) 1 1I Cρ ρ− −+ ≤ . 

Lemma 3 ([37]). The coefficients 1j j jw l l += −  satisfy: 

1 21 0nw w w> > > > > , 
1

1
1

n

j n
j

w l
−

=

= −∑ , 1 1l = . 

Let n
iV  be the approximate solution of Equation (1) at mesh point ( ),i nx t . 

Defining n n n
i i iV Vε = − , ( )2 3, , ,n n n n

ME ε ε ε=  , 1 1n N≤ ≤ + , and substituting 
n n n

i i iV V ε= −  into MASC-N scheme, we have nE  satisfying: 

( )
( )

1 2 1
1 2 1 1

2 1 1 2 1
2 1 1 1

,
1,3,

,

n n n
n n

n n n
n n

I A G E A GE w E w E l E
n

I A G E A GE w E w E l E

+
−

+ + +
+

 + = − + + + + =
+ = − + + + +







  (10) 

When 3n ≥ , we have 

( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )

1 12
2 1 1 1 1 2

1 1 1 2 1
2 1 1 1 2 1

1 2 1
2 2 1 .

n n

n
n n

n
n n

E I A G w I A G I A G w I A G E

I A G w I A G I A G w E w E l E

I A G w E w E l E

− −+

− − −
−

−
+

= + − + −

+ + − + + + +

+ + + + +





 (11) 

Take the norm of both sides of Equation (11) 

( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )

1 12
2 1 1 1 1 2

1 1 1 2 1
2 1 1 1 2 1

1 2 1
2 2 1 .

n n

n
n n

n
n n

E I A G w I A G I A G w I A G E

I A G w I A G I A G w E w E l E

I A G w E w E l E

− −+

− − −
−

−
+

= + − + −

+ + − + + + +

+ + + + +





 

Due to the growth matrix ( ) ( )( ) ( )1 1
2 1 1 1 1 2T I A G w I A G I A G w I A G− −= + − + −  

and we define ( ) ( ) 1
2 2T I A G T I A G −= + + , assume that the eigenvalue of G is r, 

then 

( )( ) ( )( )1 1
1 1 1 1 2 2

2
1max 1.

1

T T w I A G I A G w I A G I A G

w r
r
θ
θ

− −= = − + − +

 −  = ≤  +   



 

Then we use mathematical induction to prove 1nE E≤ . 
When 1n = , ( ) ( )2 1

1 2I A G E I A G E+ = −  

( ) ( )12 1 1
1 2 .E I A G I A G E E−= + − ≤  

When { }1 1max ,w r wθ =  is established, 

https://doi.org/10.4236/jmf.2022.124036


X. B. Yang et al. 
 

 

DOI: 10.4236/jmf.2022.124036 690 Journal of Mathematical Finance 
 

( ) ( )( ) ( ) ( )1 1 13 1 1
2 1 1 1 2 2 2

1 11 2

1

1

max max
1 1

1max
1

.

E I A G w I A G I A G I A G E I A G l E

w r lE E
r r

r E
r

E

θ
θ θ

θ
θ

− − −≤ + − + − + +

 −   
≤ +   

+ +   
 − 

≤  
+ 

≤

 

When { }1max ,w r rθ θ=  is established, 

( ) ( )( ) ( ) ( )1 1 13 1 1
2 1 1 1 2 2 2

1 11 2

12 1

1

max max
1 1

max
1

.

E I A G w I A G I A G I A G E I A G l E

w r lE E
r r

r l w E
r

E

θ
θ θ

θ
θ

− − −≤ + − + − + +

 −   
≤ +   

+ +   
+ − ≤  
+ 

≤

  
Assuming that 1n k≤ + , we have 1nE E≤ . When 2n k= + , we prove it 

in two cases: 
Case 1: { } { }1 1 1max max ,w r w r wθ θ− ≤ ≤  

( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )

( )
( )

( )

1 12
2 1 1 1 1 2

1 1 1 2 1
2 1 1 1 2 1

1 2 1
2 2 1

2
1 11 1 11 1

2

1 1
1 1

1

1 1
1 11

1

.

