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Abstract 
The option pricing model can predict the future trend of the financial market. 
In order to more accurately describe the changing process of the financial 
market, the Hurst index which can describe the characteristics of long-term 
memory is introduced into the traditional Heston model. Under the assump-
tion that the underlying asset price follows fractional Brownian motion, the 
fractional stochastic volatility pricing of European option pricing model 
(Hurst-Heston model) is constructed, and the closed solution of the model is 
obtained according to the partial differential equation satisfied by the model. 
By analyzing the relationship between Hurst index and asset price, it is found 
that the movement process of asset price under the hypothesis of this model 
is more consistent with the real market change law, which verifies the ratio-
nality of the model. In the process of empirical analysis of SSE 50ETF put op-
tion data, Self-adaptive Differential Evolution algorithm is used to estimate 
parameters. The results showed that the error of Hurst-Heston model is 
smaller than other models, and the prediction error for consecutive trading 
days is similar. It showed that the pricing results of Hurst-Heston model are 
more accurate and stable. 
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1. Introduction 

The option derived in the late 18th century is a financial tool used by financial 
institutions and enterprises to avoid risks [1]. It first appeared in the European 
and American financial markets. As the contract, it gives holders the right to 
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purchase or sell an asset at the agreed price at a specific time or at any time be-
fore that time. On February 9, 2015, Shanghai Stock Exchange pilot listed the 
first stock option “SSE 50ETF option” in China. After that, China’s option mar-
ket developed rapidly, and many different types of options were also listed and 
traded.  

A reasonable option pricing model can accurately predict the future trend of 
the market, which is of great significance to the steady development of the fi-
nancial market. In 1973 [2], the first complete option pricing model “B-S model” 
created by Black and Scholes was used publicly, and since then this model has 
been widely used in European options pricing [3] [4]. In its basic assumptions, 
such as the stock price follows a log-normal distribution, the risk-free interest 
rate is known, the stock price volatility is constant, there is no transaction cost in 
the hedging portfolio, etc. These conditions cannot be met in the real financial 
market transactions, so phenomena such as “volatility smile” often occur in the 
actual application. In order to make up for the deficiency of B-S model, Merton 
first proposed the lognormal jump diffusion model in 1976 [5], it added a jump 
process into the B-S model, which was more in line with the real market with 
sudden risks. Subsequently, [6] proposed a call option replication strategy based 
on proportional transaction costs, and gave the option pricing formula with 
transaction costs. In addition, because stock price volatility is random, some 
scholars introduced stochastic volatility model to improve the option pricing 
model: [7] constructed Heston model on the basis of traditional B-S model and 
assumed that volatility of underlying asset followed O-U process; [8] proposed 
fast mean regression volatility model, which reduced model parameters to facili-
tate parameter estimation, and at the same time, it better explained the characte-
ristics of volatility smile and return on assets peak thick tail; [9] [10] used 
non-affine stochastic volatility model for option pricing, which is more accurate 
than other models; [11] generalized the nonlinear partial differential equation 
when the underlying asset follows the stochastic single-factor interest rate model, 
regarded the nonlinear term in the equation as the transaction cost, and proved 
the existence of the classical solution of the model; [12] proposed the volatility 
decomposition model, , it divided the stochastic volatility process of the under-
lying asset into two risk sources based on the Heston model, which could de-
scribe the relevant characteristics of the underlying asset more accurately.  

The Hurst index H was discovered by British hydrologist H.E. Hurst, when he 
studied the relationship between water flow and storage capacity [13], and took 
it as an indicator to judge whether timing data followed the process of biased 
random walk. 0.5H = , means that the time series is a standard Brownian mo-
tion process; 0.5 1H< < , indicating positive correlation of time series and has 
long memory; 0 0.5H≤ <  is the negative correlation of time series, and is the 
mean recovery process; In other words, if 0.5H ≠ , time series data can be de-
scribed by fractional Brownian motion. As for the characteristics of China’s 
stock market, a large number of research results show that there is a significant 
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long memory in China’s stock market [14] [15] [16] [17] [18], so many scholars 
have introduced the Hurst index into the financial market as an indicator to de-
scribe the long memory. For example, [19] improved the European option pric-
ing model by combining the switch mode and the fractal Black-Scholes market 
hypothesis; [20] obtained the explicit integral representation of the early exercise 
premium and the critical exercise price of the American look back option under 
the assumption that the stock price follows the mixed jump diffusion fractional 
Brownian motion; [21] constructed a fractional fuzzy option pricing model 
based on the B-S model using fractal theory and fuzzy set theory, which im-
proved the accuracy of pricing results. 

In order to obtain more accurate prediction results on option pricing, we 
should not only consider the randomness of stock price fluctuations, but also not 
ignore the long memory of financial markets. However, the existing option 
pricing models cannot meet these two properties at the same time, which is the 
original intention of this paper.  

