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Abstract 
Despite some major successes, Leveraged ETFs (LETFs) have resulted in sev-
eral striking failures that we believe could dramatically increase with the re-
cent introduction of single-stock LETFs in the U.S. Arguing for an urgent 
need to regulate leverage, we seek to educate regulators, investors, and LETF 
sponsors as to which single-stock LETFs are likely to be viable and which 
should be avoided. LETFs suffer from the effects of volatility drag and tail 
risk. With individual stocks tending to be much more volatile than stock in-
dexes, these two negative factors are considerably amplified in single-stock 
LETFs and are why so many European single-stock leveraged products have 
failed. We derive a volatility-based formula for regulating leverage to prevent 
the toxic mix of high leverage and extreme volatility. We calibrate the para-
meters of our formula through historical analysis of leverage applied to stocks 
in the S&P 500. We then demonstrate its effectiveness when applied to the 
stocks that induced failed European leveraged products. Finally, we apply our 
framework on a forward-looking basis to stocks in the S&P 500 with compar-
isons to single-stock LETFs that already trade in the U.S. 
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1. Introduction 

Leveraged exchanged traded funds (LETFs) provide investors a leveraged expo-
sure of k times to a market index (before expenses), with k typically ranging 
from −3 to 3. For example, k = 2 corresponds to a 2x LETF: On a day when the 
index increases by 1%, the 2x LETF rises by 2%. The case k = −1 corresponds to 
an inverse fund that benefits as the index declines: On a day when the index de-
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creases by 1%, the inverse LETF increases by 1%. Recently, single-stock leve-
raged ETFs have been launched in the U.S., already having been introduced in 
Europe [1]. 

A well-known drawback of LETFs is volatility drag or volatility decay, the 
tendency of volatility to impair investment returns over extended periods [2]. 
Most LETFs rebalance leverage daily and have to “buy high” and “sell low” each 
day to keep their leverage ratios fixed, which leads to poor performance in 
choppy markets.  

A striking example of volatility drag is provided by the Direxion Daily Gold 
Miners Index Bull and Bear 2x Shares, tickers NUGT and DUST, respectively. 
NUGT is the 2x bull (k = 2) Gold Miners LETF, and DUST is the 2x bear (k = −2) 
Gold Miners LETF. Together they are some of the worst-performing ETFs over 
the ten years through June 30, 2022, with NUGT having an average annual re-
turn of −47.5% and DUST an average annual return of −51.4%.1 We suggest this 
dreadful contemporaneous performance reflects failed products: Investors in 
these LETFs have lost tremendous value and would have fared better using al-
ternative speculative vehicles such as options. 

Tail risk is a lesser-known but more striking risk of LETFs and the broader 
class of leveraged exchanged traded products (LETPs) that includes both LETFs 
and leveraged exchange-traded notes. In [3], it was suggested that the LETPs of 
certain narrow and volatile investment indexes, such as mortgage REITs, had 
significant long-term liquidation risk. Several such liquidations occurred in 2020 
during the Covid-19 crisis [4]. 

European single-stock LETPs provide even more striking examples of tail risk. 
The U.K. Leverage Shares offers single-stock LETPs listed on various European 
stock exchanges. (The U.K. company Granite Shares has similar products.) As 
shown in Table 1, Leverage Shares has several single-stock 3x LETPs trading 
with returns of −95% or worse year-to-date through 8/16/2022. Many of these 
LETPs have prices of only a few pennies.  

 
Table 1. Price and cumulative year-to-date performance of 3x LETPs offered by Leverage Shares. Tail risk explains much of this 
behavior, with one-day stock price declines ranging from −15.6% to −35.1% translating into theoretical 3x LETP one-day losses 
ranging from −46.8% to −100%. (Actual one-day LETP losses can vary from theoretical losses due to emergency leverage reset 
mechanisms.) 

3x LETP COIN META NFLX NIO PLTR PYPL ROKU SHOP SQ 

Price as of 8/16/2022 $0.01 $1.62 $0.17 $0.19 $0.04 $0.07 $0.00 $0.01 $0.02 

Cumulative Return 12/31/21 to 8/16/22 −99.8% −95.3% −99.4% −95.4% −96.6% −96.0% −99.7% −99.8% −97.6% 

Max One-Day Stock Decline −26.4% −26.4% −35.1% −15.2% −21.3% −24.6% −23.1% −16.0% −15.6% 

Theoretical Max One-Day 3x LETP Decline −79.2% −79.2% −100.0% −45.5% −63.9% −73.8% −69.2% −48.1% −46.8% 

Source: Leverage Shares website for LETP prices and returns.  

 

 

1Just to be clear, these returns are −47.5% and −51.4% per year(!), not cumulative returns for the en-
tire period. The source of these returns is the 6/30/2022 Fact Sheet provided by Direxion. 
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Tail risk accounts for much of the dramatic cumulative losses. For example, 
Netflix (Ticker: NFLX in Table 1) had a −35.1% return on April 20, 2022, which 
would translate to a −100% return (3x −35.1% = −105.3% < −100%), in theory 
completely wiping out the 3x LETP. The Netflix 3x LETP price is not zero due to 
an “unscheduled rebalance” mechanism that preserves a modicum of value dur-
ing extreme price moves. Nevertheless, the product has lost all of its value for 
practical purposes. 

