
Journal of Mathematical Finance, 2022, 12, 480-496 
https://www.scirp.org/journal/jmf 

ISSN Online: 2162-2442 
ISSN Print: 2162-2434 

 

DOI: 10.4236/jmf.2022.123026  Aug. 8, 2022 480 Journal of Mathematical Finance 
 

 
 
 

Online Portfolio Selection Based on Adaptive 
Kalman Filter through Fuzzy Approach 

Taksaporn Sirirut1, Dawud Thongtha2 

1Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Thung Khru, 
Bangkok, Thailand 
2Mathematics and Statistics with Applications (MaSA), Department of Mathematics, Faculty of Science, King Mongkut’s  
University of Technology Thonburi (KMUTT), Thung Khru, Bangkok, Thailand 

 
 
 

Abstract 
Online portfolio selection is considered about an asset allocation that can be 
updated by using current data. This is a fundamental problem in computa-
tional finance, which is attracted by investors who aim to manage their exist-
ing assets. However, several existing methods for solving this problem have 
not paid much attention to noisy price data. In this research, the extended 
Kalman filter with fuzzy approach is applied to the online portfolio selection 
in order to reduce noise in stock price data and estimate its inherent value. 
For the initial portfolio setting, two ways, being an equal proportion setting 
and a single index model (SIM), are applied in this work. Numerical results 
obtained by the proposed algorithm and other techniques such as anticor 
(AC) and the anticor based on Kalman filtering (K-AC) are compared and 
discussed. The results show that, based on this dataset, the proposed method 
gives the higher wealth and red reward-to-variability (RV) ratio in most 
window sizes when it is compared to other traditional methods in both initial 
setting techniques. Taking a closer look at the initial proportion techniques, 
the results reveal that all algorithms with a single index model provide higher 
wealth than those obtained by using an equal proportion setting. Moreover, 
the proposed algorithm equipped with SIM method provides both the higher 
wealth and RV ratio at the window size 20 days and 30 days. 
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1. Introduction 

The portfolio selection problem is a process for finding the optimal portfolio 
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that provides the highest return with the lowest risk. In order to maximize 
long-term return, a portfolio manager often properly modifies a portfolio and its 
proportion. Thus, portfolio selection is considered as an online problem. 

Online portfolio selection algorithms are constructed based on various prin-
ciples such as cross rate principle and mean reversion principle. The cross rate 
principle proposed by Albeverio et al. in 2001 [1] and is adjusted by Ren and Wu 
in 2016 [2] and 2017 [3]. This principle regards the order of the asset returns ra-
ther than the returns of asset themselves. The concept of this principle is replac-
ing lower performance asset by a better one into a portfolio. However, the cross 
rate method is effective when we consider only two assets. For a mean reversion 
principle, an online portfolio selection strategy has been proposed by many re-
searchers (see, [4] [5] [6] and [7]). In this principle, it is assumed that the stock 
price will tend to move back to the mean price or inherent value over time. From 
this point, the investor may get more capital gain in the future from low-
er-performance stocks than the higher ones at the current time due to a more 
reasonable cost. Nevertheless, these strategies did not pay much attention to the 
noise of price data leading to an inaccurate estimation. 

Borodin, El-Yaniv and Gogan [8] proposed an online portfolio strategy, 
named anticor (AC) strategy, with an assumption that a market follows the 
mean reversion principle. In the mechanism of AC, the statistical relationship 
and the cross-correlation matrix are used to determine a change of the next pe-
riod price from the previous one. By the mean reversion principle and this me-
chanism of AC, the AC algorithm is able to transfer the wealth by moving the 
proportions of good performing stocks to poor performing ones, and the cor-
responding amount of proportions is adjusted according to the cross-correlation 
matrix. However, the AC uses the relative price as a ratio of the current price 
and the last previous price. This relative price is called a raw relative price. 
Therefore, the AC considers a price movement from one period to the next one, 
but it does not focus on a price movement from one period to the true value or 
its inherent value. However, it is hard to find the inherent value of a stock price 
because of the complex market noise. This leads to inaccurate predictions. 

