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Abstract 
The thesis seeks to use simulated annealing optimization to minimize the dif-
ference between the value of the libor model volatility and the ones quoted in 
the market for congruent pricing of a Swaption contract. The simulated an-
nealing optimization technique, being a global minimisation method, would 
provide accurate parameters that will simulate libor rates that are harmonious 
with the observed yield curve. This latter feature employed in a Monte-Carlo 
pricing method would price the Swaption contract fundamentally closer to its 
market value than other local optimization methods. The SA method starts 
from an initial point, often random, then searches the neighbourhood of the 
current solution for the next point. The neighbourhood function search is in 
accordance with the set probabilistic distribution that will determine the dis-
tance between the two solutions. Each solution has a cost value associated 
with it. The cost function determines the eligibility of the solution by mea-
suring its discrepancy with the set limit. If the discrepancy is larger than the 
set limit, a new solution is sought. If the discrepancy is still large, the old and 
new cost value is compared, and the latter is accepted if it’s less than the for-
mer or otherwise rejected with a certain probability that is largely dependent 
on the control mechanism. The method terminates if the cost value attained 
is equal to the set tolerance level. Different from other heuristic methods that 
solely base their solution on the iterative improvement of the solution’s cost 
value, simulated annealing accepts some inferior solutions so as to have a 
wider search in the design space. The main advantage of the method is the 
ability to escape local minimum entrapment through the aforementioned ac-
ceptance/rejection criteria. The results indicate that the advantageous aspects 
of the Simulated annealing enable it to outperform the least square non-linear 
optimization method commonly used in the simulation. 
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1. Background of the Study 

Swaptions are options that give the holder the right but not the obligation to en-
ter into a swap contract on a future date at a pre-agreed strike rate. A swap con-
tract is an agreement between two parties to exchange a floating and fixed inter-
est rate payment for a tenor. The interest rate payments are based on the same 
notional amount which is not exchanged. The exchange involves one party pay-
ing the other the net value of the two payments on scheduled dates. In the op-
tion, the holder who agrees to pay the fixed rate in the swap and receive the 
floating rate is the payer swaption, whereas the holder who agrees to pay the 
floating rate and receives the fixed is the receiver swaption. A payer swaption 
would exercise the option if the swap rate is higher than the option strike and 
the receiver swaption would exercise if the latter is higher. 

There are various reasons to enter into a swaption contract, with the most 
common one being to transform the nature of an asset’s interest rate payments. 
By buying a receiver swap, the holder can transform the interest rate applicable 
to an asset from a floating to a fixed rate, hence hedging against interest rate 
risk. Since the contract is an option, it is expected to be exercised only if the 
payoff is positive. The other prominent reason would be to speculate against the 
interest rate cycle. If a firm was to expect a fall in the interest rate in the near fu-
ture, they could enter into a receiver swaption to take advantage of the high fixed 
rate as the floating rate plumber. 

There has been a significant increase in the trading of interest rate swaps over 
the past half-decade, which has led to the expansion of its option derivative.  

Recent surveys indicate that the market turnover for swap options as of 2016 
was $163.021 trillion, and the figure went up to ([wooldridge2019fx:01]). In March 
2021 particularly, [1] reports that USD swaptions volume hit an all-time high i.e. 
6346, which was on the back of a record month in February 2021, when 5973 
trades were reported. The volume was driven by a large sell-off in fixed-income 
markets. This substantiates the importance of proper hedging and pricing for-
mulae in order to value the contracts accurately. Good pricing performance is a 
necessary condition for a useful model; good hedging performance, however, is 
sufficient [2]. 

Markets always quote swaptions volatilities in a periodic series of either 3, 6, 
or 12 months, hence a more direct pricing strategy would be to model applicable 
libor rates with same time discretization as opposed to modelling the instanta-
neous rate and then prorating the forward rates applicable over the periods. This 
makes the market models like the libor process more empirically suitable to 
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model the forward rates applicable in swaptions. 
Market models have become popular in pricing basic interest rate derivatives 

namely caps and swaptions because of their agreement with well-established 
market formulas i.e. Libor-forward rates (LFR) prices caps with Black’s formula 
whereas libor swap rates (LSM) prices swaptions with same the formula. How-
ever, LFR and LSM are not compatible with each other in theory, but empirically 
their distribution is not far off each other. Nevertheless, we shall adopt the LFR 
model to price swaption because they are more natural representative coordi-
nates of the yield curve than the swap rates. Additively, it is natural to express 
the LSM in terms of a suitable preselect family of LFR rather than doing the 
converse [3]. 

The pricing of swaptions hinges on the LFR process with parameters that are 
optimized in accordance with the market volatilities of existing interest rate 
products. Through the transformation of Black’s formula, traders extract im-
plied volatilities from tradable assets, which are then used to derive LFR’s dy-
namics for simulation. 

Optimization provides an excellent method to select the best element in terms 
of some system performance criteria from some set of available alternatives. On 
the other hand, a simulation is a tool that allows us to build a representation of a 
complex system in order to better understand the uncertainty in the system’s 
performance. Often the emphasis is put on simulation, leaving optimization tech-
niques at the discretion of the trader. Sometimes the optimization technique 
used leads to large errors that significantly affect the simulation and hence the 
model performance. When considered separately, each method is important, but 
limited in scope. By giving the two equal weights, we can develop a powerful 
framework that takes advantage of each method’s strengths, so that we have at 
our disposal a technique that allows us to select the best element from a set of 
alternatives and simultaneously take account of the uncertainty in the system. 

Swaption pricing has often adopted the least-square non-linear (lsqnonlin) 
method to minimize the error between the model parameters and the market 
measures. The method is computationally easy to use but it can get trapped in 
the local minimum, hence greatly overestimating the parameters. The method’s 
major drawback is that it doesn’t have any known mechanism to get out of local 
minimum entrapment. Local minimum parameters would have much higher 
errors than global minimums if the two are not one and the same. 

Simulated annealing (SA) optimization searches the global minimum para-
meters by utilizing a probabilistic transition rule that determines the criteria for 
moving from one feasible solution to another in the design space. Sometimes the 
rule accepts inferior solutions in order to escape from local minimum entrap-
ment. This enables it to search higher dimensions for other minimum points, 
and in the process converge to the global minimum. The method also doesn’t 
require any mathematical model making it suitable for problems that do not 
have an exact distribution [4]. 
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2. Simulated Annealing Overview 

Simulated annealing optimization imitates the annealing process used in metal-
lurgy whereby a substance is heated to its melting point and then it is slowly 
cooled in a controlled manner until it solidifies. The process largely depends on 
the cooling schedule to determine the structural integrity of the resultant sub-
stance. If the cooling is too quick, the substance forms an irregular crystalline 
lattice hence making it weak and brittle. If the cooling is slow the substance 
formed is strong since the crystal lattice is regular. 