This paper introduced some basic knowledge in Chapter 2. Chapter 3 intro-
duced the newly constructed option pricing model and the method of parameter 
optimization in the model. Chapter 4 analyzed the relationship between Hurst 
index and asset prices. Chapter 5 used SSE50ETF put option data to do empirical 
analysis. Chapter 6 summarized the results of this paper. The main contents are 
as follows: 

1) Based on the traditional Heston model, the Hurst index H is introduced, so 
the fractional Brownian motion is used to describe the process of stock price 
change, a long-memory fractional stochastic volatility European option pricing 
model is constructed, and the corresponding option pricing formula is obtained. 
This model makes up for the deficiency that the existing stochastic volatility op-
tion pricing models cannot reflect the characteristics of the fractal market. 

2) By analyzing the Hurst index in the model, it is found that the introduction 
of H into the option pricing model can more accurately reflect the real change 
process of the financial market, which verifies the rationality of the model. 

3) Using the SSE 50ETF put option data for empirical analysis, due to the large 
number of parameters in this model, the traditional linear least squares parame-
ter estimation method is invalid. Referring to the estimation methods of mul-
ti-parameter models in other literatures, this paper will choose the Self-adaptive 
Differential Evolution algorithm to estimate the parameters of the model. The 
final analysis results show that, compared with the other pricing model, the frac-
tional stochastic volatility model has more accurate pricing results and less error, 
which further illustrates the feasibility and accuracy of the pricing model pro-
posed in this paper. 

2. Preliminary Knowledge 

When constructing the option pricing model, in order to describe the long-term 
memory of the financial market more intuitively, it is necessary to introduce 
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Fractional Brownian Motion (FBM), the concept of which is given by definition 
1, and the Fractional Ito Lemma under the FBM can be seen as lemma 1. 

Definition 1 [22]: If the continuous Gaussian process ( ){ },HB t t R∈  with 
parameter H satisfies the following conditions: 

1) ( )0 0HB =  and for any t and 0t∆ > , the incremental expectation of FBM 
is 0; 

2) For t and s at different moments, their covariance function is: 

( ) ( ) ( )2 2 21E
2

H H H
H HB t B s t s t s= + − −   .           (1) 

Then the Gaussian process ( ){ },HB t t R∈  is called fractional Brownian mo-
tion. In formula (1), ( )0 1H H< <  is the Hurst exponent that describes the re-
lationship between the motion increments. If 0.5H = , ( )HB t  is the standard 
Brownian motion. 

The core property of FBM is that the increment has stationarity, autocorrela-
tion and self-similarity, and the stock price fluctuation process that conforms to 
fractal characteristics also has similar properties. So FBM can be used to describe 
the stock price fluctuation process. 

Lemma 1 [23]: Assuming that the price of the derivative is ( ),tf f S t= , and the 
underlying asset price St follows a biased FBM, that is ( )d d dt t t HS S t S B tµ σ= + , 
then, at any time t, there is the following relationship: 

( )
2

2 2 1 2
2d d dH

t t t H
t tt

f f f ff S H t S t S B t
S t SS

µ σ σ− ∂ ∂ ∂ ∂
= + + + 

∂ ∂ ∂∂ 
.       (2) 

Equation (2) is called fractional Ito Lemma, where µ  is the drift rate and σ  
is the volatility. 

3. Pricing Model Construction and Parameter Optimization 

The option pricing model constructed in this paper is an improvement on the 
basis of the Heston model. It not only considers the dynamic process of the fi-
nancial market as a stochastic fluctuation, but also combines its characteristics of 
long memory, which makes up for the defects of previous models that only con-
sider a single influence. 

3.1. Hurst-Heston Option Pricing Model 

In the financial market, stock market volatility is a dynamic process with long 
memory characteristics. In order to reflect the nature of the financial market 
more comprehensively in the option pricing model, this paper improves Heston 
model and introduces FBM on the basis of this model to obtain the Hurst-Heston 
model as shown in Definition 2. 

Definition 2: It is assumed that under the neutral probability measure Q, the 
underlying asset St follows fractional Brownian motion and the volatility Vt fol-
lows the O-U process, that is, the price and volatility of the underlying asset sa-
tisfy the following differential equations respectively:  
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( )1d d dt t t t HS S t V S B tµ= + ,                     (3)  

( ) ( )2d dt t t HV V V B tκ θ σ= − + .                   (4)  

Equation (3) and Equation (4) used to solve option price is called Hurst-Heston 
option pricing model. Among them µ  is the drift rate, Vt is the volatility, θ  
is the long-term mean value of volatility, κ  is the mean reversion rate, σ  is 
the coefficient of variance variation, that is, the volatility of volatility. Both 

( )1
HB t  and ( )2

HB t  are fractional Brownian motion, and ( ) ( )1 2d d dH HB t B t tρ= . 
In this model, it is assumed that there are risk-free assets St which can be free-

ly traded in the financial market and meet the following conditions: 
1) The price of stock index options in the fractal market only depends on the 

stock price and the risk-free interest rate; 
2) There are no taxes and transaction costs in the market, and no dividends 

are paid during the transaction; 
3) The underlying asset price St satisfies the fractional Brownian motion; 
4) The underlying asset fluctuates randomly, and its volatility Vt follows the 

O-U process. 