To eliminate the impact of market noise and accurately describe the asset’s 
inherent trend price, Raphael and Alain [9] used the Kalman filter algorithm 
(KF) to reduce noise in the stock price. They proposed a new relative price, 
called a cyclically adjusted price relative (CAPR), by replacing the last price in an 
original relative price by the inherent value via the Kalman filter algorithm. 
Based on the CAPR, they propose the K-AC algorithm, which is proved to be 
more efficient than AC. 

However, there are some important limits of KF. For example, an initial value 
of noise covariance is completely assumed in the KF system by a fixed number. 
The covariance has an effect on the Kalman gain, which is used to control the 
filter bandwidth of the algorithm [10]. However, these values are unknown in 
most practical applications. The problem here is that the quality of these a priori 
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noise statistics affects the optimality of the KF. Moreover, it has been shown that 
uncertain noise may provoke the divergence of the filter [11] [12]. From this 
point of view, Escamilla-Ambrosio and Mort [13] proposed a fuzzy inference 
system (FIS) based adaptive Kalman filtering. Also, they applied their system to 
a tracking model in logistics. Their adaptive process is concerned with a pre-
scription of conditions under which the noise covariance is adaptively tuned via 
a fuzzy inference system. In their numerical study, the result reveals that the 
adaptation of the Kalman filter performs well when it is compared to KF. With 
this idea, we provide a new way to estimate the inherent price, given in [13], by 
using the adaptive Kalman filter. 

In this work, the adaptive Kalman filtering through fuzzy approach is applied 
to an online portfolio selection to predict a new inherent value for adjusting a 
raw relative price. Furthermore, comparing and analyzing the results from our 
approach with traditional methods in real datasets are provided. This paper is 
organized into five sections. In Section 2, the problem setting in a financial 
market and the academic background are described. The new online portfolio 
selection algorithms consisting of three steps are presented in Section 3. The first 
step is computing an inherent stock price from adaptive Kalman filtering 
through fuzzy approach. It is followed by constructing an adjusted relative price 
by using an inherent stock price from the first step. The last step is modifying an 
AC algorithm and computing a portfolio via adaptive AC with the adjusted rela-
tive price. The numerical results and discussions are described in Section 4. Fi-
nally, the conclusions of this work are given in Section 5.  

2. Academic Background and Problem Setting 

In this section, we introduce the problem setting in a financial market for defin-
ing variables utilized in this work. Moreover, the basic knowledge, being the an-
ticor algorithm, Kalman filter, and fuzzy inference system, is also presented. The 
algorithms will be used to setup portfolio selection algorithms in the next section. 

2.1. Problem Setting  

Consider m stocks in a financial market. The relative price of stock i at the tth pe-
riod ( )tq i  is the ratio of the closing price of the stock i at the tth period to the  

closing price stock at the (t − 1)th period. That is ( ) ( )
( )1

t
t

t

p i
q i

p i−

= . Let  

( ) ( ) ( )( )1 , 2 , ,t t t tq q q q m=   and ( )1 2, , , nq q q=q   where n is the number of 
period invested. The vectors tq  and q  are known as the market vector and 
the market sequence. Let ( ) ( ) ( )( )1 , 2 , ,t t t tb b b b m=   be a portfolio vector, 
where ( )tb j  represents the weightage of the investor’s capital invested in the jth 
stock on the tth period. In this paper, the self-financing portfolio is assumed and 
margin and short selling are not allowed. Thus, ( )1 1m

ti b i
=

=∑  and ( ) 0tb i ≥  
for all t and i. For trading period 0t > , the cumulative wealth of a portfolio 
strategy ( )1 2, , , nb b b=b   after n trading periods is as follows:  
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 ( ) ( ) ( )T
0 0

11 1

n n m

n t t t t
it t

S b S b q S b i q i
== =

= ⋅ = ∑∏ ∏               (1) 

where the initial wealth is denoted by 0S . 
In addition, some assumptions on market and trading are assumed as follows:  
1) There are no transaction costs and taxes on trading.  
2) Investors can trade in a liquid market. Therefore, investors can buy and sell 

any number of stocks at closing prices.  
3) The market behavior cannot influence any portfolio selection strategy.  
The simplest portfolio selection strategy is called a buy and hold strategy (BH), 

which the investors buy stocks using the initial portfolio b  and hold all stocks  

until the end of investing period. For a portfolio 1 1 1, , ,tb
m m m

 =  
 

  for all t,  

the BH strategy is referred to as the uniform buy and hold strategy (U-BH), 
which treats the trend in the market. However, the proportion of each stock in a 
portfolio may not be equal. In this point, the initial proportion setting with a 
single index model proposed [14]. We purpose the new method that can adjust 
the next period trading portfolio according to the value assessment of each stock.  