n n

n
n n

n
n n

E I A G w I A G I A G w I A G E

I A G w I A G I A G w E w E l E

I A G w E w E l E

w ww wE E E
r rr

w E w E

E

θ θθ

− −+

− − −
−

−
+

= + − + −

+ + − + + + +

+ + + + +

− − ≤ + + + +  +

≤ + −

≤





 

Case 2: { } { }1 1max max ,w r w r rθ θ θ− ≤ ≤  

( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )

1 12
2 1 1 1 1 2

1 1 1 2 1
2 1 1 1 2 1

1 2 1
2 2 1

n n

n
n n

n
n n

E I A G w I A G I A G w I A G E

I A G w I A G I A G w E w E l E

I A G w E w E l E

− −+

− − −
−

−
+

= + − + −

+ + − + + + +

+ + + + +





 

( )
( )

2
11 1 11
2

1 11 1

1 11

1

1 1
1 11

1 1
1 1 1 1

1
1 1

.

r w wr E E E
r rr

w wr r E E
r r r r

wr E E
r r

E

θθ
θ θθ

θ θ
θ θ θ θ

θ
θ θ

− − ≤ + + + +  +

− − ≤ + + + + + + 
−

≤ +
+ +

≤

  

To sum up, we obtain the following theorem. 
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Theorem 2. The MASC-N scheme (9) of time-fractional Black-Scholes Equa-
tion (1) is unconditional stability. 

3.3. Convergence of the MASC-N Scheme 

Let ( )( ), 1, 2, , 1; 1, 2, , 1n
i i nv v x t i M n N= = + = +   be the exact solution of Eq-

uation (1) at mesh point ( ),i nx t . Defining n n n
i i ie v V= −  and  

( )T

2 3 1, , , ,n n n n n
M Me e e e e−=  , and substituting n n n

i i ie v V= −  into MASC-N scheme, 
we have ne  satisfying: 

( )
( )

1 2 1
1 2 1 1

2 1 1 2 1 1
2 1 1 1

,
1,3,

,

n n n n
n n

n n n n
n n

I A G e A Ge w e w e l e R
n

I A G e A Ge w e w e l e R

+
−

+ + + +
+

 + = − + + + + + =
+ = − + + + + +







 (12) 

and ( )1 2 20, ne R k O k hα α−= = + ,which means there exists a positive constant C 
such that ( )2 2nR Ck k hα α−≤ + . 

Imitate the proof of stability, when 3n ≥ , we have 

( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )

1 12
2 1 1 1 1 2

1 1 1 2
2 1 1 1 2 1

1 2 1
2 2 .

n n

n n
n

n n
n

e I A G w I A G I A G w I A G e

I A G w I A G I A G w e w e R

I A G w e w e R

− −+

− − −
−

− +

= + − + −

+ + − + + + +

+ + + + +





 

When 1n = , it is straightforward to see that: 

( ) ( )12 1 1 2 2
1 1 .e I A G R l k C k hα α− − −≤ + ≤ +  

When { }1 1max ,w r wθ =  is established, 

( ) ( )( ) ( )

( )
( ) ( )

( )
( )

( )

1 1 13 1 2
2 1 1 1 2

2 2 2 21
2

2 21
2

1 2 2
2

1
11

1
1

.

e I A G w I A G I A G R I A G R

w r Ck k h Ck k h
rr

w Ck k h
r

l Ck k h

α α α α

α α

α α

θ
θθ

θ

− − −

− −

−

− −

≤ + − + + +

−
≤ + + +

++

+
≤ +

+

≤ +

 

When { }1max ,w r rθ θ=  is established, 

( ) ( )( ) ( )

( ) ( ) ( )
( )

1 1 13 1 2
2 1 1 1 2

2 2 2 2 2 2

1 2 2
2

1
1 1

.

e I A G w I A G I A G R I A G R

r Ck k h Ck k h Ck k h
r r

l Ck k h

α α α α α α

α α

θ
θ θ

− − −

− − −

− −

≤ + − + + +

≤ + + + ≤ +
+ +

≤ +

 

Assuming that 1n k≤ + , we have ( )1 2 2
1

n
ne l Ck k hα α− −
−≤ + . When 2n k= + , 

we prove it in two cases: 
Case 1: { } { }1 1 1max max ,w r w r wθ θ− ≤ ≤  

( ) ( )( ) ( )

( ) ( )( ) ( )