SA establishes the link between the thermal cooling behaviour and searches for 
the global minimum. The resultant substance with a regular crystalline lattice 
represents a codified solution to the problem statement and the cooling schedule 
represents how and when a new solution is to be generated and incorporated. 
The technique has basically three steps; if the old solution doesn’t meet the set 
requirements, perturb it to a new one, then evaluate the new solution given the 
old one, and finally accept or reject the new solution. The analogy of the cooling 
schedule could be represented using the picture below (Figure 1) [4]. 

The objective is to get the ball to the lowest point of the valley. At the begin-
ning of the the process the temperature is high and strong perturbations are ex-
erted on the box and hence the ball can jump through the high peaks in search 
for the bottom of the valley. As the time goes by and the temperature reduces, 
the perturbations become weak hence the ball can only jump small peaks. At the 
time the temperature reduces to very low levels, there is a high probability that 
the ball will be in the lowest depression of the valley. In the algorithm, the tem-
perature forms part of the controlling mechanism for accepting a new solution 
i.e. When the the temperature is high, the SA optimization is searching for the 
global solution in a broad region, but as the temperature reduces the search  

 

 
Figure 1. SA Cooling analogy. 
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radius reduces hence refining the feasible solution attained at high temperatures. 
The algorithm uses the solution error to evaluate the eligibility of the new so-

lution. The solution error is calculated from the objective function to be opti-
mized. Usually each solution iX  is associated with its error iE . The error is 
used to evaluate the new solution by determining its acceptance or rejection. If 
the error in the new solution is less than the old, it is automatically accepted, on 
the other hand if it is more it accepted but under a set probability ( nP ) i.e. 

exp 0
1 0,

k E
T

n
EP
E

∆
− ∆ ≥= 

 ∆ ≤  
where E∆  is the change in the solution error after it has been perturbed, T is 
the current temperature and K is a suitable constant. Through the accep-
tance/rejection criteria above, the algorithm can accept inferior solutions but the 
probability reduces as the temperature reduces or as the E∆  increases. Conse-
quently, at high temperatures the algorithm searches a broad area hence accepts 
bad solutions, as the temperature reduces, the algorithm is more selective and 
only accepts solutions when the E∆  is very small. The algorithm termination 
criteria is user defined and mainly include error tolerance level, maximum 
number of iteration, or attained temperature level. 

The algorithm components include; a neighborhood function that conducts 
the perturbations, a cooling function that dictates how the temperature reduces 
and an acceptance function for evaluation of solutions. 

SA versatility can be attributed to the feedback generated by its users which 
has in turn been used to add various options that go beyond the basic algorithm. 
The power & flexibility accorded by the feedback mechanism has enabled it to be 
applied across many platforms. In cases where the default options are not appli-
cable, it accepts customized functions. The introduction of re-annealing also 
permits adaptation to changing sensitivities in the multidimensional parame-
ter-space [5]. 

3. Literature Review 

Before the libor market model was derived, the difficulty in valuation of caps 
and swaptions was attributed to presence of unobservable financial quantities 
like instantaneous forward rate or short rate, in the pricing formulae. This holds 
major disadvantage in that a transformation via black box in the model is 
needed in order to map the dynamics of this unobservable quantities to observa-
ble ones [6]. 

The developments that led the derivation of the Libor process was reported in 
[7] where it was shown how to choose the volatility functions (and a change of 
measure), so that libor rates follow lognormal processes. Although it is an exten-
sion of Heath,Jarrow & Morton model (HJM), the libor process differs in that 
the process has observable market quantities and produces well behaved forward 
rates than HJM’s which can go to infinity in finite time [8]. The hallmark of the 
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model was anchored upon having an arbitrage free process that can accommo-
date correlated forward rates. 

The libor also holds an advantage over the short rate process in that; it can 
achieve decorrelation of forward rates, the estimated parameters can be inter-
preted, and it models the forward rate as primary process as opposed to a sec-
ondary one. Decorrelation is achieved by finding the most effective way to redi-
stribute the volatility of the libor rates as time lapses [3]. 

[9] considered the various implementation methodologies of pricing caps and 
swaptions in the libor framework. The paper highlights that Monte-Carlo me-
thod with parametric correlation matrix has a more stable evolution of volatility 
and correlation, which is a desired feature in pricing exotic options and also 
hedging. It also states that non-parametric approach poses minimization prob-
lems as the number of free parameters becomes large, hence impossible to esti-
mate since the number of forward rates alive may not be sufficient. 

In the libor framework, once time dependent instantaneous volatility and 
correlation of the forward rates have been specified, their stochastic evolution is 
completely determined. This leaves the matching of Black’s volatility (path in-
dependent) to the integral of instantaneous volatility (path-dependent) the only 
approximation needed. [10] indicates that by using a self financing strategy be-
tween the swaption and the libor rates and assuming that both have lognormal 
distribution and deterministic volatilities, the Black’s volatility can be approx-
imated by a linear function of swap rates weights, correlation coefficient and in-
stantaneous volatility. 

In solving the need for the correlation matrix to have a rank less than the 
number of factors considered, [6] proposed a discerning parameterization me-
thod that uses a hyper-sphere decomposition before dimensionality problem is 
addressed. However the correlation matrix will depend on the bounds set for the 
angles. Use of spherical coordinates in the specification of instantaneous volatil-
ity allows for a more robust optimization scheme [11]. This methodology will be 
applied in this thesis. 

The basic SA algorithm that was originally published by [12] had two main 
implementation strategies for the acceptance probability. The primary one was 
Boltzmann annealing which was credited to Monte Carlo importance-sampling 
technique for handling large-dimensional path integrals arising in statistical 
physics problems. The method was generalised so as to fit non-convex cost func-
tions arising in various fields. The acceptance probability is based on the chance 
of obtaining a new solution error relative to the previous one. The secondary one 
was fast annealing, which adapted the Cauchy distribution for its acceptance 
probability as opposed to Boltzmann distribution. In comparison with the Gaus-
sian Boltzmann form, the fast Cauchy distribution has fatter tails hence permits 
an easier access to test local solutions while searching for the global one. 

In the [13] paper, “Theory and practice of Simulated annealing”, they enlist 
topography and size of the design space as the key variables that need to be con-
sidered while choosing the sampling function. A sampling function that imposes 
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smooth topography in cases where the local minima are shallow is preferred to a 
bumpy one. On the issue of size, the main consideration is the ability of the 
function to reach other feasible solution in finite number of iteration i.e necessi-
ty of reachability. The paper also offer other conjures by hinting that sampling a 
small size of solution space is preferred as compared to large one because the 
latter will have the algorithm sampling large portions hence unable to concen-
trate on specific areas of the design space. Contrary to the suggestion above, a 
larger annealing sample guarantees a better SA performance than a small one. 
They also suggest a method of reducing the search space by isolating the strongly 
persistent variables1 during SA execution. Ultimately, the function will highly 
depend on the problem at hand. 