2.2. The Anticor Algorithm 

In 2004 Borodin et al. [8] proposed an anticor (AC) algorithm. The AC updates 
a portfolio for the next trading period by adopting the mean reversion theory. 
The idea of this principle is that whatever the stock price rises or falls, it must 
revert to the inherent value. Therefore, the algorithm determines an instrument 
to transfer the wealth from higher-performance stocks to lower-performance 
ones. To evaluate the performance of the stocks, the AC partitions historical trad-
ing days into a number of equal-sized periods called windows size (w), which w 
is an integer greater than one. Moreover, the AC requires three assumptions as 
follows:  

1) The growth rate of stock i exceeds that of stock j in the current window.  
2) Stock j in the next window follows the same performance of stock i in the 

past window.  
3) There is a positive correlation between stock i over the second last window 

and stock j over the last window.  
Let 1LX  and 2LX  be two w n×  matrices defined as  

 
( )( ) ( )( )
( )( ) ( )( )

T T
1 2 1

T T
2 1

log , , log

log , , log

t w t w

t w t

LX X X

LX X X

− + −

− +

=

=





              (2) 

where ( )log tX  denotes ( )( ) ( )( )( )log 1 , , logt tq q m . The 1LX  and 2LX  
are two w n×  matrices constructed by taking the logarithm over two consecu-
tive corresponding to time windows [ ]2 1,t w t w− + −  and [ ]1,t w t− + . Let 

( )kLX j  be the jth column of kLX  and ( )k jµ  and ( )k jσ  be the mean and 
the standard deviation of ( )kLX j , respectively. The cross-correlation matrix 
between the column vectors in kLX  is defined as follows:  
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( ) ( ) ( )( ) ( ) ( )( )

( )
( )

( ) ( ) ( ) ( )

T
1 1 2 2

1 2
1 2

1, ,
1

,
, 0,

,
0 otherwise.

cov

cov

cor

M i j LX i i LX j j
w

M i j
i j

M i j i j

µ µ

σ σ
σ σ

= − −
−


≠= 




       (3) 

The ( ) [ ], 1,1corM i j ∈ −  measures the correlation between the log-relative 
prices of stock i over the second last window and stock j over the last window. If 

( ) ( )2 2i jµ µ≥  and ( ), 0corM i j > , the AC computes an updated portfolio in 
the next trading day by considering these two transferring functions:  

 ( ) ( )( ) ( )( ), max , ,0 max , ,0i j cor cor corclaim M i j M i i M j j→ = + − + −   (4) 

( )1 .i j
i j t

i jj

claim
transfer b i

claim
→

→ −
→

= ⋅
∑

                (5) 

The updated investment proportion t̂b  is computed by  

 ( ) ( ) ( ) ( )( )1ˆ 1 1 , ,t t t t t
t t

b b q b m q m
b q

=
⋅

               (6) 

where  

 ( ) ( ) ( )1 .t t j i i j
j i

b i b i transfer transfer− → →
≠

= + −∑            (7) 

2.3. Kalman Filter 

The Kalman filter (KF) is considered as the optimal recursive data processing 
algorithm [15] that produces an estimation of unobservable variables n

tx ∈  
at each instant 1,2,t =  . Also, the KF provides a prediction of the future sys-
tem state based on past estimations. The state equation of the time series of un-
observable variables is as follows:  

 1t t t t t tx A x B u ω+ = + +                       (8) 

where tx  is an ( )1n×  state vector at time t, tu  is an ( )1l ×  control variable 
at time t, tω  is an ( )1n×  noise vector at time t assumed to be zero-mean Gaus-
sian white noise with the covariance tQ . The matrix tA  is an ( )n n×  transi-
tion matrix and tB  is an ( )n l×  matrix. The observation equation m

tz ∈  
is given by  

 t t t tz H x ν= +                         (9) 

where tz  is an ( )1m×  observation at time t, tν  is an ( )1m×  observation 
noise at time t that are assumed to be zero-mean Gaussian white noise with the 
covariance tR  and tH  is an ( )m n×  measurement matrix. 