1 12
2 1 1 1 1 2

1 1 1 2
2 1 1 1 2 1

n n

n n
n

e I A G w I A G I A G w I A G e
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≤ + − + −

+ + − + + + +
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( ) ( )

( )
( )

( )
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2 2

2
1 2 21 1
1 2
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 × + + 
 
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
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+
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≤ + + + − +
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Case 2: { } { }1 1max max ,w r w r rθ θ θ− ≤ ≤  

( ) ( )( ) ( )
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=
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h
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( )

1 1

1 11

1lim lim lim .
11 11 1

n

n n n

l n n
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n

α

α α αα α

− − −

− −−→∞ →∞ →∞
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−− −  − − 
 

 

There is a positive constant C1, such that 

( ) ( ) ( )2 2 2 2
1 1 , 1, 2, , .ne n C k k h nk C k h n Nαα α α−≤ + = + =   

Here 1 1
CC
α

=
−

, it is clear that nk T< , then we can know that  

( ) ( )2 2
2, n

i n iv x V C k hατ −− ≤ +  and 2 1C T Cα= . 

To sum up, we obtain the following theorem. 
Theorem 3. The MASC-N scheme (9) of time-fractional Black-Scholes Equa-

tion (1) is convergent, and ( ) ( )2 2, n
i n iv x V C k hατ −− ≤ + , where C is a positive 
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constant. 

4. Numerical Experiments 

Numerical experiments will be done in Matlab 2013b, based on the Intel Core 
i3-2330 CPU@2.20GHz.The analytic solution of TFBSM is very complex to be 
obtained [13]. We use the MASC-N scheme (9), implicit numerical method 
(INM) [25] to calculate European call option prices governed by the time fac-
tional B-S model. To show the accuracy and effectiveness of the schemes nu-
merically, we firstly take example 1 with the given terminal and boundary condi-
tion as an example. 

Example 1 [25] [31]. Consider the following time fractional B-S model with 
homogeneous boundary conditions 

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

2

0 2

2

, ,
, , , ,

0, 0, 1, 0,

,0 1 .

U x U x
D U x a b cU x g x

xx
U U

U x x x

α
τ

τ τ
τ τ τ

τ τ

 ∂ ∂
= + − +

∂∂
 = =
 = −  

where the source term 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 1
2

2 2 2

2 2 1
3 2

1 2 6 2 3 1

g x x

t a x b x x cx x

α ατ τ
α α

− − 
= + −  Γ − Γ − 

 − + − + − − −   

is chosen so that the exact solution of example 1 is ( ) ( )2 21 1U t x x= + − . Here 
we take the parameters values as  

210.05, 0.25, 0.7, , , , 1
2

r a b r a c r Tσ α σ= = = = = − = = . 

Next, we verify the calculation precision and convergence order of MASC-N 
parallel difference schemes for solving time fractional B-S equation. Conver-
gence order of spatial layer (COS) and convergence order of time horizon (COT) 
are defined respectively [38] [39]. n

iV  is the exact solution and n
iV  is the solu-

tion of MASC-N. 

( )
1
22

2, 2 1
,

n
m m m m m

t j j j j
j

E V V V V t∆
=

 
= − = − ∆ 

 
∑  

, 1
max ,m m m m m

t j j j jj n
E V V V V∞ ∆ ∞ ≤ ≤

= − = −  

( )2 , , 2COT log , 2, ,m m
x t x tE E l∆ ∆ ∆ ∆≈ = ∞  

( )
1
22

2, 2 1
,

m
n n n n n

x i i i i
i

E V V V V x∆
=

 = − = − ∆ 
 
∑  

, 1
max ,n n n n n

x i i i ii m
E V V V V∞ ∆ ∞ ≤ ≤

= − = −  

( )2 , 2, 4COS log , 2, .n n
x t x tE E l∆ ∆ ∆ ∆≈ = ∞  
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Table 1 and Table 2 list the numerical errors in 2-norm and the maximum- 
norm and their corresponding convergence rates. As can be seen from the table, 
the numerical solutions obtained by the MASC-N scheme are in excellent agree-
ment with exact solutions. We can see that for fixed space step h = 1/100 and 
some different time steps k = 1/40, 1/80, 1/160 and 1/320, the corresponding or-
ders of convergence for the MASC-N scheme are close to 1.3 when α = 0.7. The 
space convergence orders of the MASC-N scheme approach to 2. It shows good 
agreement with the conclusion of Theorem 3. 