Tail risk doesn’t have to result in complete liquidation to be detrimental. For 
example, if a stock has a 25% one-day decline (several stocks in Table 1 have 
such a decline) then $1 invested in a 3x LETP will decrease 75% to $0.25. This 
loss requires a much higher positive return of 300% in the 3x LETP to get back 
to even, exemplifying how even non-liquidation tail events are damaging and 
bleed into volatility drag over longer time intervals. 

Without proper regulation, single-stock LETFs could lead to a host of failed 
LETFs like DUST, NUGT, and the European single-stock LETP examples. That 
said, not all LETFs are flawed products. As noted in [5], several long index 
LETFs such as the S&P 500 have outperformed their stated multiples on a cu-
mulative-return basis suggesting that investors, in the aggregate, have benefited 
from those products. Through July 31, 2020, ProShares UltraPro QQQ (TQQQ) 
had been the single-best performing mutual fund or ETF through the prior dec-
ade [6].  

These examples and counterexamples are one reason why LETFs have been so 
hotly debated, with some investors and academics touting them and others de-
crying them. We take the middle view. Rather than proposing a complete ban on 
single-stock LETFs, we suggest regulating and optimizing these products to al-
low viable products and avoid destructive ones. 

Unfortunately, the analysis of LETFs has been so theoretically complex as to 
be poorly understood by investors and regulators. We provide background on 
the volatility drag and tail risk phenomena to help cut through this complexity. 
Although most prior research on LETFs focuses on cumulative returns, cumula-
tive returns correspond to nonstationary processes that are difficult to charac-
terize. We instead analyze expected compound returns (which are stationary and 
easily analyzed) rather than cumulative returns, providing the critical formulas 
driving volatility drag and illustrative tables demonstrating its impact. 

We then develop an analytic framework for capping the leverage levels of sin-
gle-stock LETFs. We propose rejecting any leveraged product that converts an 
investment with a positive expected return (e.g., a stock) into an investment with 
a negative expected return (e.g., a long single-stock LETF). This proposal aims to 
prevent LETFs that will lose money for investors (in the aggregate) without of-
fering any useful purpose, such as hedging risk or improving market liquidity.  

We know beforehand that stocks with high measured volatility will likely have 
negative returns when high leverage is applied. High underlying stock returns 
can offset the negative impact of volatility, but individual stock returns are near-
ly impossible to predict. We instead analyze empirical data to set a general ex-
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pected return level, applied to all stocks, that will tend to prevent failed products 
while preserving viable ones. The resulting formula provides a simple analytic 
framework for setting regulatory leverage caps as a function of expected return 
and volatility, with more volatile stocks having lower leverage caps. We also jus-
tify applying the same derived caps to inverse LETFs, resulting in a comprehen-
sive framework for regulating LETF leverage.  

We optimize the parameters of this approach by analyzing leverage con-
straints of single-stock LETFs for stocks in the S&P 500. We demonstrate the ef-
fectiveness of our solution when applied to the stocks that induced failed Euro-
pean leveraged products. We then provide forward-looking leverage analysis, 
offering tables of leverage caps for the top twenty companies in the S&P 500 and 
comparisons with current single-stock LETFs already trading in the U.S.  

The remainder of this paper is organized as follows. Section 2 discusses the 
mathematics of volatility drag, including background on the volatility and return 
calculations that we will apply. In Section 3, we justify and derive our formula 
for capping leverage and discuss the application of leverage to inverse funds. 
Section 4 explains our technique for setting the formula parameters of volatility 
and return. In Section 5, we optimize the return parameter using historical data 
on stocks in the S&P 500 and then apply our approach to stocks that induced 
failed European leveraged products. In Section 6, we provide proposed leverage 
limits for the top twenty stocks in the S&P 500 and compare our leverage limits 
with single-stock LETFs already trading in the U.S. Section 7 provides our con-
clusions and ideas for future research. 

2. Mathematics of Volatility Drag  

Geometric average returns, corresponding to compound returns, are always less 
than or equal to arithmetic average returns, with equality occurring only in the 
case of non-varying (i.e., constant) returns. Under standard market assumptions 
of the Black-Scholes Merton model, we can statistically relate the geometric 
mean (compound return) to the arithmetic mean (average one-period return) 
with the following formula [7]: 

2

2
r σµ = − ,                          (1) 

with r the expected return over one period (arithmetic average), σ the standard 
deviation of the return over one period (volatility), and μ the expected growth 
compounding rate over time (geometric average). Equation (1) is the source of 
the term volatility drag, also known as volatility decay.  

We present a 2nd-order approximation (derived in [3]) for volatility drag for 
an LETF with leverage k applied to an investment over T periods with the return 

series 1 2, , , Tr r r , whose arithmetic average is 1
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with ( )r̂ k  the geometric average (compound) return of the k-times LETF. Un-
like Equation (1), Equation (2) makes no assumptions about the probability dis-
tribution of investment returns and was first derived in [8].  

We have found that Equation (2) is generally accurate when applied to index 
LETFs that rebalance leverage daily, with inaccuracies starting to creep in when 
kσ is large or when applied to LETFs that rebalance monthly. These errors are 
corrected by incorporating the full Taylor Series expansion and including skew 
and kurtosis terms [3].  

Moreover, the errors in Equation (2) tend to underestimate volatility drag (i.e., 
overestimate compound returns) by not factoring in the impact of extreme neg-
ative returns that can occur in actual market data. In other words, Equation (2) 
does not fully incorporate tail risk, the risk of a dramatic one-day loss greatly 
diminishing the compound return [3].  