The KF algorithm consists of prediction state and update state as follows [16]: 
1) Prediction state (time update equations):  

 1ˆ ˆPredicted state estimate : t t tx Ax Bu−
+ = +            (10) 

 T
1Predicted error covariance : t t tP AP A Q−
+ = +          (11) 

2) Update state (measurement update equations):  
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1T TKalman gain : t t t tK P H HP H R
−− − = +                (12) 

 ˆ ˆ ˆUpdated state estimate : t t t t tx x K z Hx− − = + −             (13) 

 [ ]Updated error covariance : t t tP I K H P−= −              (14) 

In addition, the covariance matrices tQ  and tR  in KF display the statistics 
of the noises. In many practical applications, we don’t know the true value or 
Gaussianity of it. Thus, tQ  and tR  are used as tuning parameters in general, 
the user can adjust to get the desired performance.  

2.4. Fuzzy Inference System 

A fuzzy inference system (FIS) is a system that uses fuzzy set theory to map in-
puts to outputs. The work of the FIS consists of the following three steps:  

1) Fuzzification transforms the crisp values into fuzzy values, it maps actual 
input values into fuzzy membership functions and evaluates each input’s grade 
of membership in each membership function. The membership function of a 
fuzzy set A is denoted by ( )A xµ  where ( ) [ ]0,1A xµ ∈  and it represents the 
degree of membership of x to the fuzzy set A [17]. The triangular membership 
function, which is used in this paper, is characterized by a mathematical simplic-
ity. It is specified by three parameters { }, ,a b c . For each value x, the triangular 
membership function ( )A xµ  is defined as follows:  

( )

0 if ,

if ,

if ,

0 if .

A

x a
x a a x b
b ax
c x b x c
c b

x c

µ

≤
 − ≤ ≤
 −=  − ≤ ≤
 −
 ≥

 

2) Fuzzy rules are a set of rules that make an association between typical input 
and output data, sometimes in an intuitive way, or, on other occasions, in a data 
driven way. The fuzzy IF-THEN rule is used in our work is in the following form:  

IF x is A THEN y is B,  

where A is a condition in a form of a fuzzy set of input and B is a conclusion in a 
form of a fuzzy set of output. 

3) The defuzzification is finally converted into real output or crisp output. The 
centre of gravity method (COG) is used as a defuzzification method in this re-
search. Let ( )ixµ  be the membership value for point ix  in the universe of 
discourse. Then, COG of a tuning factor tR∆  is defined by  

 
( )
( )

COG .i ii

ii

x x
x

µ
µ

= ∑
∑

                    (15) 

3. Computing an Online Portfolio Selection Based on  
Adaptive Kalman Filtering through Fuzzy Approach 

In this research, we adapted AC by adjusting the relative price. The adjusted rel-
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ative price is defined as a ratio of the current price over the inherent price which 
is computed through KF and fuzzy approach. There are three steps for con-
structing the new algorithm. First, we compute an inherent stock price from 
adaptive KF through fuzzy approach. After that, an adjusted relative price is 
constructed by using the current price and the inherent stock price that derives 
from the first step. The last step is computing a portfolio via adaptive AC with 
the adjusted relative price obtained from the second step.  

3.1. Computing an Inherent Stock Price  

Previously, the raw relative price is adjusted by the traditional KF formulation 
which already assumes entire a priori noise statistics. The quality of these prior 
affects on the optimality of the KF and may provoke the divergence of the filter. 
Therefore, an adaptive Kalman filtering through fuzzy approach is developed 
[13]. This adaptation improves the KF performance and prevents filter diver-
gence when tQ  or tR  in (11) and (12) are uncertain.  

3.1.1. Residual Value and Variance Setting 
In this work, the KF algorithm is applied for predicting the inherent value of a 
stock price on the next trading day by using the current observation. Thus, the 
linear KF is optimal and we will set the variables in KF accord with the financial 
market. That is, the dimension of all variables is an ( )1 1×  matrix. The A, B, 
and H are assumed to be 1. In fact, we don’t know the control variable in the 
market, so the tu  is assumed to be zero. 