Cooling schedules commonly used in SA was originally proposed by [14]. It 
includes an initial temperature 0T ; which must be too high so that the new solu-
tion sought is accepted with probability close to 1, a temperature decreasing 
function; generally an exponential function with a parameter α , and the number 
of iterations k for each temperature level before it reduces. [15] describes three 
temperature reduction function commonly used in empirical application as. 

1) Multiplicative Monotonic Cooling—Temperature is reduced by multiplying 
it with a parameter α . α  generally varies from 0.8 - 0.9. 

2) Non-Monotonic Adaptive Cooling—Temperature is reduced my multiply-
ing it with an adaptive factor that is based on the difference between the current 
solution objective. 

3) Additive Monotonic Cooling—Two additional parameters are included 
namely; the number n of cooling cycles, and the final temperature nT  of the sys-
tem. In this type of cooling, the system temperature T at cycle k is computed add-
ing to the final temperature nT , a term that decreases with respect to cycle k. 

Each has four variants namely quadratic, linear, exponential and logarithmic. 
Non-Monotonic Adaptive Cooling has also a trigonometric version. 

[16] documents the importance of choosing a good initial temperature for the 
cooling schedule as it determines the ability of the algorithm to find good solu-
tions. In the paper, he gives four accounts of calculating the initial temperature. 
The first is equating it to the largest cost value difference between any two solu-
tions in the design space. The second equates it to a function of a constant and 
the volatility of the cost value differences i.e. 2kσ∞ . Temperature is taken to be at 
infinity and K is between 5 and 10. The third is coined from the relationship 
between temperature parameter and the acceptance ratio i.e. starting from a 
given acceptance ratio oχ , a large enough temperature is first tested and the ra-
tio is calculated. If the ratio is less than the oχ , the temperature is multiplied by 
two, if larger, it is divided by three. He gives the latter method a thumbs up as it 
is able to avoid cycles and a good estimation of the initial temperature is easily 
found. The fourth borrows slightly from the former in that the initial tempera-
ture is the quotient of the average cost value changes and the logarithm of the set 

 

 

1Variables with the same value in all optimal solutions. 
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initial acceptance ratio oχ . The method starts by first generating some random 
transitions so as to be able to compute the average change of the cost value. 

[17] studied the application of SA in stochastic & deterministic optimization 
whilst using constant and varying sample size. The constant/variable sample is 
incorporated in the neighbourhood function in that the next solution is eva-
luated as an average of chosen samples size. He motivates the importance of 
choosing a good cooling schedule for the temperature parameter in evaluating 
the neighbourhood solution so as save on computational time and increase effi-
ciency. In his conclusion remarks, the varying sample method performs better 
for deterministic problems, whereas constant sample performs better for com-
plex stochastic problems. 

[18] whilst strived to maximize the expected logarithm utility function, inves-
tigated the use of simulated annealing in optimization of wealth allocation of 
stocks for capital growth problem. The paper adapted a Cauchy function to 
move from one feasible solution to another. In order to have a positive capital 
growth, the wealth allocations of the stocks have to be a below a critical point. 
Since the number of stocks available is numerous, the strategy heavily relies on 
the weight put on each stock. Any local optimization method will overestimate 
the parameters consequently affecting the outcome greatly. They showed that by 
using Cauchy sampling function and decreasing cooling schedule the parameters 
could escape the local maxima and achieve global maximum parameters with 
significant accuracy to warrant a positive capital growth. 

[19] examined the problem of selecting optimal sparse mean reverting para-
meters based on observed and generated time series. They adapted SA method 
and compared it with the greedy method. The paper reports that the SA methods 
outperform the greedy method in 10% of the cases where the asset’s cardinality 
is small. The percentage increases to 25 when the assets and cardinality restric-
tion are doubled, indicating that the SA method becomes more attractive for 
larger assets whilst maintaining asymptotic runtime of simpler heuristics. 

[20] compares the various optimization techniques applied in minimization of 
volatility function in pricing of caps & swaptions in Cheyette model. In his paper 
he acknowledges the superiority of non-derivative algorithms like downhill 
simplex or Genetic algorithm in implementation of the model. In his execution, 
he embedded the downhill simplex method in the SA algorithm. Beyna results 
indicate lower free parameters than calculated by Downhill simplex method. The 
paper also tested several cooling annealing schedules i.e. linear, exponential 
cooling schemes and some adaptive ones. It turned out, that the linear cooling 
scheme delivers the best results, if the cooling factor is chosen considerably 
small. 

4. Methodology 

The libor2 process models forward rates which are in turn used to evaluate the 

 

 

2Libor and BGM will be used interchangeably. 
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expected payoff of swaptions under some measures. The process assumes that 
the rates follow log-normal distribution so as to be able to recover the [21] for-
mula. In coming up with the formula, the thesis employs Martingale representa-
tion method. 

4.1. Martingale Representation Method 

Martingale is a process that has the property that at each point in time, the con-
ditional distribution for the future point in time is centred around the mean. 
This constraint on the process stops it from becoming too wild [8]. Martingale 
representation theorem allows the payoff of interest rate derivatives to be eva-
luated using an expectation of a stochastic martingale process [22]. Taking the 
price of an option evaluated with respect to numeraire N or any traded asset 
with its corresponding probability measure  , to be tC  at time t and the 
payoff at time T to be TX , its martingale representation can evaluated as: 

| ,t T
t

t T

C X F
N N

 
=  

 
                       (1) 

where: 

( )max ,0 .T TX R K= −  

4.2. Change of Numeraire 

Many computational applications of derivatives pricing models such as deter-
mination of derivative prices by simulation or the estimation of derivative pric-
ing models can be significantly simplified by a change of numeraire [8]. The 
numeraire is chosen so as to simplify the equation i.e. when TN  is stochastic it 
can’t be factored out, but a change of numeraire can have it change to unit hence 
easily simplifying the equation3. Radon-Nikodym derivative allows one to make 
the switch from expectation under one measure to another measure e.g. from 
T-forward measure to forward swap measure. 