Example 2 [25]. Assuming that the current price of the underlying stock is 97 
dollars, the strike price of option is 50 dollars, the risk-free interest rate is 0.05 
per year, the deadline of the option is 12 months, the volatility is 0.25 per year. 

First, let 101M = , 100N = , 200l = , 5q = . The parameters are 97S = ,  
50K = , 12T = , 0.05r = , 0.25σ = , ln 0.1M − = , ln100M + = . 

We give the plots of the option price curves ( ),P S T  under the INM, MASC- 
N scheme. 

The parameter values are selected according to paper [25]. From Figure 2, we 
can see that the characteristics of Figure 2 are completely consistent with Figure 
2 in paper [25] and the numerical solutions of MASC-N scheme are very close to 
that of implicit scheme. 

Second, in order to verify the stability and the accuracy of MASC-N scheme, 
we regard the solution n

iV  of INM as the control solution, and the solution 
n

iV  of MASC-N is used as the perturbation solution, then define the sum of rel-
ative error for every time level (SRET) and difference total energy (DTE): 

( )
1

SRET
n nM i i

n
i i

V V
n

V=

−
= ∑ , ( ) ( )2

1

1DTE
2

N
n n

i i
n

i V V
=

= −∑ . 

 
Table 1. Numerical errors and orders of convergence of MASC-N scheme for the exam-
ple 1 when M = 101. 

Δt 2
.  COT .

∞
 COT 

1/40 0.00549407537  0.00642653898  

1/80 0.00163256675 1.25073472300 0.00262767491 1.29025517900 

1/160 0.00048949099 1.23778776807 0.00108954783 1.27005725963 

1/320 0.00015143065 1.19262497528 0.000468875620 1.21645237116 

 
Table 2. Numerical errors and orders of convergence of MASC-N scheme for the exam-
ple 1 when N = 100. 

Δt Δx 2
.  COS .

∞
 COS 

1/10 1/15 0.0455637460106  0.0206037934344  

1/40 1/30 0.0136296111988 1.74114195458324 0.0043408515398 2.246859993971 

1/160 1/60 0.0042681481212 1.67506225886374 0.0009528489608 2.187658631184 

1/640 1/120 0.0013767764693 1.63231589868382 0.0002160284100 2.141026491177 
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Figure 2. Call option prices obtained by MASC-N scheme and INM 
for α = 0.7. 

 
Let 101M = , 100N = , other parameters are the same as above. The results 

of numerical experiments are as follows: 
From Figure 3, we can see that the SRET curves of the MASC-N scheme are 

larger at the beginning and decrease along with the movement of time step and 
gradually keep a constant level. This shows that the MASC-N scheme has better 
stability. 

Figure 4 suggests that the DTE of numerical solutions of the MASC-N scheme 
has the same order of magnitude compared with that of INM, showing that the 
accuracy of MASC-N scheme is close to that of INM. On the other hand, maxi-
mum value of DTE doesn’t exceed 0.014, indicating that the MASC-N scheme to 
solve the time fractional B-S equation have good accuracy. 

From the viewpoint of computational efficiency, INM is the serial format and 
needs to use the catch-up method to solve three diagonal equations. The advan-
tage of the MASC-N scheme of this paper is that they can divide the large nu-
merical problems AX b=  into five small problems , 1, 2, ,5iA X b i= =  . Using 
“parfor” to implement parallel computing means that the cycle is divided into 
independent parts and the various parts can carry out parallel. It leads to the 
improvement of the efficiency of program execution and the effective reduction 
of computation time [40] [41]. 

Finally, in order to better reflect the superiority of parallel difference schemes, 
we choose INM, MASC-N scheme (9) to perform numerical tests. The number 
of time layers is 1000 (N = 1000), and the spatial grid points gradually increase 
from 201 to 1001. Next, the number of space grid points is 1001 (M = 1001), and 
the time layers gradually increase from 200 to 1000. And results are shown in 
Figure 5 and Table 3. 