3.2. Analytical Pricing of European Options under the  
Hurst-Heston Model 

Theorem 1: The partial differential equation satisfied by European option price 
( ), ,f f t S V=  under Hurst-Heston model is: 

( )

2 2 2
2 2 1 2 2 1

2 2

1
2

0

H Hf f f f fVS Ht VHt SV r S
t S V SS V

fV v rf
V

σ σρ

κ θ λ

− −∂ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂∂ ∂
∂

+ − + − =   ∂

    (5) 

In Equation (5), t means any moment, V is the volatility of stock price, S is the 
stock value, H is the Hurst index, σ  is the volatility of volatility, ρ  is the 
correlation coefficient of fractional Brownian motion ( )1d HB t  and ( )2d HB t , r 
is the risk-free interest rate, κ  is the mean regression rate, θ  is the long-term 
mean of volatility, λ  is the ratio of the market price of volatility to volatility. 

Prove: According to the standard arbitrage theory, assuming that there is no 
arbitrage opportunity, there is a risk-free investment portfolio I, which contains 
an option with a value of ( ), ,f S V t , ∆  stocks with a value of S, and ϕ  op-
tions with another value of ( ), ,Z S V t , then the value of the portfolio I is: 

 I f S Zϕ= + ∆ + .                         (6) 

According to differential Equation (3), Equation (4) and Lemma 1, due to 
( ) 2d d H

HB t tε= , then in the time interval dt , the change of I is: 

2 2 2
2 2 1 2 2 1

2 2

2 2 2
2 2 1 2 2 1

2 2

d d d d

1 d
2

1 d
2

H H

H H

I f S Z

f f f f fS VS Ht V Ht VS S t
S t S VS V

Z Z Z Z ZS VS Ht V Ht VS t
S t S VS V

ϕ

µ σ σρ µ

ϕ µ σ σρ

− −

− −

= + ∆ +

 ∂ ∂ ∂ ∂ ∂
= + + + + + ∆ ∂ ∂ ∂ ∂∂ ∂ 

 ∂ ∂ ∂ ∂ ∂
+ + + + + ∂ ∂ ∂ ∂∂ ∂ 
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( )1d d H
f Z f ZV V S V S V S B t
V V S S

ϕ ϕ∂ ∂ ∂ ∂   + + + + ∆ +   ∂ ∂ ∂ ∂   
       (7) 

Since the assumption is under the risk-neutral measure, the dV  and ( )1d HB t  
terms in Equation (7) are eliminated, so that: 

0;

0.

f Z
V V
f ZV S V S V S
S S

ϕ

ϕ

∂ ∂ + =∂ ∂
∂ ∂ + ∆ + =
∂ ∂

                  (8) 

Then we can get: 

;

.

f Z
V V

Z f
S S

ϕ

ϕ

∂ ∂ = − ∂ ∂
 ∂ ∂∆ = − −
 ∂ ∂

                         (9) 

And because d dI rI t= , where r is the risk-free interest rate, put it together 
with Equation (9) into Equation (7), then Equation (7) can be written as follows: 

2 2 2
2 2 1 2 2 1

2 2

2 2 2
2 2 1 2 2 1

2 2

1
2

1
2 .

H H

H H

f f f f fVS Ht VHt SV rf r S
t S V SS V

f
V

Z Z Z Z ZVS Ht VHt SV rf r S
t S V SS V

Z
V

σ σρ

σ σρ

− −

− −

∂ ∂ ∂ ∂ ∂
+ + + − +

∂ ∂ ∂ ∂∂ ∂
∂
∂

∂ ∂ ∂ ∂ ∂
+ + + − +

∂ ∂ ∂ ∂∂ ∂=
∂
∂

  (10) 

According to the research of Heston [6], it is known that the function  

( ) ( ) ( ), , , ,Z S V t V S V tκ θ λ= − − + , where ( ), ,S V tλ  is the market price of vo-
latility risk. Meanwhile, according to Brecden’s assumption that the market price 
of volatility is its linear function, that is ( ), ,S V t vλ λ= , then Equation (5) can 
be obtained from Equation (10), which is proved. 

According to Theorem 1, analogy with the solution process of Heston model, 
the option price is simulated by numerical method under the condition of  

( ) { }, , max ,0f t S V S K= − . Using Gaussian quadrature and fast Fourier trans-
form [24], the following Theorem 2 can be obtained by making ( )ln tx S= , 

( )0ln r rφ = . 
Theorem 2: The Pricing formula of European call option in the Hurst-Heston 

model is: 
( ) ( )

( )
1 2

e E max ,0

e .

r T t
T t

r T t
T t

C S K

S P K P

− −
−

− −
−

 = − 

= −
                 (11) 

Among them, 

( )i lne , , , ;1 1 Re d , 1,2;
2 i

K
j

j

f x V t T
P j

φ φ
φ

φ

− 
= + = 

 π  
 

( ) ( ) ( ), ; , ; i, , ; e ;A t T B t T V x
jf x V t φ φ φφ + +=  
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( ) ( ) ( )( )

( )

2 1
2, ; i i

1 e
2ln ;

1

j

H
j j

h T t
j

j

A t T r T t b Ht h T t

g
g

κθφ φ ρσ φ
σ

−

−


= − + − + −


 −
 −

 −  

 

( )
( )

( )