4.3. Swaps 

Interest rate Swap is an agreement to exchange payments using two different in-
dexes i.e floating and fixed. The party that agrees to pay the fixed and receive the 
floating index is the Payer swap and the converse is the receiver swap. The fixed 
index pays a fixed amount K at every instance jT  while the floating side pays 

( )1j jL T − . Different from the fixed rate, the floating have a reset date jT  that 
stipulates the forward rate applicable at the time of payments 1jT + , for the tenor 

oT Tβ , hence the notation ( )1j jL T − . 
Thus, the payoff at time 0t T<  of such a payer swap contract denoted as 
( )0 0IRS , , ,nt T T K  can be written as4: 

 

 

3e.g. under T-forward measure, the numeraire is a zero coupon bond whose price at maturity is a 
unit notional amount. 
4Under risk neutral measure. 
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( ) ( ) ( )( )
1

0 0 1
0

IRS , , , , ,n j j j j
j

t T T K D t T L T K
β

τ
−

−
=

= −∑           (2) 

where jτ  is the year fraction between 1j jT T +− , ( ), jD t T  is the discount fac-
tor, 0 is the commencement date of the contract and β  is the expiry. 

The contract can be evaluated (at time t) under the 1jT +  forward measure by 
using the price of the bond maturing at time 1jT +  as the numeraire, i.e. 

( )
( )

( ) ( )( )1
1

1
0 0 1

0 1 1

,
IRS , , , .

,
J jT

n j j j
j j j

P t T
t T T K L T K

P T T

β

τ +
−

+
−

= + +

= −∑         (3) 

By assuming that ( )jL t  is a martingale under the 1jT +  forward measure, 
we can express the value of the payer IRS as: 

( ) ( ) ( )( )
1

0 0
0

IRS , , , , .n j j j j
j

t T T K P t T L t K
β

τ τ
−

=

= −∑
 

The fixed rate that makes the IRS a fair contract at time t, denoted as ( )0,R tβ , 
should be calculated with the condition ( )0 0IRS , , , 0nt T T K = . By setting the ex-
pression of the payer IRS equal to zero, the forward swap rate ( )0,R tβ  may be 
expressed as: 

( ) ( )
1

0,
0

,j j
j

R W t L t
β

β

−

=

= ∑                      (4) 

where 

( )
( )

( )1
0

,
.

,
j

j
jj

P t T
W t

P t Tβ −
=

=
∑

                     (5) 

Equation (4) means that the the forward swap rate is a weighted average of the 
of the libor rates over the tenor since jW  is bounded as 0 1jW< < . Through 
the libor-bond relation; (derivation shown in Equation (33) in the appendix), 

( )
( )
( )1

,1 1 ,
,

j
j

j j

P t T
L t

P t Tτ +

 
 = −
 
 

                    (6) 

the payer IRS can be simplified to; 

( ) ( ) ( )( ) ( )

( ) ( )

1

0 0 1
0

1

1
0

IRS , , , , , ,

, ,

n j j
j

j j
j

t T T K P t T P t T P t T

K P t T P t T

β

β

β

βτ

−

+
=

−

+
=

= − +

− −

∑

∑
         (7) 

( ) ( ) ( )
1

0 1
0

, , , ,j j
j

P t T K P t T P t T
β

βτ
−

+
=

= − −∑        (8) 

which depicts the well known feature of IRS pricing that the value doesn’t de-
pend on the volatility or the correlations of the underlying forward rates. Ap-
plying the fair contract condition on Equation (8), 0,R β  becomes, 

( ) ( )
( )

0
0, 1

10

, ,
,

,j jj

P t T P t T
R

P t T
β

β βτ −
+=

−
=

∑
                    (9) 
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rearranging Equation (9) yields, 

( ) ( ) ( )
1

0 0, 1
0

, , , .j j
j

P t T P t T R P t T
β

β βτ
−

+
=

− = ∑               (10) 

Using Equation (10) in Equation (8), the payoff of the IRS becomes; 

( ) ( )( )
1

0 0 0,
0

IRS , , , , .n j j
j

t T T K P t T R K
β

βτ
−

=

= −∑             (11) 

By using simple algebraic manipulation and dividing Equation (9) by ( )0,P t T , 
the forward swap rate can be expressed in terms of libor rates as ([8]); 

( )

( )

1

0
0,

1
0

0

11
1

.
1

1

j j m
j

jm
j j j

L t
R

L t

β

β
β

τ

τ
τ

−

=

−

=
=

−
+

=

+

∏
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4.4. Pricing Swaption under Black’s Framework 

A swaption contract gives the holder the right but not the obligation to enter in-
to a swap contract at a future date, which is the swaption maturity. Usually the 
first reset date of the swap is often the maturity date of the swaption. Since the 
contract is valued fairly, we express its payoff as a call option on the forward 
swap rate i.e. 

( ) ( ) ( )( )
1

0 0 0,
0

, , , , .irs n j j j
j

S t T T K P t T R t K
β

βτ τ
− +

=

= −∑           (12) 

Simply put, Equation (12) implies the payoff of the swaption can be deemed as 
the product of an option on the forward swap rate and an annuity 

0 ,tC β : 

( ) ,
1

, .
oi t

i o
P t T C

β

βτ
= +

=∑                      (13) 

To recover the Black’s formula for swaptions, the expectation of the payoff at 
time t has to be taken under forward swap measure. Taking the annuity as the 
new numeraire, the value of the option becomes; 

( )
( )

( )
( )

( )( )
( )

0, 00

, , 0 , 0

.
o

irsirs s s

t t t

R T KS TS t
C t C T C T

β

β β β

+ −   = =       
            (14) 

The new measure helps to simplify the equation since the the numerator un-
der the expectation operator is a unit metric, hence changing Equation (14) to; 

( ) ( ), 0, .
o

s
irs tS C t R Kβ β

+
= −

 
Using the relationships Equation (4), Equation (45), and applying Ito’s lem-

ma, the risk neutral dynamics of 0,R β  becomes [8]; 

( )
( ) ( ) ( ) ( ) ( ) ( )

1 1
0,

0, 1
0 0

d ˆd d d .
d j j m m

j jj

R t
R t L t W t W t t t

L t

β β
β

β γ ψ
− −

+
= =

 
= − 

 
∑ ∑      (15) 

Defining the new wiener process under forward measure as; 
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( ) ( ) ( ) ( )
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1
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+
=

= −∑
 

and an application of Radon-Nikodym derivative [8]; 

( ) ( )
( ) ( )

, , 0d ,
ˆd 0

s C t Cp
p A t A

α β α β=
 

expression Equation (15) becomes; 
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d
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Different from other SDEs, the swap rate doesn’t automatically form log-normal 
dynamics when under the forward swap measure, therefore an approximation 
method is needed to arrive at it. 