Obviously, MASC-N parallel scheme has superiority in saving the computing 
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time with the increase of time layer as shown in Figure 5. Compared with the 
INM, the computing time of the MASC-N scheme can save nearly 90% when the 
space grid is the same (see in Table 3). With the encryption of the spatial grid, 
the computational efficiency of the MASC-N scheme is significantly higher than 
that of the INM. Especially when the number of spatial points is large enough, 
the MASC-N method has obvious localization characteristics in computing and 
communication. 

 

 
Figure 3. The curves of SRET at time layer. 

 

 
Figure 4. The curve of DTE at space layer. 

 
Table 3. Comparison of two schemes’ computing time at M = 1001. 

Space grid (N) 200 400 600 800 1000 

INM [25] 25.7785534 52.3843632 80.9568081 109.7452905 140.4224646 

MASC-N 1.312375357 3.716396959 7.247458624 12.07522917 18.10542618 
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Example 3. Similarly, we consider the case that the underlying asset is a call 
option. Here we take the parameters values as 97S = , 50K = , 0.05r = ,  

0.25σ =  and 6T = . Using INM, MASC-N difference scheme to compute the 
price of European call options with different values of α and the relative error 
when α = 0.7, the results are calculated as follows: 

In general, option price obtained by the classical B-S equation (α = 1) is lower 
than real financial market price whose deadline is 6 months [42]. From Figure 6 
and Table 4, the option price is a decreasing function of α, the option price cal-
culated by time fractional B-S equation is higher than that of traditional B-S eq-
uation. We conclude that the TFBSM can more correctly capture the characte-
ristics of a jump or large movement, compared with the classical B-S process. It 
is visible enough that we can get closer to the real financial market by properly 
selecting the value of α. 

 

 
Figure 5. Comparison of the two schemes’ computing time. 

 

 
Figure 6. Call option prices using MASC-N scheme for different values of α. 
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Table 4. Comparison of numerical results of several schemes for some values of α. 

α 0.5 0.7 0.9 1.0 Time/(s) Relativeerror 

INM [25] 48.39938155 48.38462401 48.37244188 48.36813716 138.02153018 —— 

MASC-N 48.40010322 48.38539992 48.37338163 48.36918903 17.133438792 1.60362453 e-05 

5. Conclusions 

For the time fractional B-S equation with boundary conditions satisfied by stan-
dard European call options, this paper constructs the MASC-N parallel differ-
ence scheme. This scheme has been shown to be uniquely solved, uncondition-
ally stable and convergent. And convergence rates are temporally 2-α order and 
spatially 2-order. 

Moreover, compared with the implicit difference scheme, the MASC-N dif-
ference scheme is easy to realize parallel computing. So this scheme can greatly 
improve the computational efficiency, and it has obvious advantages in solving 
the multi-asset option pricing problems. All the results imply that MASC-N dif-
ference scheme is feasible to solve the time fractional B-S equation. 

Acknowledgements 

The work is supported by the Fundamental Research Funds for the Central 
Universities (No. 2021MS045). 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Kwok, Y. (2008) Mathematical Models of Financial Derivatives. 2nd Edition, Sprin-

ger-Verlag, Berlin. 

[2] Jiang, L.S. (2008) Mathematical Models and Methods for Option Pricing. 2nd Edi-
tion, Higher Education Press, Beijing. (In Chinese) 

[3] Barles, G. and Soner H.M. (1998) Option Pricing with Transaction Costs and a Non-
linear Black-Scholes Equation. Finance and Stochastics, 2, 369-397.  
https://doi.org/10.1007/s007800050046 

[4] Davis, H.A.M. and Vassilios, G. (1993) European Option Pricing with Transaction 
Costs. SIAM Journal on Control & Optimization, 31, 470-493.  
https://doi.org/10.1137/0331022 

[5] Merton, R.C. (1976) Option When Underlying Stock Returns Are Discontinuous. 
Journal of Financial Economics, 3, 125-144.  
https://doi.org/10.1016/0304-405X(76)90022-2 

[6] Hull, J.C. and White, A.D. (1987) The Pricing of Options on Asset with Stochastic 
Volatilities. The Journal of Finance, 42, 281-300.  
https://doi.org/10.1111/j.1540-6261.1987.tb02568.x 