2 1

2

i 1 e, ; ;
1 e

j

j

H h T t
j j

h T t
j

b Ht h
B t T

g

ρσ φ
φ

σ

− −

−

 − + − =
 − 

 

2 1

2 1

i
;

i

H
j j

j H
j j

b Ht h
g

b Ht h
ρσ φ
ρσ φ

−

−

− +
=

− −
 

( ) ( )22 1 2 2i 2 i ;H
j jh Ht uρσ φ σ φ φ−= − −  

1 2
1 1, ;
2 2

u u= = −  

2 1
1 2, , 1, 2.Hb Ht b jκ ρσ κ−= − = =  

The put option pricing formula is: 

( ) ( ) ( )1 21 e 1r T t
T tP S P K P− −
−= − + − .               (12) 

Note: The parity formula between the European call option price and the put 
option price is: 

( )e r T t
T tC P S K − −
−− = − .                   (13) 

3.3. Parameter Estimation for Pricing Model 

Because the option pricing model proposed in this paper is a multi-parameter 
model, the common parameter estimation methods such as the least squares 
method and the maximum likelihood estimation method are not applicable, so 
the Self-adaptive Differential Evolution (SaDE) algorithm will be used to esti-
mate the parameters of this model. The evolution process of the SaDE algorithm 
is equivalent to the Differential Evolution algorithm [25] [26] [27], which is im-
proved and optimized on the basis of DE algorithm and solves the problems of 
premature convergence and search stagnation of DE algorithm. The DE algo-
rithm is an optimization algorithm based on the theory of swarm intelligence. It 
continuously evolves through cooperation and competition among individuals 
in the group, retains good individuals, eliminates inferior individuals, and guides 
the search to approach the optimal solution. Its essence is a multi-objective opti-
mization algorithm used to solve the overall optimal solution in multi-dimensional 
space. The evolution process of the DE algorithm mainly includes population in-
itialization, mutation, crossover and selection and its evolution process is shown 
in Figure 1, the population is initialized at first, NP D-dimensional random va-
riables are generated, and the fitness function value of each vector is calculated. 
If the conditions are met, the optimal parameter value is obtained. Otherwise, 
the mutation, crossover, and selection operations are continued. For the newly  
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Figure 1. Flow chart of adaptive differential evolution algorithm. 
 
generated vector Calculate the value of the fitness function again, repeat these 
steps until the fitness function value satisfies the conditions, then obtain the op-
timal parameter value. After improving the mutation and crossover operations 
in the evolution process, the operation steps of the SaDE algorithm are as fol-
lows: 

1) Population initialization 
In the D-dimensional space, NP real-valued parameter vectors are randomly 

generated as the population of each generation, and the general initial population 
fits the uniform probability distribution. Let ( ), 1, 2, , ; 1, 2, ,G

i jX i NP j D= =   
denote the value of the jth dimension of the ith vector. 

2) Mutation operation 
The basic mutation vector is generated according to formula (14): 

 ( )1
1 2 3

G G G G
iH X F X X+ = + × − .                  (14) 

In Equation (14), 1G
iH +  is the ith vector in the next generation, [ ]0,2F ∈  is 

the scaling factor, also known as the mutation operator, which is used to control 
the amplification of the deviation vector, and this factor can reflect the global 
optimization ability of the algorithm. The smaller the F value, the better the local 
searching ability of the algorithm. The larger the F value, the more the fitness 
function value can jump out of the local minimum point, and the slower the 
convergence speed. 1 2 3, ,G G GX X X  are the three different individuals in the pop-
ulation whose fitness function value is optimal. 

In the basic differential evolution algorithm, the mutation operator often takes 
a constant, but its value is difficult to determine accurately. If the mutation rate 
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is too large, the global optimal solution will be low; If the value of mutation rate 
is too small, the diversity of the population will decline, and it is easy to appear 
the phenomenon of “premature”. Therefore, the improved adaptive mutation 
operator λ  is adopted in this paper: 

1
1

0e , 2
m

m

G
G G F F λλ

−
+ −= = × .                   (15) 

In Equation (15), F0 is the initial mutation operator, Gm is the current evolu-
tion algebra, and G is the maximum evolution algebra. The mutation operator of 
this mutation form is 2F0 at the beginning, which can maintain the diversity of 
the population and prevent premature maturity. With the development of evolu-
tion, the mutation operator is gradually reduced to F0, which can effectively 
avoid the destruction of the optimal solution. 

3) Crossover operation 
In order to increase the diversity of vectors in the population, the following 

crossover operation is introduced: 

( ) ( )

( )

1
,1

, 1
,

, 0,1 or 1,

,else

1, 2, , ; 1, 2, ,

G
i jG

i j G
i j

H rand CR j rand D
V

X

i NP j D

+
+

+

 ≤ == 


= = 

          (16) 

In Equation (16), 1
,
G

i jV +  is the value of the jth dimension of the ith vector in 
the next generation, ( )0,1rand  means that random numbers are generated 
between [0, 1], [ ]0,1CR∈  is a crossover operator. The larger the value of CR, 
the faster the convergence speed of the algorithm. This paper adopts the cros-
sover operator of random range as follows: 

 ( )0.5 1 0,1CR rand= +   .                    (17) 

This method can keep the mean value of the crossover operator at about 0.75, 
which ensures the diversity of the population. 