With justification to follow, we will apply the 2nd-order approximation of Eq-
uation (2) for our analysis and even simplify it further. We note that the factor 
1 kr+  is small when applied on a daily time scale. For example, kr  is roughly 
0.001 for a leverage factor of k = 3 and a daily average return corresponding to 
an average annual return of 11%. We thus will omit the term 1 kr+ , resulting in 
the equation 

( )
2 2

ˆ
2

kk krr σ
≈ −                        (3) 

The advantage of Equation (3) is that it results in a simple solution for setting 
leverage caps. Note that plugging in k = 1 and rearranging terms gives us the rela-
tion between compound return and arithmetic average return for the unleveraged 

investment ( )
2

1ˆ
2

rr σ
= + , a relation that we will use in future calculations. 

The astute reader may question our use of Equations (2) and (3) given that 
they don’t incorporate tail risk even as single-stock LETFs have much more tail 
risk than index LETFs. Ideally, we would factor in tail risk through skew and 
kurtosis such as in [3]. This criticism is valid, but we offer several counterargu-
ments.  

First, adding skew and kurtosis factors would preclude us from finding a 
closed-form solution for setting leverage caps. Also, skew and kurtosis are chal-
lenging to forecast accurately for individual stocks. Finally, the formula we de-
rive for capping leverage significantly reduces tail risk and its impact on return 
calculations. In other words, our solution purposefully mitigates the very phe-
nomenon that would make our equations inaccurate by severely limiting k when 
volatility σ is large. 

Note that volatility drag in Equation (3) is quadratic in both volatility σ and 
leverage factor k, which explains why it is essential to strictly limit leverage k 
when stock volatility σ is high in order to prevent failed LETFs. 

Background on Volatility and Return Calculations 

We next explain our volatility and return calculations. Although this back-
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ground appears to be elementary, we believe it is necessary so that others can 
accurately apply our approach. In particular, we want financial regulators such 
as the SEC to be able to implement our analysis. To begin, Equation (3) applies 
to volatility calculated using “simple” daily returns, whereas volatilities used in 
options models are computed using logarithmic daily returns. The two measures 
result in similar values when applied to daily price changes but do differ slightly.  

We quote returns and volatilities on an annualized basis since finance profes-
sionals think in annualized terms. However, applying Equation (3) and related 
formulas using annualized returns and volatilities would be a mistake. Compu-
tations must be performed using daily returns and volatility because the leverage 
compounding period is daily. We thus provide formulas to convert between the 
daily stock returns and volatilities we use and the annualized stock returns and 
volatilities we quote.  

We use the standard textbook conversion formula [7] for volatility  
252a dσ σ= , with aσ  the annualized volatility and dσ  the daily volatility 1 

(assuming 252 trading days in a year). For example, if we quote an annualized 
volatility of 30% that implies a daily volatility of roughly 1.8898% 30% 252≈ . 
Note that this formula is only theoretically valid for converting volatilities meas-
ured using logarithmic returns. However, the conversion provides intuition for 
finance professionals accustomed to annualized volatilities.  

The conversion between daily compound returns and annual compound re-
turns is found by compounding daily returns through the course of one year ac-
cording to the formula ( )2521 1ˆ ˆa dr r= + − , with âr  the average annual compound 
return and d̂r  the average daily compound return of an investment. Thus, an 
annual compound return of 10% corresponds to a daily compound return of 
roughly 0.03783%.  

3. Justifying and Deriving the Formula to Cap Leverage 

We propose that a long (i.e., k > 0) LETF should not exist if it converts an in-
vestment with a positive return into one with a negative return. Such an LETF 
will lose money for investors over time when these investors would have, on av-
erage, profited from just owning the underlying stock or index. Moreover, in-
vestment vehicles such as options and futures allow leveraged speculation with-
out the drawback of volatility drag. Investors who intend on using leverage are 
better served using these alternative speculative vehicles.  

We grant that not all products need have a positive return to have a reason to 
exist. Products that reduce risk by hedging are valuable and necessary. For ex-
ample, inverse ETFs that short major stock indexes lose money in the long run 
yet have a valid purpose of hedging risk. No such risk-reduction purpose exists 
for long LETFs.  

Another justification for speculative products, such as futures, is that they en-
hance market liquidity and decrease volatility over the long run. Intuitively, this 
does not apply to LETFs given that LETFs buy high and sell low with trading 
that tends to exacerbate extreme market moves. Some researchers have shown 
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that LETFs increased volatility during the financial crisis [9]. Although other re-
searchers have found that LETFs don’t meaningfully increase volatility [10], it is 
clear that LETFs don’t reduce market volatility—they either increase volatility or 
have no meaningful impact. Thus, we argue that single-stock LETFs should not 
exist if they cause investors to consistently lose money (versus an investment in 
the stock) while neither serving as hedging vehicles nor acting to reduce market 
volatility. 

Converting the above arguments into math, we propose regulatory caps kreg 
for the leverage k by setting the expected LETF compound return ( )ˆ 0r k =  in 
Equation (3) and solving for k, which results in the formula 

2

2
reg

rk
σ

=                           (4) 

Interestingly, our proposed regulatory leverage of Equation (4) is twice the 
return-optimizing leverage derived in [8]. Recalling from Equation (3) that 

( )
2

1ˆ
2

rr σ
= + , we can express Equation (4) as  

( ) ( )
2

2 2

2 1
2 2 1

1
ˆ

ˆ
,regk

r
r

σ

σ σ

 


= +


 
+

=                   (5) 

with ( )ˆ 1r  the average daily compound return and σ the daily volatility of the 
underlying stock. 