[7] Bjork, T. and Hult, H. (2005) A Note on Wick Products and the Fractional Black- 
Scholes Model. Finance and Stochastics, 9, 197-209.  

https://doi.org/10.4236/jmf.2022.124036
https://doi.org/10.1007/s007800050046
https://doi.org/10.1137/0331022
https://doi.org/10.1016/0304-405X(76)90022-2
https://doi.org/10.1111/j.1540-6261.1987.tb02568.x


X. B. Yang et al. 
 

 

DOI: 10.4236/jmf.2022.124036 699 Journal of Mathematical Finance 
 

https://doi.org/10.1007/s00780-004-0144-5 

[8] Wang, X.T. (2010) Scaling and Long-Range Dependence in Option Pricing I: Pric-
ing European Option with Transaction Costs under the Fractional Black-Scholes 
Model. Physica A Statistical Mechanics & Its Applications, 389, 438-444.  
https://doi.org/10.1016/j.physa.2009.09.041 

[9] Wyss, W. (2000) The Fractional Black-Scholes Equations. Fractional Calculus & 
Applied Analysis, 3, 51-61. 

[10] Cartea, A. and Del-Castillo-Negrete, D. (2007) Fractional Diffusion Models of Op-
tion Prices in Markets with Jumps. Physica A Statistical Mechanics & Its Applica-
tions, 374, 749-763. https://doi.org/10.1016/j.physa.2006.08.071 

[11] Jumarie, G. (2008) Stock Exchange Fractional Dynamics Defined as Fractional Ex-
ponential Growth Driven by Gaussian White Noise. Application to Fractional Black- 
Scholes Equations. Insurance Mathematics & Economics, 42, 271-287.  
https://doi.org/10.1016/j.insmatheco.2007.03.001 

[12] Jumarie, G. (2010) Derivation and Solutions of Some Fractional Black-Scholes Equ-
ations in Coarse-Grained Space and Time. Application to Merton’s Optimal Portfo-
lio. Computers & Mathematics with Applications, 59, 1142-1164.  
https://doi.org/10.1016/j.camwa.2009.05.015 

[13] Liang, J.R., Wang, J., Zhang, W.J., et al. (2010) The Solution to a Bi-Fractional 
Black-Scholes-Merton Differential Equation. International Journal of Pure and Ap-
plied Mathematics, 58, 99-112. 

[14] Chen, W., Xu, X. and Zhu, S.P. (2015) Analytically Pricing Double Barrier Options 
Based on a Time-Fractional Black-Scholes Equation. Computers & Mathematics 
with Applications, 69, 1407-1419. https://doi.org/10.1016/j.camwa.2015.03.025 

[15] Elbeleze, A.A., Kiliçman, A. and Taib, B.M. (2013) Homotopy Perturbation Method 
for Fractional Black-Scholes European Option Pricing Equations Using Sumudu 
Transform. Mathematical Problems in Engineering, 2013, Article ID: 524852.  
https://doi.org/10.1155/2013/524852 

[16] Hariharan, G. (2013) An Efficient Wavelet Based Approximation Method to Time 
Fractional Black-Scholes European Option Pricing Problem Arising in Financial 
Market. Applied Mathematical Sciences, 7, 3445-3456.  
https://doi.org/10.12988/ams.2013.35261 

[17] Yu, J., Feng, Y. and Wang, X. (2022) Lie Symmetry Analysis and Exact Solutions of 
Time Fractional Black-Scholes Equation. International Journal of Financial Engi-
neering, 9, Article ID: 2250023. https://doi.org/10.1142/S2424786322500232 

[18] Sun, Z.Z. and Gao, G.H. (2015) A Finite Difference Method for Fractional Differen-
tial Equations. Science Press, Beijing. (In Chinese) 

[19] Rezaei, M., Yazdanian, A.R., Ashrafi, A., et al. (2021) Numerical Pricing Based on 
Fractional Black-Scholes Equation with Time-Dependent Parameters under the CEV 
Model: Double Barrier Options. Computers & Mathematics with Applications, 90, 
104-111. https://doi.org/10.1016/j.camwa.2021.02.021 

[20] She, M., Li, L., Tang, R. and Li, D. (2021) A Novel Numerical Scheme for a Time 
Fractional Black-Scholes Equation. Journal of Applied Mathematics and Compu-
ting, 66, 853-870. https://doi.org/10.1007/s12190-020-01467-9 