4) Selection operation 
In order to determine whether the vector in the population can become a 

member of the next generation, we need to compare the test vector with the 
current target vector, and calculate the fitness function ( )F k  value of each 
vector, then the following selection operation is performed: 

 ( ) ( )1 1
1 , if

, otherwise

G G G
i i iG

i G
i

V F V F X
X

X

+ +
+

 <= 


  

   
              (18) 

The fitness function selected in this paper is: 

 ( ) ( )2

1

1 n
y M

i i
i

F k C C
n =

= −∑ .                    (19) 

In Equation (19), n is the sample size, ,y M
i iC C  are the option price predicted 

by the ith data and the actual option price respectively, ( )F k  is the fitness 
value of the kth individual, and the vector with the minimum fitness function 
value will appear in the next generation emerges. 
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5) Boundary condition processing 
The vectors beyond the bounds are replaced by randomly generated parame-

ter vectors in the feasible region. 

4. The Relationship between Hurst Index and Asset Price 

In this paper, the Hurst index H, which measures the degree of long memory, is 
introduced into the stochastic volatility option pricing model, and then studies the 
distribution characteristics of the asset returns subscripted by the Hurst-Heston 
model with H. By observing the changes of the probability density curve of stock 
price returns under different values of H, we can more intuitively understand the 
relationship between Hurst index and stock price changes in the model proposed 
in this paper. 

Theorem 3: Under the assumption of Definition 2, the underlying asset price 
approximately obeys the following distribution: 

( )
2

2 2 2 2
0 0 0

1 eln ~ N ln e ,
2

t
H H t H

tS S rt Ht V Ht V t
κ

κθ θ σ
κ

−
− −

+ − + − 
 

.  (20) 

Prove: According to Equation (2), Equation (3) and theorem 1, we can get the 
following formula: 

( )

( ) ( )

( ) ( )

2
2

21 2 1
2

2 1 1

1 1 1d ln d d
2

1 1 1d d d d
2

d d .

t t t
t t

t t H t t H
t t

H
t t H

S S S
S S

S t V B t S t V B t
S S

Ht V t V B t

µ µ

µ −

 
= + − 

 
    = + + − +     

= − +

 

So ( )2 1 2
0 00

ln ln d ln ln
t H H

t u t tS S S S Ht V t V tµ −= + = + − +∫ .      (21) 

According to Equation (3), let ( ) e t
t tf V V κ= , then from Theorem 1 we can 

obtain: 

( ) ( ) ( )

( )

2
2 2 1 2

2

2

d , d d

e d e d .

H
t t t t H

t tt

t t
t H

f f f ff V t V V Ht t V B t
t V VV

t V B tκ κ

κ θ σ σ

κθ σ

− ∂ ∂ ∂ ∂
= + − + + 

∂ ∂ ∂∂ 

= +

 

So: 

( ) ( ) ( )2
0 0

1 e e d
t t st

t t HV V V B tκκ θ σ − −−= − + + ∫ .             (22) 

According to Equation (21) and Equation (22), it can be deduced that the un-
derlying asset price St approximately obeys the following distribution (Theorem 
3): 

( )
2

2 2 2 2
0 0 0

1 eln ~ N ln e ,
2

t
H H t H

tS S rt Ht V Ht V t
κ

κθ θ σ
κ

−
− −

+ − + − 
 

. 

By using Theorem 3, basic parameters 0 2S = , 0.02r = , 2θ = , 0 0.3V = , 
1.5κ = , 2.5σ =  are selected to obtain density curves of asset prices at different 
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maturity times, as shown in Figure 2. It can be seen from Figure 2(a) that when 
0.5t = , the probability density curve gradually shows a sharp peak as the value 

of H increases; from Figure 2(b), it can be seen that when 0.25t = , the proba-
bility density curve shifts to the right as the value of H increases, and the phe-
nomenon of sharp peak becomes more and more obvious. Mathematically, the 
distribution of this characteristic can be described by the Levy distribution, and 
two important parameters α  (depicting kurtosis) and β  (descriptive skew-
ness) are used to describe the distribution. When the distribution of a random 
variable satisfies power-law attenuation and 2α < , the distribution of the ran-
dom variable shows a sharp spike. For the return series 0.5H >  with long mem-
ory, and the relationship between α  and Hurst index H is 1 Hα = , then the 
parameter 2α <  in the return distribution. Thus, it can be seen from this  
 

 
(a) 

 
(b) 

Figure 2. Probability density curve of underlying yield. (a) 0.5t =  (b) 0.25t = . 
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that the yield series with long memory will show a peak distribution, and as the 
value of H gradually increases, the peak phenomenon observed in the yield dis-
tribution will become more and more obvious. In the real financial market, the 
yield of the underlying assets has the characteristics of peak and thick tail. In the 
“peak” period, the market is stable as a whole, and the price trend conforms to 
the technical analysis and statistical laws; but in the “thick tail” period, the mar-
ket changed dramatically due to the impact of special events. It can be seen that 
the larger the value of the Hurst index, which measures long-term memory, the 
more it can indicate that the market is stable at this stage, and the “peak” state of 
the stock return density curve is more obvious. In conclusion, it can be verified 
that the change process of the underlying assets under the assumption of the 
Hurst-Heston model is closer to the real situation, which can better describe the 
changing trend of stock prices in the real financial market. 