Therefore, we defined variables for finding the inherent value of stock prices 
in KF as follows: 

1) Prediction state (time update equations):  

 1ˆ ˆk k
t t tp Ap Bu−
+ = +                        (16) 

 T
1t t tV AV A Q−
+ = +                       (17) 

2) Update state (measurement update equations):  

 
1T T

t t t tK V H HV H R
−− − = +                   (18) 

 ˆ ˆ ˆk k k
t t t t tp p K p Hp− − = + −                    (19) 

 [ ]t t tV I K H V −= −                       (20) 

where tp  is an observation price, k
tp  is an unobservation price obtained from 

KF algorithm, ˆ k
tp  is an estimation of k

tp , ˆ k
tp −  is an prediction of ˆ k

tp  and 
the variance corresponding to the state estimation error defined by:  

 ( )2
ˆ .k k

t t tV E p p= −                     (21) 

The weighted residual with Kalman gain, ˆ k
t t tK p p

− ⋅ −  , performs as a cor-
rection to the predicted estimate ˆ k

tp
−

. The actual variance ˆ
rC , is approximated 

by its sample variance [18] through averaging inside a moving estimation win-
dow of size N. That is,  
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0

21ˆ ,
t

rt i
i i

C r
N =

= ∑                           (22) 

where ˆ: k
t t tr p p

−
= −  is the residual and 0 1i t N= − +  is the first sample inside 

the estimation window. This means that its variance is estimated by using only 
the last N samples of tr . 

3.1.2. Adaptive Observation Noise through Fuzzy Inference System 
The purpose of adaptive observation noise through FIS in this research is to im-
prove the performance of KF and prevent filter divergence when tR  or tQ  are 
uncertain. The observation noise tR  in KF represents the accuracy of the mea-
surement instrument. A larger tR  of measured data implies that we trust the 
observed data less and take more importance on the predicted data. 

In order to adjust tR , the 1R  is assumed to the variance of training data and 
the noise variance tQ  in Equation (17) is assumed to be known and be a con-
stant value for all t. Thus, we replace tQ  with Q. This adaptive noise is able to 
reasonably correct the mismatch of the actual variance ˆ

rtC  in Equation (22) 
and its theoretical variance T:t t t t tS HV H R V R− −= + = +  in Equation (18). Now, 
the discrepancy between tS  and ˆ

rtC , called the degree of matching ( tDoM ) 
[13], is defined as:  

 ˆ .t t rtDoM S C= −                        (23) 

Based on knowledge of the size of the discrepancy between tS  and rtC , an 
FIS is used to derive a tuning factor tR∆ . 

As mentioned above, FIS consists of three steps, namely, fuzzification, fuzzy 
rule base, and defuzzification. 

Fuzzification: To simplify our idea, we divide the fuzzification step into 3 
steps as follows:  

1) Determining input and output for which the input is an error tDoM  and 
actual output is a tuning factor tR∆  of tR .  

2) Choosing an appropriate membership function for determining input 
and output fuzzy sets. Because of the linearity of the Kalman equation, the 
performance of a triangular membership function is accepted in this research 
[19].  

3) Choosing the correct labels for each fuzzy set which, in this research, 
named as a linguistic variable. Based on experience knowledge, the linguistic va-
riables for error ( tDoM ) are set as negative big (NB), negative medium (NM), 
negative small (NS), zero (ZE), positive Small (PS), positive medium (PM) and 
positive big (PB). Also, based on [20] and experience knowledge, it is quantized 
into equal sizes. The linguistic variables for change of error ( tR∆ ) are defined as 
decrease large (DL), decrease medium (DM), decrease small (DS), maintain (M), 
increase small (IS), increase medium (IM) and increase large (IL), and all values 
are quantized with equal size.  

Here, we use the membership function for the error tDoM  in Figure 1, a  is 
a scale, tDoM  represents crisp input; seven memberships are used to describe 
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Figure 1. Membership functions used to translate crisp input into fuzzy. This type of membership is 
constructed by modifying a membership function in [19]. 

 
the input. The input boundary of a triangular membership function is defined by 
the maximum and minimum of tDoM  in KF. The membership functions for 

tR∆  can be expressed similarly, b is a scale, and the output boundary is defined 
by the maximum and minimum of tR∆  in KF. 