Table 2 shows the suggested leverage cap kreg of Equation (5) for various 
combinations of stock returns and volatilities. Stocks with low volatility can have 
leverage caps of several multiples, while stocks with high volatility have leverage 
caps close to one.  

 
Table 2. Setting leverage caps kreg as a function of stock volatility and return. Caps are 
highly dependent on stock volatility, with highly volatile stocks having caps close to one. 
Independent of this table, we suggest that leverage should also be capped at a fixed ratio 
of three or lower. 

Table of 
kreg  

Annualized Stock Volatility 

20% 30% 40% 50% 60% 70% 80% 90% 100% 

Average 
Annual 

Compound 
Return 

1% 1.50 1.22 1.12 1.08 1.06 1.04 1.03 1.02 1.02 

2% 1.99 1.44 1.25 1.16 1.11 1.08 1.06 1.05 1.04 

3% 2.48 1.66 1.37 1.24 1.16 1.12 1.09 1.07 1.06 

4% 2.96 1.87 1.49 1.31 1.22 1.16 1.12 1.10 1.08 

5% 3.44 2.08 1.61 1.39 1.27 1.20 1.15 1.12 1.10 

6% 3.91 2.30 1.73 1.47 1.32 1.24 1.18 1.14 1.12 

7% 4.38 2.50 1.85 1.54 1.38 1.28 1.21 1.17 1.14 

8% 4.85 2.71 1.96 1.62 1.43 1.31 1.24 1.19 1.15 

9% 5.31 2.92 2.08 1.69 1.48 1.35 1.27 1.21 1.17 

10% 5.77 3.12 2.19 1.76 1.53 1.39 1.30 1.24 1.19 
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Single-stock LETFs are riskier than index LETFs which, with a few exceptions, 
have leverage of at most three. Common sense dictates that riskier single-stock 
LETFs should have a similar leverage restriction. Moreover, the number of failed 
European LETPs suggests that a fixed leverage cap below three would be more 
appropriate. In this paper, we will apply a fixed cap kreg ≤ 3 to show a fuller range 
of how kreg varies with volatility. However, we suggest that a lower cap level (e.g., 
kreg ≤ 2 or kreg ≤ 2.5) makes more sense from a regulatory perspective. Note that this 
dual cap approach is comparable to how banks are regulated using both a mod-
el-based tier 1 capital adequacy ratio (akin to Table 2) and a non-model-based le-
verage ratio (akin to a fixed leverage cap). 

Leverage Limits for Inverse Funds 

Let us also consider inverse funds (k < 0) and the impact of volatility on them. 
We define leveraged volatility drag as ( ) ( )ˆ 1ˆk kr r− ⋅ , the difference between 
the compound return of a k–times LETF and k times the unleveraged index’s 
compound return. Leveraged volatility drag measures how much, on a compound 
return basis, a k–times LETF will underperform its stated performance. We  
can calculate leveraged volatility drag by applying Equation (3) and substituting 

( )
2

1ˆ
2

rr σ
= +  to get 

( ) ( ) ( )2 1
1

2
ˆ ˆ

k
rkr

k
k

σ− −
− ⋅ ≈                     (6) 

We provide this formula to show that an inverse LETF with k = −1 has the 
same leveraged volatility drag as a 2-times LETF with k = 2. A double inverse 
LETF with k = −2 has the same amount of leveraged volatility drag as a 3-times 
LETF with k = 3. In other words, inverse LETFs have similar performance drags 
to long LETFs with an additional turn of leverage, a dynamic which has also 
been observed in [2].  

We argue that inverse LETFs should be capped with at most the same amount 
of leverage as long LETFs given that inverse LETFs have heightened perfor-
mance drag (in addition to the inherent risk in shorting stocks). In other words, 
we recommend that leverage be restricted to an amount ranging from −kreg to 
+kreg. Equation (6) even suggests capping inverse LETFs with lower magnitudes 
than long LETFs. For example, a leverage range of −2.0 to 2.5 seems more de-
fensible than a range of −2.5 to 2.5. However, this is not how most LETFs are 
currently structured, with index LETF sponsors typically offering long LETFs 
and inverse LETFs with the same amount of leverage (e.g., k = ±3 LETFs).  

4. Determining the Regulatory Parameters 

Setting the return and volatility parameters of Equation (5) for an individual 
stock requires a reasoned analysis. Given that the past volatility of a stock is a 
good predictor of future volatility, we can use a stock’s historical volatility as an 
estimate of the stock’s future volatility. However, a stock’s past returns are a 

https://doi.org/10.4236/jmf.2022.124033


M. S. Crouse 
 

 

DOI: 10.4236/jmf.2022.124033 637 Journal of Mathematical Finance 
 

poor predictor of future returns, so we will instead set return as a single parame-
ter applied uniformly across all stocks. 

4.1. Setting the Volatility Parameter 

To estimate future volatility, we propose taking the maximum of 5-year and 
10-year historical volatilities. We use these extended periods because historical 
volatility measurements can change dramatically from year to year when meas-
ured using shorter periods such as one year. This would result in our kreg cap 
changing dramatically from year to year, whereas any regulatory limit should be 
stable and consistent.  