5. Empirical Analysis 

Before pricing options using the pricing model, it is necessary to estimate the 
parameters in the model, and the implicit parameter estimation method will be 
adopted in this paper [28]. This method uses the actual price of the market to 
infer the model parameter value, and the parameter value obtained is the para-
meter value under the risk neutral probability measure. This method requires a 
relatively small amount of data, and the estimated value is more effective. 

In order to estimate the parameters of the Hurst-Heston model, this paper se-
lects the daily closing data of the SSE 50ETF put option on August 26, 2021 and 
August 27, 2021, and uses the SaDE algorithm to estimate the model parameters, 
all data in this paper comes from https://option.eastmoney.com/. A total of 98 
contracts were traded over two days, with expiry dates in September, October, 
December and March. The closing prices of the SSE 50ETF in the past two days 
were 3.128 yuan and 3.159 yuan respectively, and the execution prices ranged 
from 2.85 yuan to 4.4 yuan. In this paper, the risk-free rate selects the daily yield 
of 1-year Treasury bonds. In the algorithm optimization process, the initial pop-
ulation number is set as 60, the maximum evolutionary generation is 100, the in-
itial mutation operator 0 0.4F = , and the parameter value ranges are ( )0 0,1v ∈ ,

( )0,1κ ∈ , ( )0,2θ ∈ , ( )0,1σ ∈ , ( )1,1ρ ∈ − , ( )0.5,1H ∈  respectively. In the 
process of parameter optimization of Hurst-Heston model, the optimal value of 
fitness function is 1.7133 × 10−5, and the estimated results of model parameters 

0 , , , , ,v Hκ θ σ ρ  are [0.04608806, 0.36575, 0.32713226, 0.99363029, 0.69351875, 
0.60894724] respectively. 

The parameter optimization result of the model by SaDE algorithm can be 
obtained with the value of H is 0.60894724, 0.5H >  indicating that the fluctu-
ation of SSE Composite index is not a random walk, but a partial random walk, 
that is, it has long memory. Using the above parameters, the Hurst-Heston mod-
el is used to predict the option price of the next 10 trading days from August 30 
to September 10. The expiration date of the trading contract on each trading day 
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includes September, October, December 2021 and March 2022, and the strike 
price includes a variety of different prices ranging from 2.85 yuan to 4.4 yuan. 
Then calculated the Mean Relative Error (MRE), Mean Absolute Error (MAE), 
Mean Square Error (MSE), and Root Mean Square Error (RMSE) between the 
daily valuation and the actual market price as the model evaluation indicators, 
the results were shown in Table 1. 

As can be seen from the results in Table 1 that the value of MRE fluctuates 
around 0.04 in the first 5 days, indicating that the daily error of the parameters 
obtained by the implicit parameter estimation method when used to estimate the 
option price in the next five trading days is relatively close, and the fluctuation 
range is small, indicating that the model is relatively stable. From the sixth day, 
the MRE value of the predicted value becomes larger. If this group of parameters 
is used to predict the option price of the next 10 trading days, the longer the in-
terval is, the greater the error will be. This result indicates that the parameters of 
the pricing model are dynamic, and the related parameters are updated daily in 
the financial market for this reason, so the same group of parameters cannot be 
used for long-term prediction. 

In order to evaluate the effect of fractional stochastic volatility model in op-
tion pricing more intuitively, we used the closing data of SSE 50ETF put options 
on September 10, 2021 to make pricing predictions. There were 50 trading con-
tracts on that day, the closing price of SSE 50ETF was 3.292, and the 1-year 
Treasury bond yield was 2 60.0 28 1r =  on that day. The pricing results of this 
model are compared with B-S model, Heston model and fractional B-S model 
with long-memory features. The daily closing data of SSE 50ETF put options on 
September 8, 2021 and September 9, 2021 are selected to optimize the parame-
ters of each model using SaDE algorithm. Each iteration of parameter optimiza-
tion needs to solve the problem of fitness function minimization. The iterative 
curves of the Hurst-Heston model and Heston model in the optimization process 
are shown in Figure 3, and the final parameter estimation results are shown in  
 
Table 1. Daily error comparison of HH model. 

Date MRE RMSE MSE MAE 

2021/8/30 0.04274818 0.008502 7.2287e−05 0.00582222 

2021/8/31 0.04326449 0.012456 0.0001552 0.00775679 

2021/9/01 0.06227724 0.005458 2.9787e−05 0.00439276 

2021/9/02 0.08935993 0.012758 0.00016277 0.01000602 

2021/9/03 0.04135288 0.010538 0.00011105 0.00680753 

2021/9/06 0.10114547 0.010949 0.00011989 0.00889945 

2021/9/07 0.12996623 0.012406 0.00015390 0.01003696 

2021/9/08 0.11404076 0.015103 0.00022810 0.01241814 

2021/9/09 0.10204705 0.015642 0.00024468 0.01268729 

2021/9/10 0.12579379 0.016717 0.00027945 0.01282981 
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(a) 

 
(b) 

Figure 3. Parametric optimization iteration curve. (a) HH model (b) Heston model. 
 