Assuming for all tν ≥ ; 
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where jϖ  expressed as, 

( ) ( )
( )

0,

0,

dd
.

d d
j

j
j

L tR t
L R t
β

β

ϖ =
 

This approximate process was obtained by use of the frozen coefficient tech-
nique that allows the relaxation the dependence of state variables to the model 
coefficient. 

Applying the approximated log dynamics of 0,R β  in (14), the Black’s formula 
for swaptions becomes; 

( ) ( ) ( ), 0, 1 2 ,tC t R d K dβ β −                    (16) 

where, 

( )
( )0, 2

0

1
0

1ln
2

, ,
n

n

R
T t

K
d t T

T t

β σ

σ

 
+ − 

 =
−  

( )2 1 0, ,nd d t T T tσ= − −  
and nσ  is the variances of the forward swap rate 0,R β  computed as: 

( ) ( )02

0

1 d .
T

n k j k jt
s s s

T t
σ ϖ ϖ γ γ=

− ∫
 

Calibration 
Swaptions are quoted as implied volatilities as opposed to dollar amount. The 

implied volatilities are a descriptive of the level of prices of the underlying i.e. 
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the swap. In the Black’s equation, σ  (implied volatility) is an input. Plugging 
in the implied volatility in the equation will give the level of price that is accept-
able in the market for each pair of forward swap rate and strike. 

4.5. Numerical Pricing of Swaptions Using the Libor-Forward Rates 

In contrast to analytical solutions that price swaptions only under log-normal 
forward swap rates, numerical methods are more flexible to accommodate other 
distributions and rates like the forward libor rates. This helps to take advantages 
of the latter congruence to yield curve. 

In pricing swaptions under the LFR, unlike in caps, the payoff is not additively 
separable with respect to different rates. As a result, the expectation of such a 
payoff includes the joint distribution of the spanning forward rates in the calcu-
lation. This means that the correlation between the rates has an impact on the 
value of the contract. The solution to the above issue is to assign a different 
Brownian motion to each forward rate and then assume the Brownian motion to 
be instantaneously correlated. Manipulating the instantaneous correlation leads 
to manipulation of correlation of simple rates i.e terminal correlation. However, 
terminal correlation is not only determined by instantaneous correlation but al-
so by the way the average volatility is distributed among instantaneous volatili-
ties [3]. 

Libor Rate Dynamics under Spot Libor Measure 
The libor-forward rates dynamics under the Spot Libor measure5 is given by; 

( ) ( )
d

d d ,j
j j j

j

L t
t t W

L
µ σ= +                   (17) 

where; 

( )
( )

( ) ( )
( )
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j i j j j

j j
j m t j j

t L t
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L t
τ ρ σ

µ σ
τ=

=
+∑

 
and m(t) is the quantity defined by the relation ( ) ( )1m t m tT t T− < < , while jτ  is 
the time fraction associated with Jth libor rate. W is a N-dimensional geometric 
Brownian motion with correlation between the rates defined as 

( ) ( ) ,d d .j i i jW t W t ρ=  
The spot numeraire is defined as; 

( ) ( )( ) ( )( )( ) 1
0, 1 .m t

n nm t nB t P t T L tτ−

=
= +∏  

The task with the LFR is how to model volatility and correlation and how to 
estimate the parameters of these models for volatility and correlation. Two 
straightforward parameterizations are employed. 
• Volatility 

 

 

5The path-dependent derivatives can be accurately evaluated by constructing random paths of the 
libor process using either the forward-risk adjusted or spot Libor dynamics mainly because at each 
payment date 1jT +  spot Libor ( )jL t  is received and an amount equal τK is paid [23]. 
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( ) ( )( ) ( )exp .jc T t
j i jt a T t b dσ φ −

= − + +
 

The main advantages functional form above is that allows for a humped vola-
tility feature and its parameters or their combinations lends themselves to an 
easy interpretation i.e. a d+  is the value of the instantaneous volatility of any 
forward rate as its expiry approaches zero, d- is the value of the instantaneous 
volatility for very long maturities, and the maximum of the hump is given by  

1 a
c b

τ = − . Furthermore, when coupled with a simple correlation function, the  

volatility above describes well and in parsimonious manner the whole swaption 
curve [24]. 
• Correlation 

, exp .i j
i j

ηρ − −=  

The function above ensures that the correlation matrix is admissible as long 
η  is positive. 

Once the functional forms have been specified, the parameters must be esti-
mated using market data. One useful approximation, initially developed by [10], 
relates the Black volatility for a European swaption, given a set of volatility func-
tions and a correlation matrix as; 
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w’s described as; 
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=
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The aim is to minimize the objective function; 

( ) ( )
2

0
min .

n
mkt Lfr
i i

i
t tσ σ

=

 − 
 
∑                   (18) 

4.6. Simulated Annealing Minimization 

Letting Ω  be the discretized solution space and :f Ω→ℜ , the objective 
function defined in the space. The algorithm searches the global minimum solu-
tion gω , such that ( ) ( )gf fω ω<  for all ω  in Ω . The objective function is 
bounded for gω  to exist. The objective function is used to calculate the cost 
value as; 

( ) ( )( )2
.mkt Lfr

i it tσ σ−
 

4.6.1. Neighbourhood Function 
In implementation, I will utilise the Boltz neighbourhood option to navigate the 
solution space. Boltz option uses a step length equal to the square root of tem-
perature parameter to change from one solution to another with direction un-
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iformly at random. 

4.6.2. Cooling Schedule 
There is no an academic consensus in regard to the choice of initial temperature. 
Most choices are made with regard to problem at hand. In implementation I use 
a default initial temperature of 100. 

Afterwards the temperature is reduced by dividing the initial temperature 
with the logarithm of the rank of the iteration i.e. 

,
log

o
k

T
T

k
=

 
k being the rank of the iteration. 

4.6.3. Acceptance or Rejection Probability 
Once a new solution has been sought, it’s compared to the previous solution, 
and accepted if better or the acceptance probability is between 0 and 0.5. 

The acceptance function is: 

1 ,

1 exp k

n
T

P ∆=

+  
where: 
• ∆  is the difference between the current and previous cost value. 
• T is the temperature parameter applicable at iteration k. 

Stopping rule—The search stops when the set function tolerance is met. 

4.7. Algorithm 

 

4.8. Nonlinear Least-Squares (Lsqnonlin) Minimization 

Least square is the oldest and most widely used minimisation method. Its popu-
larity is due to the fact that it can be directly applied to a deterministic model 
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without any cognizance being taken from the probability of the observations 
[25]. It is a constrained method that minimizes problems of the form; 

( ) ( ) ( ) ( )( )2 2 2 2
1 22

min min ,nx x
f x f x f x f x= + + +

 
where the objective function ( ) 2

2
f x  is defined in terms of auxiliary functions 

if  with optional lower and upper bounds on the components of x. The objec-
tive function corresponds to the residuals in a data fitting problem i.e. 