Ideally, the volatility measurement period should include a complete business 
cycle with at least one downturn, suggesting the use of the 10-year volatility as 
used in other economic measures such as the Cyclically Adjusted PE (CAPE) 
Ratio invented by Campbell and Shiller [11]. Otherwise, the measurement may 
miss the heightened volatility that stocks experience during an economic down-
turn. However, shorter time frames for historical volatility tend to offer more 
accurate predictors for near-term future volatility. Thus, we use the 5-year his-
torical volatility to capture more recent volatility trends. We apply the maximum 
of these two volatility measures to decrease the possibility of underestimating 
future volatility, as such underestimation could significantly increase the like-
lihood of tail events and failed products. 

When finance professionals measure volatility over extended periods (e.g., ≥5 
years), they typically use weekly or monthly price returns. However, we stress 
the importance of measuring volatility using daily price returns. For most LETFs, 
including all single-stock LETFs, leverage is rebalanced daily, and thus daily vo-
latility determines the amount of volatility drag an LETF experiences. Moreover, 
volatility measured using monthly price returns tends to be significantly lower 
than volatility measured using daily price returns [3] and thus underestimates 
the impact of volatility drag for LETFs that rebalance leverage daily.  

4.2. Setting the Return Parameter 

Setting the compound return ( )ˆ 1r  parameter for a given stock is more chal-
lenging. First, historical returns of an individual stock are not a good predictor 
of future returns of that stock. Instead, we set the return parameter by estimating 
the expected return prospects of the market as a whole. We will now discuss 
several alternatives for this calculation. 

The first alternative is to use long-term historical averages. According to data 
from the Center for Research in Security Prices (CRSP), the annual compound 
return of the S&P 500 from 1928 to 2021 was 10.21% per year. Most finance 
professionals would agree that 10.21% is too high a return expectation given 
various factors (such as the risk-free rate, stock yields, and expected growth) 
used to derive forward-looking returns [12].  

Damodaran has compared various approaches for estimating the equity risk 
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premium (ERP), finding that the implied ERP has the highest correlation with 
future returns [12]. As of August 1, 2022, Damodaran’s implied market risk 
premium results in an expected return of 8.07%, as shown on his website [13]. 
Thus, we could set ( )ˆ 1r  using the annual compound return of 8.07% converted 
to a daily compound return of roughly 0.03080%. This would be a reasonable 
approach to setting the return parameter if we were engaged in a purely aca-
demic exercise.  

However, we are not purely engaged in an academic exercise. We are propos-
ing regulatory limits to prevent failed LETF products while allowing successful 
LETF products. Moreover, “typical” stock returns often underperform the mar-
ket return [14]. This fact suggests that the expected return parameter for regu-
lating a typical single-stock LETF should be lower than the expected market re-
turn, as a lower parameter value would be more effective for a broader set of 
stocks.  

Thus, we apply a data-driven approach instead of setting the return parameter 
through a theoretical estimate. Using historical returns of S&P 500 stocks, we 
optimize the return parameter by choosing which parameter would work best 
for preventing failed LETF products while preserving viable products.  

5. Application to S&P 500 Data 

For our analysis, we collected daily return data on the constituents of the S&P 
500 as of July 31, 2022. We sought to test the effectiveness of leverage caps for 
hypothetical LETFs over the ten years from July 31, 2012, to July 31, 2022. We 
chose a 10-year testing period to characterize volatility drag effectively and have 
a sufficient sample size to capture low-probability tail events that cause liquida-
tions. 

We used data from the prior ten years, July 31, 2002, to July 31, 2012, to cal-
culate the volatility used in setting the leverage caps for each stock of the S&P 
500, using the maximum of both a 10-year and 5-year historical volatility meas-
ure. Note that some stocks did not have sufficient historical data for a full 5-year 
or 10-year volatility measure. In this case, we calculated volatility using the 
available historical data subject to the constraint that at least one year of return 
data was available. We thus excluded stocks with less than one year of historical 
data for the period ending July 31, 2012, resulting in a sample size of 454 stocks. 

With the volatility parameters in hand, we then uniformly varied the com-
pound return parameter in the range of 1% to 10%, applying Equation (5) to set 
leverage caps kreg for each stock. We then classified “errors” into three types: 

1) Liquidation Event: If a hypothetical LETF had a negative “tail event” that 
would wipe out the LETF (e.g., a 1/3 drop for 3x leveraged LETF), we classified it 
as a liquidation error. In this case, LETF investors would have seen most to all of 
their value destroyed in a single day. 

2) Failed Product: If a hypothetical LETF had a negative return while the un-
leveraged return was positive, we classified this as a failed product error. In this 
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case, LETF investors, on the aggregate, would have lost money even as the stock 
had a positive return over the period. 

3) Higher Viable Leverage: If a hypothetical LETF had a greater positive 
compound return than the unleveraged stock return, we classified this as a high-
er viable leverage error. In this case, a higher leverage level could have been em-
ployed without significant negative consequences. 

Our goal was to find the return parameter that minimized a weighted average 
of the three types of errors. Note that error type 3 counterbalanced the other er-
rors and ensured that the optimization didn’t select the lowest possible return 
parameter. Error weightings were chosen with a type 1 error weighting of eight, 
a type 2 error weighting of two, and a type 3 error weighting of one. Intuitively, 
type 1 errors are more consequential than type 2 errors which are more signifi-
cant than type 3 errors. The exact value of weightings was subjective but resulted 
in an optimal return parameter within a reasonable range.  