Table 2. The prediction results of each model and the errors with the actual 
market price are shown in Table 3, and the absolute error comparison diagram 
of the three models is shown in Figure 4. 

In Table 2, HH represents the Hurst-Heston model proposed in this paper, 
and BSH represents the fractional B-S model. In Table 3, SEHH, SEBS, SEHS and 
SEBSH respectively represent the square error between the pricing results of the 
Hurst-Heston model, B-S model, Heston model, fractional B-S model and the 
actual market price. It can be seen from Table 3 that the MSE of the pricing re-
sult of the Hurst-Heston model and the actual market price is 0.00002, the MSE 
of B-S model, Heston model and fractional B-S model are 0.0003, 0.00004 and 
0.00008 respectively. In addition, the Mean Relative Error of fractional random  
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Table 2. Model parameters. 

Model 
Parameters 

σ  H 0v  κ  θ  ρ  MSE 

HH 0.603 0.7 0.043 0.424 0.227 0.516 1.896e−05 

Heston 0.629 - 0.03667 0.955 0.132 0.259 1.926e−05 

BSH 0.274 0.7     4.378e−05 

BS 0.196      4.067e−05 

 
Table 3. Comparison of model pricing results. 

Contract transaction 
code 

Latest 
price 

HH model B-S model Heston model BSH model 

Predictive 
value 

SEHH 
Predictive 

value 
SEBS 

Predictive 
value 

SEHS 
Predictive 

value 
SEBSH 

510050P2203M02850 0.047 0.048 0.000 0.031 0.000 0.043 0.000 0.055 0.000 

510050P2203M03700 0.473 0.476 0.000 0.430 0.002 0.467 0.000 0.467 0.000 

510050P2203M03600 0.397 0.399 0.000 0.355 0.002 0.390 0.000 0.395 0.000 

510050P2203M03500 0.324 0.327 0.000 0.287 0.001 0.318 0.000 0.329 0.000 

510050P2203M03400 0.261 0.261 0.000 0.225 0.001 0.252 0.000 0.268 0.000 

510050P2203M03300 0.203 0.203 0.000 0.172 0.001 0.195 0.000 0.214 0.000 

510050P2203M03200 0.155 0.154 0.000 0.127 0.001 0.146 0.000 0.167 0.000 

510050P2203M03100 0.114 0.113 0.000 0.090 0.001 0.106 0.000 0.127 0.000 

510050P2203M03000 0.081 0.081 0.000 0.061 0.000 0.075 0.000 0.093 0.000 

510050P2203M02950 0.068 0.068 0.000 0.049 0.000 0.063 0.000 0.079 0.000 

510050P2203M02900 0.056 0.057 0.000 0.039 0.000 0.052 0.000 0.066 0.000 

510050P2112M02850 0.019 0.018 0.000 0.011 0.000 0.014 0.000 0.015 0.000 

510050P2112M02900 0.025 0.023 0.000 0.016 0.000 0.019 0.000 0.020 0.000 

510050P2112M02950 0.032 0.030 0.000 0.022 0.000 0.025 0.000 0.028 0.000 

510050P2112M04100 0.806 0.797 0.000 0.783 0.001 0.795 0.000 0.786 0.000 

510050P2112M04000 0.703 0.703 0.000 0.686 0.000 0.701 0.000 0.690 0.000 

510050P2112M03000 0.041 0.039 0.000 0.030 0.000 0.033 0.000 0.037 0.000 

510050P2112M03900 0.618 0.610 0.000 0.591 0.001 0.607 0.000 0.596 0.000 

510050P2112M03800 0.516 0.520 0.000 0.499 0.000 0.516 0.000 0.505 0.000 

510050P2112M03700 0.433 0.433 0.000 0.411 0.001 0.428 0.000 0.418 0.000 

510050P2112M03600 0.353 0.350 0.000 0.328 0.001 0.345 0.000 0.337 0.000 

510050P2112M03500 0.275 0.273 0.000 0.253 0.001 0.267 0.000 0.263 0.000 

510050P2112M03400 0.207 0.204 0.000 0.187 0.000 0.197 0.000 0.197 0.000 

510050P2112M03300 0.148 0.145 0.000 0.131 0.000 0.137 0.000 0.141 0.000 

510050P2112M03200 0.103 0.098 0.000 0.087 0.000 0.090 0.000 0.096 0.000 

510050P2112M03100 0.064 0.063 0.000 0.053 0.000 0.056 0.000 0.062 0.000 
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Continued 