( ) ˆ ,i if x y y= −  
where ˆiy  is the model estimate and iy  is the market observations. 

Through an iteration procedure, the method minimises the sum of square re-
sidual value up to a set tolerance level. However, as against the Ordinary Least 
Squares (OLS) estimation, there is no closed-form solution for this system of equa-
tions formed, hence we make small adjustments to the predictor values at each itera-
tion. Rather than computing the sum of least squares, the method requires a us-
er-defined function to compute the vector-valued function ( ) ( ) ( )1 2, , , nf x f x f x  
of the residuals. 

4.9. Monte-Carlo Simulation 

Monte-Carlo method is a numerical formula where random numbers are used 
for scientific experiment. Monte Carlo simulation is perchance the most com-
mon technique for propagating the incertitude of the various aspects of a system 
to the predicted performance. In Monte Carlo simulation, the entire system is 
simulated a large number of times i.e. a set of suitable sample paths is produced 
on [ ]0 ,t T . Each simulation is equally likely and it’s referred to as a realization of 
the system. For each realization, all of the uncertain parameters are sampled. For 
each sample, we produce a sample path solution to the SDE on [ ]0 ,t T . The rea-
lization is generally obtained from the stochastic Ito-Taylor expansion. From the 
Ito-Taylor expansion, we can construct numerical schemes for the interval 
[ ]1,i it t + . 

The dynamics of the libor rates under the Spot measure is: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ),

0 1
d d d .

1
k j j j j

k k k k k k
j j j

p t L t
L t t L t t t L t Z

L t

β τ σ
σ σ

τ= +

= +
+∑     (19) 

Since the dynamics above doesn’t yield a distributionally known results, its 
proper to discretize it to finer time frame that would enable the process reduce 
the random inputs from distributionally known Gaussian shocks. Use of loga-
rithm of the rates can help achieve the above objective. Taking logs and applying 
Ito’s lemma, dynamics of (19) become; 

( ) ( ) ( ) ( )
( )

( ) ( )
2

,

1
d ln d d d .

1 2
k j j j j k

k k k k
j o j j

p t L t t
L t t t t t Z

L t

β τ σ σ
σ σ

τ= +

= − +
+∑    (20) 

Equation (20) has a diffusion process that is deterministic, as a consequence, 
the naive Euler scheme coincides with the more sophisticated Milstein scheme. 
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So the discretization becomes; 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )( )

,

1

2

ln ln
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.
2

t
k j j j jt t

k k k t
j o j j
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k k k
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L t t L t t t

L t

t
t t Z t t Z t

β τ σ
σ

τ

σ
σ

∆
∆ ∆

∆
= +

+ ∆ = + ∆
+

− ∆ + + ∆ −

∑
      (21) 

This discretization leads to an approximation of the true process such that 
there exists a 0γ  with 

( ) ( )( ) ( )ln ln ,t t
k k oE L t t L t C T tα ∆ ∆+ ∆ − ≤ ∆

 
for 0t γ∆ ≤ , and ( )oC T t∆  is a positive constant. This gives strong convergence 
of order 1, from the exponent of t∆  on the right-hand side [3]. 

For 1, 2, ,k o o β= + +  , we generate M of such realizations. After simulating 
the libor rates, they are subsequently used to calculate the swap rates through the 
relation indicated by section (4.3). Henceforth evaluating the payoff as: 

( )( )0,
1

, ,o i
i

P T T R K
β

β
α

+

= +

−∑                    (22) 

for each realization and the average becomes the Swaption price. 
Antithetic variates method for variance reduction was used to reduce the ef-

fects of discretization and simulation errors, so as to make sure that the price 
difference depicted is as a result of the different optimization techniques used. 

4.10. Data 

The data used in this study was obtained from [26] website. The data was used to 
price a swaption whilst using lsqnonlin method hence making it a good series to 
compare with simulated annealing performance. 

5. Results & Discussion 

In simulated annealing options, I used the Boltz method for my neighborhood 
and temperature function. For both SA and lsqnonlin, the feasible set of solu-
tions had lower bound of [0 0 0.5 0 0.01] and upper bound of [1 1 2 0.3 1] with 
the initial point being [1.2.05 1.05.2]. The stopping criteria were based on the 
objective function achieving a tolerance of 1e−5. 

5.1. Data Evaluation 

The stylized features of the data can be ascribed from; the zero curves, forward 
curve and the evolution of the Libor market model rates. (Shown in Figure 2 
below). 

A zero curve maps the prices of zero coupon bonds to different maturities 
against time. This curve helps in pricing of fixed incomes securities and deriva-
tives since it gives a fair value of capital gains accepted in the market. The slope 
of the curve indicates it is normal i.e. there is more compensation for each in-
crement of risk taken. In derivatives market, longer time increases the chance of  
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Figure 2. Zero & Libor curves. 
 

negative events occurring hence higher risk. 
Libor-forward rates can be transcribed from zero coupon bonds as shown in 

Equation (33) (in the appendix). They give insight to the price of a forward con-
tract relative to its time to maturity. It is an experienced fact that the curve flat-
tens out as time lapses. This because of increased correlation between the rates 
as time elapses. 

The evolution of the market model is an indicator of the how the well the op-
timization techniques mimick the real world market. The two methods have 
managed to capture the sporadic movements of the libor rates, phenomena that 
become commonly observed after the financial crisis of 2007. 

5.2. Volatility Function 

The plots (Figure 3) below are the values of the stipulated volatility function 
whose parameters was estimated as [0.3744 0.0385 1.9454 0.1542] by SA method  
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Figure 3. Volatility Plots. (a) Simulated Annealing plot; (b) Lsqnonlin plot. 

 
and [0.0932 0.1524 0.5745 0.0707] by lsqnonlin method. 

Market implied volatility curve is humped as a result of the control from the 
monetary authorities. The parameterization function adopted is capable of cap-
turing the humped term structure of volatility in case the market volatility is 
originally humped. However, lsqnonlin looses the stylistic feature whereas SA is 
able to maintain it. 

5.3. Correlation Matrices 

As mentioned earlier, the terminal correlation of libor-forward rates do play a 
role in pricing swaption. The correlation is then used to calculate the value of the 
price. Below (Table 1) represent the correlation matrix that was calculated using 
the coefficient η  (0.0996) estimated by SA. 

Lsqnonlin on the other hand, estimated the η  to be 0.0100, and correspond-
ing correlation matrix is (Table 2). 

The methods show typical qualities of a correlation matrix i.e. positive corre-
lation with 1’s in the leading diagonal. Also moving away from the leading  

 
Table 1. SA correlation matrix. 