Fuzzy rule base: The fuzzy rule base in this research based on Escamil-
la-Ambrosio and Mort [13]. The rules of adaptation are defined as follows:  

1) If tDoM  is negative big (NB) then increase tR∆  large (IL).  
2) If tDoM  is negative Medium (NM) then increase tR∆  medium (IM).  
3) If tDoM  is negative small (NS) then increase tR∆  small (IS).  
4) If tDoM  is zero (ZE) then maintain (M) tR∆  unchanged.  
5) If tDoM  is positive small (PS) then decrease tR∆  small (DS).  
6) If tDoM  is positive medium (PM) then decrease tR∆  medium (DM).  
7) If tDoM  is positive big (PB) then decrease tR∆  large (DL).  
Defuzzification: The last step to design FIS in defuzzification. In this part, a 

fuzzy set is transformed into a crisp set. Therefore, the input for defuzzification 
is an aggregate output and the output of this step is a crisp number. Based on 
(15), the center of gravity method (COG) is used as a defuzzification method in 
this research. Thus, FIS generates the tuning factor tR∆ , and the correction is 
made in this way:  

 1 .t t tR R R−= + ∆                         (24) 

The tR  in the above equation is used as an updated value in (18). We now 
adjust the observation noise variance of tR  in the KF by using the fuzzy ap-
proach to prevent the divergence of KF. Consequently, the observation price ˆ k

tp  
in (16) is added as an updated variable of the adaptive KF through fuzzy ap-
proach. Then, we observe a new inherent value of stock prices, denoted by fkp . 
The computation procedure of the development of the KF by using the fuzzy 
approach is shown in Figure 2. 

3.2. Constructing an Adjusted Relative Prices 

Since the raw relative price from the original AC can only measure how much 
the price moves from one period to the next one, it cannot measure how far the  
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Figure 2. The computation procedure of an improvement of KF via FIS. 
 
stock price is different from its inherent value. Therefore, the adjusted relative 
price is proposed to measure this difference. The adjusted relative price of stock i 
for tth trading period is shown as follows: 

( )
( )

The adjusted relative price t
fk

t

p i
p i

=                (25) 

3.3. Computing a Portfolio via Adaptive Online Portfolio Selection 

In this research, we modify an AC algorithm by applying the adjusted relative 
price via adaptive Kalman filtering through fuzzy approach. In this step, the up-
dated portfolio for the next trading day is obtained. The algorithm for AC based 
on adaptive Kalman filtering through fuzzy approach (FK-AC) is shown in Ta-
ble 1. 

4. Numerical Results and Discussions 

In this part, we will study the construction of an online trading portfolio with 
three algorithms, that is AC, K-AC, and FK-AC, and compare their performance 
by considering wealth and the reward-to-variability (RV) ratio of portfolios. In 
this research, we will use the real data from the SET50 market consisting of the 
top 50 listed companies in the Stock Exchange of Thailand in terms of large 
market capitalization and high liquidity. The daily price of SET50 over 10 
months from 1 July 2020 to 1 April 2021 is considered as observation data. 

For computing a portfolio, we divide this data into two groups. The first 
group, the data from 1 July 2020 to 31 August 2020, is used to compute initial 
parameters in each method. In this step, data window sizes are set to be 10, 20,  
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Table 1. The algorithm for FK-AC.  

1. Estimate the inherent value fk
tp  

2. Compute the adjusted relative price t
t fk

t

px
p

=  

3. Return the current portfolio tb  if 2t w<  

4. Compute ( ) ( )( )T

1 2 1log , , logt w t wLX x x− + −=   

5. Compute ( ) ( )( )T

2 1log , , logt w tLX x x− +=   

6. Compute ( )1 1average LXµ =  and ( )2 2average LXµ =  

7. Compute ( ) ( ) ( ) ( ) ( )T
1 1 2 2

1,
1covM i j LX i i LX j j

w
µ µ= − −      −

 

8. Compute ( )
( )

( ) ( ) ( ) ( )1 2
1 2

,
, , 0

,
0, otherwise,

cor

cor

M i j
i j

M i j i j
σ σ

σ σ


≠= 



 