One may contend that our data optimization has a survivorship bias since we 
selected current S&P 500 members rather than S&P members as of July 31, 2012. 
Thus, our data exclude prior S&P 500 members that have gone bankrupt during 
the period. We claim that no long LETFs, regardless of leverage amount, can be 
successful for companies that go bankrupt. Therefore, optimizing parameters 
based on those companies is questionable, as they typically have highly volatile 
returns when it is clear that the companies will likely fail.  

Allowing for a return range of 1% to 10%, we found that an annual compound 
return parameter of 5.9% (daily compound return of 0.02275%) worked best at 
minimizing weighted errors. The interpretation of our model with the 5.9% re-
turn parameter is as follows: Our model targets leverage caps such that sin-
gle-stock LETFs will have positive average annual returns if their underlying 
stocks have average annual returns greater than 5.9%.  

In our view, 5.9% is an intuitively reasonable parameter choice, as it is lower 
than the S&P 500 return expectation of 8.07% per our prior arguments but also 
bounded away from 1%, which is overly restrictive compared to viable index 
LETFs that are already outstanding. For example, the S&P 500 index has had a 
volatility of just under 20% over the past 20 years. From Table 2, an investment 
with a volatility of 20% is restricted to leverage under 2.50x for a return parame-
ter in the range of 1% to 3%. However, 3x S&P 500 LETFs have been successful 
products over the past ten years. For instance, the ProShares 3x S&P 500 (ticker: 
UPRO) had an average annual NAV return of 27.35% per year versus 21.27% for 
the ProShares 2x S&P 500 (ticker: SSO) and 12.96% per year for the S&P 500 for 
the ten years ending June 30, 2022.2 

Table 3 provides the error types (including the number and percentages of 
errors) and leverages statistics of our optimization in contrast to various fixed 
leverage caps. We include the cap kreg = 1.82 as a point of comparison versus our 
optimization, which has an average kreg = 1.82. 

 

 

2The sources of these returns are the June 30, 2022 Fact Sheets from the ProShares website. 
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Table 3. Comparison of the performance of a volatility-based leverage cap with a fixed 
leveraged cap for companies in the S&P 500. Liquidation events and failed products sig-
nificantly increase as leverage is ramped up to 3x. Our volatility-based cap has far fewer 
failed products (20 versus 32) than a fixed cap for the same average degree of leverage 
(kreg = 1.82). 

 

Error Types Statistics of kreg 

Liquidation 
Event 

Failed 
Product 

Higher Viable 
Leverage 

Avg  
kreg 

Min  
kreg 

Max  
kreg 

Volatility-based kreg  
with return = 5.9% 

0 
(0.00%) 

20 
(4.41%) 

370 
(81.50%) 

1.82 1.15 3.00 

kreg = 1.50 
0 

(0.00%) 
20 

(4.41%) 
378 

(83.26%) 
1.50 1.50 1.50 

kreg = 1.82 
0 

(0.00%) 
32 

(7.05%) 
357 

(78.63%) 
1.82 1.82 1.82 

kreg = 2.00 
2 

(0.44%) 
35 

(7.71%) 
340 

(74.89%) 
2.00 2.00 2.00 

kreg = 2.50 
4 

(0.88%) 
60 

(13.22%) 
297 

(65.42%) 
2.50 2.50 2.50 

kreg = 3.00 
13 

(2.86%) 
97 

(21.37%) 
259 

(57.05%) 
3.00 3.00 3.00 

 
The high frequency of liquidation events and product failure support our 

proposal for a common-sense threshold of kreg = 3.00 or lower. In Table 3, we 
see that employing a flat kreg = 3.00 results in 2.86% liquidation events and 
21.37% failed products. These percentages comport with the number of liquida-
tions and failed products of Table 1 given that LETFs are more likely to be in-
troduced for volatile stocks (such as volatile tech stocks instead of sedate utility 
stocks), some of which are not in the S&P 500. 

Comparing the volatility-based cap with a fixed leverage cap of kreg = 1.50, we 
see that the volatility-based cap has the same number of liquidations (0) and 
failed products (20) but with a higher average leverage amount of kreg = 1.82. 
Comparing the volatility-based cap with a fixed leverage cap of kreg = 1.82, we see 
that the volatility-based cap has many fewer failed products (20 versus 32 for the 
fixed cap) for the same amount of average leverage. Together these results con-
firm our claim that volatility-based caps are superior to fixed leverage ratio caps. 

Effectiveness for 2022 Technology Sell-off 

As shown in Table 4, we applied our leverage caps to evaluate how they would 
perform relative to the failed Leverage Shares 3x LETPs shown in Table 1 over 
the period 12/31/2021 to 8/16/2022. To avoid hindsight bias, we measured vola-
tility through 12/31/2021 to set leverage caps going into 2022, relaxing our one- 
year data requirement for COIN (7.5 months were available) to ensure a com-
plete comparison.  
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Table 4. Effectiveness of our volatility-based caps for regulating failed European 3x LETPs during the 2022 technology sell-off. 
With an average leverage kreg = 1.43, our hypothetical LETFs improve tail risk and cumulative return metrics despite historical 
volatility underestimating actual in-period volatility. Surprisingly, the returns of inverse LETFs, shown at the bottom of the table, 
show dramatic improvements with leverage caps.  