1.000 0.905 0.819 0.742 0.671 0.608 0.550 0.498 0.451 

0.905 1.000 0.905 0.819 0.742 0.671 0.608 0.550 0.498 

0.819 0.905 1.000 0.905 0.819 0.742 0.671 0.608 0.550 

0.742 0.819 0.905 1.000 0.905 0.819 0.742 0.671 0.608 

0.671 0.742 0.819 0.905 1.000 0.905 0.819 0.742 0.671 

0.608 0.671 0.742 0.819 0.905 1.000 0.905 0.819 0.742 

0.550 0.608 0.671 0.742 0.819 0.905 1.000 0.905 0.819 

0.498 0.550 0.608 0.671 0.742 0.819 0.905 1.000 0.905 

0.451 0.498 0.550 0.608 0.671 0.742 0.819 0.905 1.000 
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Table 2. lsqnonlin correlation matrix. 

1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932 0.923 

0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932 

0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942 

0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951 

0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961 

0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970 

0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980 

0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990 

0.923 0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000 

 
diagonal, the measures are decreasing clearly showing that the joint movements 
of far away rates are less correlated than movements of rates with close maturi-
ties. The sub-diagonals are increasing as one approaches the leading diagonal, an 
indication of a larger correlation of adjacent rates. 

Albeit the similarities, lsqnonlin predicts much higher correlations than SA. 
Such a flaw is undesired since the correlation is much lower for rates that are far 
off each other. SA doesn’t reflect the drawback. 

5.4. Price Comparison 

Table 3 below represents the prices of swaptions implied by the lsqnonlin me-
thod and the simulated annealing optimization, with their respective deviations 
from the Black’s prices. The swaption had a maturity of 5 years and a tenor 
ranging from 1 Year to 5 years. The instrument strike was 0.045. 

The errors are plotted in the combined plot (Figure 4). 
We set out to price a swaption using both lsqnonlin and simulated annealing 

optimization techniques, and did so by using the methods to minimize the dif-
ference between model volatility against market quotes. We have demonstrated 
that the simulated annealing produces lower errors than lsqnonlin as evident 
from the graph. Both methods value the swaption with a tenor of one as having 
an almost zero value hence same errors at onset. However as the swaption gains 
value, SA systematically predicts more precise prices than the contra. 

 
Table 3. Price and errors for SA & lsqnonlin. 

lsnl lsnl er sa sa er 

0 (1.1441) 0 (1.1441) 

1.0425 (0.5060) 1.1012 (0.4473) 

1.0352 (0.6789) 1.2670 (0.4472) 

1.4884 (0.3984) 1.5830 (0.3031) 

2.0090 (0.0403) 1.9707 (0.0020) 
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Figure 4. Error plots for SA & lsqnonlin (Data 1 represent the lsqnonlin errors, data 2-SA 
errors). 

6. Conclusions & Future Work 

The goal of the thesis was to conduct a simulation test as to whether the SA op-
timization method outperforms the lsqnonlin method in finding a better solu-
tion to the volatility & correlation parametization functions when set under the 
same conditions. The methods were benchmarked against desirable market features. 

The term structure of implied volatility is humped in nature indicating high 
uncertainty of intermediate forward rates. This phenomenon is a result of influ-
ence from the monetary authorities in that; at the short end of the maturity 
spectrum, the authorities determine the short deposit rates which then influence 
the short maturity forward rates, while at the long maturity spectrum, the au-
thorities control the forward rates so as to achieve a set inflation target. This 
leaves the intermediate period as a time when loose or tight regimes can be re-
versed or continued beyond what was originally anticipated. This state of affairs 
gives rise to maximum market uncertainty in the intermediate-maturity region, 
hence the volatility of the long-dated or of the very-short-dated forward rates 
will not be as pronounced as that of the intermediate-maturity forward rates 
[27]. Albeit not identical to the market curve, volatility functions should be able 
to reflect the quantitative shape for proper derivative pricing. The results indi-
cate that lsqnonlin misses portraying the hump of the intermediate rates instead 
showing only monotonic decaying volatility whereas SA features both the hump 
and the monotonic decay. 

In a time-homogeneous world, decorrelation between two forward rates de-
pends on how distant the rates are i.e. rates that are further apart are more de-
correlated than the ones in close proximity. This is as a result of the shock af-
fecting the first rate gradually dying out hence having little or no effect on the 
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later rates. Although both techniques show this feature, in lsqnonlin method, it 
is less pronounced indicating that the rates are more correlated despite the dying 
off of the shock. On the other hand, SA adequately depicts this effect by having a 
more pronounced decorrelation among non-proximal rates. 

The difference in the two methods to portray market features is easily de-
picted in the pricing of swaptions as evident from the value of errors and the 
graph. The more robust SA optimization has fewer errors propagated as com-
pared to lsqnonlin, hence proving that indeed the lsqnonlin method does get 
trapped in the local minimum, consequently overstating the free parameters 
which in turn influence the price level. 

The thesis thus proposes the adoption of simulated annealing optimization as 
the standard methodology for minimizing the difference between the model and 
market volatilities for greater price accuracy. 

SA has many variant components including the use of linear decreasing tem-
perature in lieu of lognormal, fast acceptance criterion instead of Boltz, and the 
maximum iteration stopping criteria as opposed to error tolerance. The thesis 
used the default options embedded in SA i.e. Boltz neighborhood function and 
decreasing lognormal temperature function, leaving the variants and custom 
functions for future study. The variants can be investigated to verify if they have 
less computational time than the ones used in the thesis. 

The main drawback of the correlation function adopted is that it predicts the 
decorrelation of any two equidistant rates to be almost the same irrespective of 
whether the first forward rate expires in two months or one year i.e. the first and 
second rates will decorrelate just as much as the 9th and the 10th. Normally, 
long-dated rates are less decor-related than the short ones. This financially unde-
sirable feature is a result of the absence of explicit time dependence in the func-
tion. A more desiderate specification would be the modified exponential form. 
Incorporation of the latter form and SA optimization could be investigated to 
discern if there is a further reduction in the disparity between numerical and 
analytical swaption prices. 
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Appendix 
BGM Framework 

BGM derivation begins from the Brace-Musiela (BM) (1994) parameterisation of 
the Heath-Jarrow-Morton (HJM) model. The HJM stochastic integration equa-
tion for under the the risk neutral measure is; 

( ) ( ) ( ) ( ) ( )
0 0

ˆ, 0, , , d ,
t t

f t T f T a T T Wν σ ν ν= + +∫ ∫          (23) 

where t is the time the rate is quoted and T is the time it applicable. Notably, T is 
fixed whereas t is a variable. For the model to be arbitrage free, the drift adopts 
the form, 