9. Calculate claim: for 1 ,i j m≤ ≤ . Initial 0i jclaim → =  

if ( ) ( )2 2i jµ µ≥  and ( ), 0corM i j >  

( ) ( )( ) ( )( ), max , ,0 max , ,0i j cor cor corclaim M i j M i i M j j→ = + − + −  

10. calculate new portfolio: initial 1
ˆ

t tb b+ = , for 1 ,i j m≤ ≤  

( )1
i j

i j t
i jj

claim
transfer b i

claim
→

→ −
→

=
∑

 

( ) ( ) ( )1t t j i i ji jb i b i transfer transfer− → →≠
= + −∑  

 
and 30. The second group, the data from 1 September 2020 to 30 April 2021, is 
considered as data for constructing a daily portfolio for each algorithm. In this 
work, the initial parameters in each method, the covariance R and the error co-
variance V (or P), are obtained by using the first two months of the data. These 
initial parameters are only used for constructing the updated portfolio for the 
first trading day. After that, the two parameters are updated by a mechanism of 
each algorithm and then used for constructing the next trading day portfolio. In 
this step, the two month data is assumed to have a sufficient amount for compu-
ting initial parameters. Moreover, it reflects the movement of the stock price 
better than using a long period of time. For an investment period, the data for 
seven months is considered as data for constructing a daily portfolio obtained 
from each algorithm. This data group depends on how long you want to invest. 
In this research, we study an investment for seven months. 

For numerical study, an initial portfolio may affect numerical results. In this 
work, two ways of initial portfolio setting are assumed. Firstly, the initial pro-
portion for each stock is assumed to be equal. We will call this initial portfolio as 
the basic method. Apart from equally proportion setting, we also use the single 
index model (SIM) [14] to set up an initial portfolio. In this way, the initial 
weight for each stock may be different. After that, the portfolios obtained by 
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these two initial setting approaches with AC, K-AC and FK-AC algorithms are 
compared. Moreover, the following three different ways for selecting stocks into 
a portfolio are applied:  

1) Selecting all stocks in SET50 market  
2) Random selecting 10 stocks from SET50  
3) Random selecting 2 stocks from each industrial sector in SET50  
In the second and the third ways of selecting stocks, twenty cases of randomly 

selected in each way are used to study the performance of trading algorithms 
with data window size 10 days, 20 days, and 30 days. 

The results are compared by considering wealth and RV ratio of portfolios. 
The RV ratio indicates investment excess return per unit of risk. The annualized 
RV ratio is defined as [21]:  

 
APY

RV ratio
ASTDV

fR−
=                       (26) 

where APY is annual percentage yield, ASTDV is the annualized standard devia-
tion of the daily logarithmic returns. This value ASTDV measures an asset’s vo-
latility (risk). The fR  is risk-free return rate which here is set to be zero. The 
APY and ASTDV can be computed by using the following formula:  

 

1

0

APY 1
T

TW
W
 

= − 
 

                       (27) 

 ˆASTDV 252σ= ⋅                       (28) 

where TW  is the wealth of the last trading day, 0W  is the wealth of the first  

trading day, T is the time for investment which is computed as 
252
n  where n is  

the number of the trading day and σ̂  is the standard deviation of the daily lo-
garithmic returns. The number 252 is assumed to represent the number of trad-
ing days per year in the stock market. The flowchart of computing is shown in 
Figure 3. Some portfolio’s wealth results are shown in Figure 4. Moreover, the 
averages of the wealth of all cases obtained from three different ways for select-
ing stocks into the portfolio are shown in Table 2.  

From Table 2, overall, the FK-AC method provides a higher average of wealth 
than other methods. Considering the window size of 10, the AC gives the higher 
average of wealth compared to other algorithms. In the case of 20 and 30 win-
dow sizes, the FK-AC gives a better wealth. To indicate investment excess return 
per unit of risk, the average of RV ratio is used to compare the performance of 
those algorithms. The results are shown in Table 3. 

In Table 3, the FK-AC method also provides a higher RV ratio than other 
methods. We observe that, particularly, our algorithm provides a better portfolio 
performance than other methods in the case of the window size 20 and 30. 
However, for the window size of 10, the AC gives a higher average of RV ratio 
than other algorithms.  
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Figure 3. Flowchart of computing portfolio and comparing algorithm. 