YTD Thru 8/16/2022 COIN META NFLX NIO PLTR PYPL ROKU SHOP SQ Avg 

Preceding Historical Volatility 58.9% 36.7% 47.5% 101.9% 77.6% 35.7% 78.9% 52.6% 54.0% 60.4% 

Actual In-Period Volatility 116.2% 64.5% 76.4% 94.0% 80.9% 65.9% 99.4% 103.8% 97.1% 88.7% 

kreg 1.33 1.85 1.51 1.11 1.19 1.90 1.18 1.42 1.39 1.43 

3x Max 1-Day Loss −79.2% −79.2% −100.0% −45.5% −63.9% −73.8% −69.2% −48.1% −46.8% −67.3% 

kreg Max 1-Day Loss −35.1% −48.9% −53.0% −16.8% −25.4% −46.7% −27.3% −22.7% −21.7% −33.1% 

3x Cum Rtn −99.8% −95.5% −100.0% −94.2% −96.4% −94.8% −99.5% −99.7% −97.4% −97.5% 

kreg Cum Rtn −79.1% −75.6% −78.9% −39.0% −54.8% −76.2% −71.5% −86.0% −64.5% −69.5% 

−3x Cum Rtn −87.7% 41.3% 100.3% −92.4% −42.7% 28.5% −48.8% −33.6% −87.8% −24.8% 

−kreg Cum Rtn 6.6% 62.5% 96.3% −16.8% 24.1% 53.9% 47.4% 84.8% −10.4% 38.7% 

 
Note in Table 4 that our historical volatility calculations going into the period 

(averaging 60.4%) were substantially below the actual volatility in the period 
(averaging 88.7%). The period 2016-2021 was relatively quiescent for technology 
stocks, while 2022 was highly volatile in the face of Fed rate hikes and a sell-off 
in technology stocks. This type of unforeseen volatility spike is not uncommon 
and provides a robust test for our method.  

To keep an apples-to-apples comparison, we evaluated the hypothetical 
performance of 3x LETFs with our hypothetical LETFs capped at kreg. At the 
bottom of Table 4, we also compared the hypothetical performance of −3x in-
verse LETFs to our hypothetical inverse LETFs capped at −kreg. Note that the 
actual 3x LETPs include fees and emergency leverage-reset mechanisms that 
we do not attempt to model. However, a comparison of the hypothetical re-
turns in Table 4 with the actual Leverages Shares 3x LETP returns in Table 1 
shows that our hypothetical 3x LETF returns are very close to those of the ac-
tual 3x LETP products.  

Despite using underestimated volatility, our proposed kreg caps were successful 
across many fronts. First, we avoided the Netflix liquidation event, with a −53% 
max loss compared to a −100% max loss for the theoretical 3x LETF. More gen-
erally, the maximum one-day losses were, on average, more than halved from 
−67.3% using 3x leverage to −33.1% using kreg. In addition, cumulative returns 
averaged −69.5% using kreg versus −97.5% using 3x leverage. Although this dif-
ference may not seem substantial, a 97.5% loss requires a 39.7x increase in capi-
tal to offset the loss versus a 3.28x increase in capital to offset a −69.5% loss. In 
other words, the −97.5% loss is catastrophic, whereas the −69.5% loss, while 
substantial, is recoverable. 

The performance of hypothetical inverse LETFs at the bottom of the table 
is even more striking. Limiting leverage to −kreg substantially improved the 
performance of hypothetical inverse LETFs by a staggering amount of 63.5% 
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(!), with a −24.8% average cumulative return for the −3x inverse LETFs versus 
a +38.7% average cumulative return for inverse LETFs capped at −kreg. This 
result is surprising given that this period was a bear market in which one 
would expect highly leveraged inverse LETFs to outperform. Except for Net-
flix, using lower leverage at −kreg significantly outperformed for all the inverse 
LETFs.  

These results demonstrate the power of tail risk and volatility drag – the huge 
volatilities experienced during this period meant that highly leveraged LETFs 
were likely to underperform whether they were long or short. The implication 
for leverage regulation is clear: ±3x leverage is too much for this set of highly 
volatile stocks.  

6. Suggested Leverage Limits Going Forward 

In Table 5, we provide leverage caps on a go-forward basis for the top twenty 
stocks in the S&P 500 using our 5.9% annual return parameter, with volatility 
the maximum of the 5-year and 10-year historical volatilities (applied to daily 
price returns) measured through July 31, 2022. For this data, the 5-year volatili-
ties are consistently higher than the 10-year volatilities, thus providing the pri-
mary limiting factor for kreg. As in our optimization, we use the longest period 
available for stocks with a price history of fewer than five years, subject to the 
constraint that at least one year of history is available.  

In Table 6, we compare our leverage caps with leverage levels for stocks that 
already have single-stock LETFs trading in the U.S. We use the same methodol-
ogy as described for Table 5.  

Overall, we find that current single-stock LETFs in the U.S., for the most part, 
fit within our proposed guidelines. We note that the LETFs of AXS Investments 
adhere to our recommendations and appear to incorporate volatility analysis in-
to their leverage amounts. The two exceptions to our guidelines are the Coinbase 
(Ticker: COIN) LETF of GraniteShares and the Tesla (Ticker: TSLA) LETF of 
Direxion, which at leverage ratios of k = 1.50 each exceed our recommendations 
of kreg = 1.15 for Coinbase and kreg = 1.28 for Tesla.  