[21] Song, L.N. and Wang, W.G. (2013) Solution of the Fractional Black-Scholes Option 
Pricing Model by Finite Difference Method. Abstract & Applied Analysis, 2013, Ar-
ticle ID: 194286. https://doi.org/10.1155/2013/194286 

[22] Kumar, S. and Singh, D. (2014) Numerical Computation of Fractional Black-Scholes 

https://doi.org/10.4236/jmf.2022.124036
https://doi.org/10.1007/s00780-004-0144-5
https://doi.org/10.1016/j.physa.2009.09.041
https://doi.org/10.1016/j.physa.2006.08.071
https://doi.org/10.1016/j.insmatheco.2007.03.001
https://doi.org/10.1016/j.camwa.2009.05.015
https://doi.org/10.1016/j.camwa.2015.03.025
https://doi.org/10.1155/2013/524852
https://doi.org/10.12988/ams.2013.35261
https://doi.org/10.1142/S2424786322500232
https://doi.org/10.1016/j.camwa.2021.02.021
https://doi.org/10.1007/s12190-020-01467-9
https://doi.org/10.1155/2013/194286


X. B. Yang et al. 
 

 

DOI: 10.4236/jmf.2022.124036 700 Journal of Mathematical Finance 
 

Equation Arising in Financial Market. Egyptian Journal of Basic & Applied Sciences, 
1, 177-183. https://doi.org/10.1016/j.ejbas.2014.10.003 

[23] Bhowmik, S.K. (2014) Fast and Efficient Numerical Methods for an Extended Black- 
Scholes Model. Computers & Mathematics with Applications, 67, 636-654.  
https://doi.org/10.1016/j.camwa.2013.12.008 

[24] Yang, X.Z., Zhang, X. and Wu, L.F. (2015) A Kind of Difference Method for Time- 
Fractional Option Pricing Model. Applied Mathematics: A Journal of Chinese Uni-
versities, 30, 234-244. (In Chinese) https://doi.org/10.1186/s13662-015-0643-z 

[25] Zhang, H., Liu, F., Turner, I., et al. (2016) Numerical Solution of the Time Fraction-
al Black-Scholes Model Governing European Options. Computers & Mathematics 
with Applications, 1, 1722-1783. https://doi.org/10.1016/j.camwa.2016.02.007 

[26] Phaochoo, P., Luadsong, A. and Aschariyaphotha, N. (2016) The Meshless Local 
Petrov-Galerkin Based on Moving Kriging Interpolation for Solving Fractional Black- 
Scholes Model. Journal of King Saud University-Science, 28, 111-117.  
https://doi.org/10.1016/j.jksus.2015.08.004 

[27] Nuugulu, S.M., Gideon, F. and Patidar, K.C. (2021) A Robust Numerical Scheme for 
a Time-Fractional Black-Scholes Partial Differential Equation Describing Stock Ex-
change Dynamics. Chaos Solitons & Fractals, 145, Article ID: 110753.  
https://doi.org/10.1016/j.chaos.2021.110753 

[28] An, X., Liu, F., Zheng, M., et al. (2021) A Space-Time Spectral Method for Time- 
Fractional Black-Scholes Equation. Applied Numerical Mathematics, 165, 152-166.  
https://doi.org/10.1016/j.apnum.2021.02.009 

[29] Yan, R.F., He, Y. and Zou, Q. (2021) A Difference Method with Parallel Nature for 
Solving Time-Space Fractional Black-Schole Model. Chaos Solitons Fractals, 151, 
Article ID: 111280. https://doi.org/10.1016/j.chaos.2021.111280 

[30] Sarboland, M. and Aminataei, A. (2022) On the Numerical Solution of Time Frac-
tional Black-Scholes Equation. International Journal of Computer Mathematics, 99, 
1736-1753. https://doi.org/10.1080/00207160.2021.2011248 

[31] Roul, P. and Goura, V.M.K. (2021) Prasad A Compact Finite Difference Scheme for 
Fractional Black-Scholes Option Pricing Model. Applied Numerical Mathematics, 
166, 40-60. https://doi.org/10.1016/j.apnum.2021.03.017 