510050P2110M03700 0.400 0.409 0.000 0.402 0.000 0.408 0.000 0.401 0.000 

510050P2110M02850 0.004 0.003 0.000 0.002 0.000 0.002 0.000 0.001 0.000 

510050P2110M03600 0.314 0.319 0.000 0.310 0.000 0.317 0.000 0.307 0.000 

510050P2110M03500 0.229 0.234 0.000 0.226 0.000 0.231 0.000 0.220 0.000 

510050P2110M03400 0.154 0.160 0.000 0.152 0.000 0.155 0.000 0.145 0.000 

510050P2110M03300 0.094 0.099 0.000 0.093 0.000 0.092 0.000 0.085 0.000 

510050P2110M03200 0.050 0.055 0.000 0.050 0.000 0.048 0.000 0.043 0.000 

510050P2110M03100 0.025 0.027 0.000 0.024 0.000 0.022 0.000 0.018 0.000 

510050P2110M03000 0.012 0.012 0.000 0.009 0.000 0.009 0.000 0.006 0.000 

510050P2110M02950 0.008 0.008 0.000 0.006 0.000 0.005 0.000 0.004 0.000 

510050P2110M02900 0.006 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 

510050P2109M02850 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

510050P2109M02900 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

510050P2109M02950 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

510050P2109M03000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

510050P2109M03100 0.004 0.003 0.000 0.003 0.000 0.002 0.000 0.000 0.000 

510050P2109M03200 0.014 0.016 0.000 0.015 0.000 0.012 0.000 0.005 0.000 

510050P2109M04400 1.104 1.105 0.000 1.104 0.000 1.105 0.000 1.105 0.000 

510050P2109M04300 1.007 1.005 0.000 1.004 0.000 1.005 0.000 1.005 0.000 

510050P2109M03300 0.048 0.053 0.000 0.052 0.000 0.049 0.000 0.036 0.000 

510050P2109M04200 0.919 0.905 0.000 0.904 0.000 0.905 0.000 0.905 0.000 

510050P2109M04100 0.799 0.805 0.000 0.805 0.000 0.805 0.000 0.805 0.000 

510050P2109M04000 0.698 0.705 0.000 0.705 0.000 0.705 0.000 0.705 0.000 

510050P2109M03900 0.608 0.605 0.000 0.605 0.000 0.605 0.000 0.605 0.000 

Mean 
  

0.00002 
 

0.00030 
 

0.00004 
 

0.00008 

 

 
Figure 4. Absolute error of model pricing results. 
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volatility model and market price is 0.1267, the Mean Relative Error of B-S model, 
Heston model and fractional B-S model in pricing are 0.2095, 0.1776 and 0.2264 
respectively. By comparison, it is obvious that the error of the Hurst-Heston 
model is smaller than that of the other three basic models. Due to the limited 
space, daily forecast data cannot be listed one by one. But after many experi-
ments, the results showed that the pricing error of the Hurst-Heston model 
proposed in this paper is smaller than that of other comparison models, indicat-
ing that this model has better pricing effect and higher accuracy. 

It can be observed from Figure 4 that the absolute error of Hurst-Heston 
model proposed in this paper for the prediction of different option contracts are 
all smaller than that of the other three models, and the fluctuation is relatively 
stable, among which the error fluctuation range of B-S model is the largest. In 
addition, the MAE between the option price predicted by Hurst-Heston model 
optimized based on SaDE algorithm and the actual market price is 0.00298, the 
pricing result errors of B-S model, fractional B-S model and Heston model are 
0.01262, 0.005133 and 0.00748 respectively. It is obvious that the MAE of this 
model is smaller than that of B-S model, fractional B-S model and Heston model, 
it shows that the option pricing results of the Hurst-Heston model optimized by 
SaDE algorithm is more accurate. 

6. Conclusion 

In this paper, the Hurst index H is introduced on the basis of the Heston option 
pricing model, and the Hurst-Heston European option pricing model with long 
memory characteristics is constructed, then obtained Hurst-Heston option pric-
ing formula by solving the partial differential equation under the model by 
Fourier transform method. In addition, through the distribution function of the 
underlying asset price, the influence of H on the asset price is analyzed. When 
the value of H is between 0.5 and 1, as the value of H increases, the probability 
density curve of St gradually presents the phenomenon of peak and thick tail, 
which is more in line with the reality. In the empirical analysis, the sample data 
is used to estimate the model parameters, and then the option prices in the next 
few trading days are predicted. The prediction results of Hurst-Heston model 
are compared with those of Heston model, B-S model and fractional B-S model. 
By comparing the absolute error, Mean Square Error and other evaluation indi-
cators between each model and the market price, it can be seen that the error of 
Hurst-Heston model is relatively smaller. The empirical results showed that the 
Hurst-Heston model is reasonable and feasible in European option pricing, and 
the pricing results are more accurate. The Hurst-Heston pricing model can not 
only describe the peak and thick tail nature of the underlying asset rate of return, 
but also reflect the long-memory characteristics of the financial market. The 
change process of the underlying asset depicted by this model is closer to the real 
situation and can better describe the stock price change trend in the real finan-
cial market. In this paper, we assumed that the stock price fluctuates randomly 
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with a single factor in the process of research, but in practice, the stock price 
fluctuation can be affected by a variety of factors, so we can consider the situa-
tion that the stock price change is a multi-factor random fluctuation in the fol-
low-up research. In the empirical analysis, stock option data are used to verify 
the model, and the model has not been applied to other financial markets, so we 
can try to extend the model to real option pricing in the future. 
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