 
Table 5. Proposed leverage caps for single-stock LETFs for the top 20 stocks in the S&P 
500. The caps vary significantly based on stock volatility, with Tesla having the lowest cap 
at kreg = 1.28. We have applied a hard cap on leverage of kreg = 3.00, but arguments can be 
made for a lower hard cap level (e.g., kreg = 2.00 or 2.50). 

Ticker kreg Ticker kreg Ticker kreg Ticker kreg 

AAPL 2.11 CVX 1.95 MA 2.09 PG 3.00 

ABBV 2.40 GOOGL 2.30 META 1.73 TSLA 1.28 

AMZN 1.98 HD 2.51 MSFT 2.30 UNH 2.32 

BAC 1.95 JNJ 3.00 NVDA 1.46 V 2.39 

BRK.B 3.00 JPM 2.17 PFE 2.77 XOM 2.07 
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Table 6. Comparison of proposed leverage caps versus the leverage levels of single-stock 
LETFs trading in the U.S. The leverage levels of most LETFs are within our guidelines 
except for the two stocks highlighted in orange – Coinbase and Tesla. 

 
Proposed Caps AXS Investments GraniteShares Direxion 

Ticker Inverse Long Inverse Long Inverse Long Inverse Long 

AAPL −2.11 2.11 
   

1.75 
  

COIN −1.15 1.15 
   

1.50 
  

NKE −2.18 2.18 −2.00 2.00 
    

NVDA −1.46 1.46 −1.25 
     

PFE −2.77 2.77 −2.00 2.00 
    

PYPL −1.66 1.66 −1.50 1.50 
    

TSLA −1.28 1.28 −1.00 
 

−1.00 1.25 −1.00 1.50 

 
In our view, Coinbase is currently too volatile to have a successful long LETF 

with any significant leverage due to a high historical volatility of 87.25% meas-
ured using data starting from Coinbase’s 4/14/2021 IPO. Given that our pro-
posed leverage limit of 1.15 is likely not high enough to attract speculators, we 
suggest that sponsors avoid long LETFs for Coinbase until there is a noticeable 
and persistent decline in stock volatility. 

For Tesla, we measure a volatility of 63.81%, resulting in a leverage cap of kreg 
= 1.28. Although the leverage of kreg = 1.50 does not deviate as much from our 
cap as does the Coinbase LETF, we believe that the Direxion Tesla LETF is also 
at risk of becoming a failed product over the long term. 

7. Conclusions and Policy Implications 

We have provided a simple, intuitive framework for regulating LETF leverage 
for what has been a controversial and theoretically complex topic. We have 
shown why single-stock LETFs should have regulatory leverage caps and why 
volatility should be incorporated into those caps. We have derived how to set le-
verage caps and, through a simple optimization, have set parameters for calcu-
lating those caps in the future. One may quibble with the exact value of our pa-
rameters, but we believe that our choices are intuitive and adhere to common 
sense. 

Applying our approach to failed European single-stock 3x LETPs during the 
2022 sell-off, we find that our proposed regulation of leverage substantially im-
proves both long and inverse LETF performance. This result demonstrates that 
3x leverage is too high for this set of volatile stocks and that our simple regula-
tion could significantly improve single-stock LETF products.  

Although the current single-stock LETFs in the U.S. mostly follow our leve-
rage guidelines, we expect LETF sponsors to “push the envelope” as these prod-
ucts become popular. We do not claim that our cap levels are perfect but do 
suggest that any LETFs with leverage significantly higher than our proposed caps 
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should be rejected or at least closely scrutinized. If not, the U.S. will risk having a 
graveyard of failed products similar to Europe. 

Philosophically, one could argue for free markets such that speculators em-
ploying leverage who are wiped out “get what they deserve”. We offer two coun-
terarguments. First, many U.S. LETF investors are retail investors that don’t fully 
comprehend the risks inherent in single-stock LETF products. Second, we can 
identify ahead of time which single-stock LETF products are flawed (i.e., highly 
leveraged LETFs of stocks with elevated volatilities). Rather than allow these po-
tentially defective products, we should improve them through prudent regula-
tion and thoughtful product design, as we have discussed in this article. We thus 
hope the SEC will incorporate our analysis as they consider regulating sin-
gle-stock LETFs. 

For future research, we recommend using this method to regulate leverage le-
vels for volatile foreign and sector LETFs. For example, there is strong investor 
demand for LETFs in China, with the Chinese-A market tending to exhibit greater 
volatility than the U.S. market [15], which suggests that our volatility-based ap-
proach could lead to regulatory guidelines for the Chinese market. Even sector 
index LETFs in the U.S. could benefit from this approach—if not from strict 
regulation, then from improved product design. The expected return parameter 
should be tailored to the particulars of each market or index, but the general 
framework still applies.  

In addition, more in-depth volatility and extreme-value analysis could lead to 
improved volatility forecasting and further insights on tail risk [16], with the 
trade-off that a more rigorous analytical framework could be more abstruse and 
difficult to replicate as a regulatory guideline. That said, we welcome any at-
tempts to improve upon our methods, as we anticipate this work to generate im-
proved understanding and further research on this crucial subject.  
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