 

 
Figure 4. Wealth of portfolio from selecting all stocks in SET50 market. 
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Table 2. The average wealth of 3 ways of each algorithm. 

Window size Data Characteristics AC K-AC FK-AC 

w = 10 

SET50 
Basic 0.9453 1.0155 1.2134 

SIM 0.9509 1.5830 1.7439 

Random 10 stocks 
Basic 1.2247 1.1291 1.1699 

SIM 1.4018 1.5079 1.4719 

Random 2 stocks 
from 7 industry 

Basic 1.2553 1.1553 1.2121 

SIM 1.5275 1.5024 1.4220 

w = 20 

SET50 
Basic 1.1739 1.1307 1.1245 

SIM 1.1490 1.3428 1.5330 

Random 10 stocks 
Basic 1.1189 1.1594 1.1296 

SIM 1.3652 1.4602 1.4847 

Random 2 stocks 
from 7 industry 

Basic 1.2607 1.2937 1.2954 

SIM 1.5700 1.6091 1.6424 

w = 30 

SET50 
Basic 1.1461 1.0819 1.0907 

SIM 1.5626 1.4877 1.6538 

Random 10 stocks 
Basic 1.1267 1.1438 1.1435 

SIM 1.4958 1.5165 1.5866 

Random 2 stocks 
from 7 industry 

Basic 1.2084 1.1841 1.2345 

SIM 1.4851 1.4835 1.5556 
 

Table 3. The average RV ratio of 3 ways of each algorithm. 

Window size Data Characteristics AC K-AC FK-AC 

w = 10 

SET50 
Basic −0.5387 0.1465 2.4001 

SIM −0.4286 7.4269 12.0854 

Random 10 stocks 
Basic 3.0726 1.6068 2.2667 

SIM 6.4901 8.3300 7.4489 

Random 2 stocks 
from 7 industry 

Basic 3.9104 2.1260 2.8236 

SIM 8.6502 7.4124 5.8903 

w = 20 

SET50 
Basic 2.1021 1.5495 1.4920 

SIM 1.4848 3.7160 7.0011 

Random 10 stocks 
Basic 1.6456 1.9973 1.8540 

SIM 5.5735 6.6471 7.7872 

Random 2 stocks 
from 7 industry 

Basic 3.7265 3.9652 4.1976 

SIM 10.7767 10.5669 11.4029 

w = 30 

SET50 
Basic 1.6840 0.7988 0.8952 

SIM 8.1630 7.0482 9.5513 

Random 10 stocks 
Basic 1.6304 1.7891 1.7527 

SIM 8.2786 7.5412 9.1787 

Random 2 stocks 
from 7 industry 

Basic 3.0004 2.3121 3.0581 

SIM 8.4717 7.5643 8.9599 
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5. Conclusions  

In this research, the anticor (AC) is adjusted by replacing the raw relative price 
with the alternative relative price observed from Kalman filtering through fuzzy 
approach. This alternative price provides the direction of how far the price 
moves from the current price to an inherent price while the raw relative price 
cannot. From this point, the AC mechanism with the alternative relative price is 
used to transfer the optimal wealth of each stock in the portfolio for the next pe-
riod. 

For numerical studies, the portfolio selection based on adaptive Kalman fil-
tering through fuzzy approach is compared with the anticor (AC) and the anti-
cor based on Kalman filtering (K-AC). The observation data is the SET50 stock 
prices. The tools which are used to measure the performance of algorithms are 
portfolio wealth and reward-to-variability (RV) ratio of a portfolio. 

The results show that, based on the dataset in this work, our method provides 
the higher wealth and RV ratio in most window sizes compared with the original 
anticor method and the anticor method based on KF in overall. Looking at the 
initial proportion obtained from the single index model approach, the results 
show that the proposed method gives both the higher wealth and the higher RV 
ratio at the window size 20 days and 30 days. Moreover, all methods with the 
single index model provide higher wealth than those with the basic method. 
There are two aspects of contributions from this paper. Firstly, this provides a 
new algorithm that considers the noise of the data. For the second aspect, this 
work may benefit to investors or developers who need to construct a daily spe-
culative portfolio or efficient trading program by implementing this algorithm 
with a short period of historical data. 
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