[32] Zhang, S. and Huang, J. (2022) A HIGH Order MQ Quasi-Interpolation Method for 
Time Fractional Black-Scholes Model. Acta Mathematica Scientia Series A, 42, 
1496-1505. (In Chinese) http://121.43.60.238/sxwlxbA/CN/Y2022/V42/I5/1496  

[33] Guo, B.L., Pu, X.K. and Huang, F.H. (2011) Fractional Partial Differential Equations 
and Their Numerical Solutions. Science Press, Beijing. (In Chinese) 

[34] Zhang, S.C. (2010) Finite Difference Numerical Computation of Parabolic Equa-
tion. Science Press, Beijing. (In Chinese) 

[35] Tavakoli, R. and Davami, P. (2006) New Stable Group Explicit Finite Difference 
Method for Solution of Diffusion Equation. Applied Mathematics & Computation, 
181, 1379-1386. https://doi.org/10.1016/j.amc.2006.03.005 

[36] Zhang, B.L., Yuan, G.X., Liu, X.P., et al. (1994) Parallel Finite Difference Methods 
for Partial Differential Equation. Science Press, Beijing. (In Chinese) 

[37] Liu, F., Zhuang, P. and Liu, Q. (2015) Numerical Methods and Applications of Frac-
tional Partial Differential Equations. Science Press, Beijing. (In Chinese) 

[38] Gao, G.H. and Sun, Z.Z. (2011) A Compact Finite Difference Scheme for the Frac-
tional Sub-Diffusion Equations. Journal of Computational Physics, 230, 586-595.  
https://doi.org/10.1016/j.jcp.2010.10.007 

https://doi.org/10.4236/jmf.2022.124036
https://doi.org/10.1016/j.ejbas.2014.10.003
https://doi.org/10.1016/j.camwa.2013.12.008
https://doi.org/10.1186/s13662-015-0643-z
https://doi.org/10.1016/j.camwa.2016.02.007
https://doi.org/10.1016/j.jksus.2015.08.004
https://doi.org/10.1016/j.chaos.2021.110753
https://doi.org/10.1016/j.apnum.2021.02.009
https://doi.org/10.1016/j.chaos.2021.111280
https://doi.org/10.1080/00207160.2021.2011248
https://doi.org/10.1016/j.apnum.2021.03.017
http://121.43.60.238/sxwlxbA/CN/Y2022/V42/I5/1496
https://doi.org/10.1016/j.amc.2006.03.005
https://doi.org/10.1016/j.jcp.2010.10.007


X. B. Yang et al. 
 

 

DOI: 10.4236/jmf.2022.124036 701 Journal of Mathematical Finance 
 

[39] Zhang, Y.N., Sun, Z.Z. and Wu, H.W. (2011) Error Estimates of Crank-Nicolson- 
Type Difference Schemes for the Sub-Diffusion Equation. SIAM Journal on Nu-
merical Analysis, 49, 2302-2322. https://doi.org/10.1137/100812707 

[40] Chi, X.B., Wang, Y.W., Wang, Y., et al. (2015) Parallel Computing and Implemen-
tation Technology. Science Press, Beijing. (In Chinese) 

[41] Liu, W. (2012) Practical Parallel Programming of Matlab. Beijing University of Aero-
nautics and Astronautics Press, Beijing. (In Chinese) 

[42] Car, P. and Wu, L.R. (2004) Time-Changed Lévy Processes and Option Pricing. Jour-
nal of Financial Economics, 71, 113-141.  
https://doi.org/10.1016/S0304-405X(03)00171-5 

 
 
 

https://doi.org/10.4236/jmf.2022.124036
https://doi.org/10.1137/100812707
https://doi.org/10.1016/S0304-405X(03)00171-5

	A New Parallel Difference Method for Solving Time Fractional Black-Scholes Model
	Abstract
	Keywords
	1. Introduction
	2. MASC-N Parallel Difference Method
	2.1. Time Fractional Black-Scholes Model
	2.2. Construction of the MASC-N Scheme

	3. Theoretical Analysis of MASC-N Scheme
	3.1. Existence and Uniqueness of the MASC-N Scheme Solution
	3.2. Stability of the MASC-N Scheme
	3.3. Convergence of the MASC-N Scheme

	4. Numerical Experiments
	5. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