( ) ( ) ( ), , , .
T

t
a T t T t sν σ σ= ∫  

BM considers a fixed period ahead rate 

( ) ( ), , ,t x f t t xϒ ≡ +                      (24) 

where ( ),t xϒ  is the rate that is quoted at time t for instantaneous borrowing a 
time t + x, x being fixed time ahead i.e. 3 months. Hence Equation (23) becomes 

( ) ( ) ( ) ( ) ( )
0 0

ˆ, 0, , , d .
t t

f t t x f t x a t x t x Wν σ ν ν+ = + + + + +∫ ∫      (25) 

BM further redefines ( ),t t xσ +  as ( ),t xτ . With the above notation for 
drift and diffusion, the variables can written as 

( ) ( )( ) ( )( ), , , ,t x t x t xσ υ σ υ υ υ τ υ υ+ = + + − = + −
 

and 

( ) ( )( ) ( )( ), , , .a x a t x a t xυ υ υ υ υ υ= + + − = + −
 

The notation will be of great importance when adopting the  
Heath-Jarrow-Morton drift restriction. 

Adopting the BM notation, Equation (25) becomes; 

( ) ( ) ( )( ) ( )( ) ( )
0 0

ˆ, 0, , d , d .
t t

t x t x a t x t x Wυ υ υ τ υ υ νϒ = ϒ + + + − + + −∫ ∫  (26) 

In line with arbitrage free pricing, we adopt the notation of drift restriction as; 

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

0

0

, , , d

, , d

, ,

, , ,

t x

t
x

x

a t x t t x t s s

t t x t t y s

t x t y

t x t x

ν σ σ

σ σ

τ τ

τ ψ

+
+ = +

= + +

=

=

∫

∫

∫
 

defining the integrated volatility as ( ),t xψ . The notation permits further ma-
nipulation of the drift as; 

( ) ( )2d 1, , ,
d 2

a t x t x
x

ν ψ + =  
   

and the diffusion as; 
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( ) ( )d, , .
d

t t x t x
x

τ ψ+ =
 

Not having t appearing in the second argument will be important in carrying 
out volatility transformations that will enable us have a log-normal libor rates. 

Equation (26) is in stochastic integration form hence needs to transform to 
SDE by firstly differentiating with respect to x; 

( ) ( ) ( ) ( )( )

( )( ) ( )

2 2 20

20

d , , 0, , d
d

ˆ, d .

t

t

t x t x t x a t x
x

t x W

υ υ υ

τ υ υ ν

ϒ = ϒ = ϒ + + + −

+ + −

∫

∫
      (27) 

And then forming the SDE as: 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )

2 20

20

d , 0, , , d

ˆ ˆ, d , d

t

t

t x t x a t x a t x

t x W t x W

υ υ υ

τ υ υ ν τ ν

ϒ = ϒ + + + + −
+ + − +

∫

∫
       (28) 

Adopting Equation (27)’s drift, and diffusion notation, the BGM Stochastic 
differential equation (SDE) for the instantaneous forward rate becomes 

( ) ( ) ( ) ( ) ( )2d 1 ˆd , , , d , d .
d 2

t x t x t x t t x W t
x

ψ ψ  ϒ = ϒ + +      
The above representation allows bond prices to be valued in terms of time to 

maturity i.e. the bond matures at a fixed period ahead in lieu of fixed date i.e. 

( ) ( ), exp , d ,
T

t
P t T x r t s t s + = − −  ∫                (29) 

where P (t, T + x) is the price of zero coupon bond at time t that will mature in x 
time period, x being some accrual period like 3 months. 

By changing the variable u s t= − , equation (29) becomes; 

( ) ( )
0

, exp , d .
T t

P t T r t u u
− = −  ∫                  (30) 

Libor 
BGM instatenous forward rate relates to the libor process, ( ),L t t x δ+ +  
through the equation: 

( ) ( )1 , exp , .
x

x
L t t x r t x

δ
δ δ

+ + + + =   ∫               (31) 

The libor is defined as a simple compounded rate that an investor can con-
tract at time t for borrowing/lending over time t x+  to t x δ+ + , δ  being a 
discrete time tenor of maybe 3,6, or 12 months. Equation (31) also implies that 
the simple compounded rate must be in line with continuously compounded 
rate over the period. 

In accordance with Equation (30), the rate can also relate to the bond prices as; 

( ) ( ) ( ) ( )
0 0

1 , exp , exp , ,
x x x

x
L t t x r t x r t x r t x

δ δ
δ δ

+ +   + + + = = −      ∫ ∫ ∫    (32) 

( )
( )

,
.

,
P t T x

P t T x δ
+

=
+ +

            (33) 
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To determine the SDE for Libor rate, we start by evaluate the quantity 
( ),

x

x
r t x

δ+ 
  ∫  by equating to variable as; 

( ) ( ), , ,
x

x
V t x r t x

δ+
= ∫                                       (34) 

( ) ( )( )
( )( ) ( )

0

0

0, d , d d

ˆ, d d .

x x t

x x
x t

x

t x x a t x x

t x W x

δ δ

δ

υ υ υ

τ υ υ ν

+ +

+

= ϒ + + + −

+ + −

∫ ∫ ∫

∫ ∫
          (35) 

For a proper SDE, we need to change the order of integration using Fubini 
theorem, i.e. 

( ) ( )( )
( )( ) ( )

0

0

0, d , d d

ˆ, d d .

x t x

x x
t x

x

t x x a t x x

t x x W

δ δ

δ

υ υ υ

τ υ υ ν

+ +

+

= ϒ + + + −

+ + −

∫ ∫ ∫

∫ ∫
          (36) 

Differentiating Equation (36) with respect to t; 

( ) ( )( ) ( )2 20
d 0, , d d , d

x t x x

x x x
V t x a t x x a t

δ δ δ
υ υ υ υ υ

+ + += ϒ + + + − +∫ ∫ ∫ ∫   (37) 

( )( ) ( ) ( ) ( )20
ˆ ˆ, d d d , d .

t x x

x x
t x x W t t W

δ δ
τ υ υ ν τ υ υ ν

+ ++ + − +∫ ∫ ∫      (38) 

From the above equation, the differentials can be simplified to; 

( ) ( ) ( )( )
( )( ) ( )

2 2 20

20

, 0, , d d

ˆ, d d ,

x x t x

x x x
t x

x

t x t x a t x x

t x x W

δ δ δ

δ

υ υ υ

τ υ υ ν

+ + +

+

ϒ = ϒ + + + −

+ + −

∫ ∫ ∫ ∫

∫ ∫  

( ) ( ) ( ) ( )( )
( )( ) ( )

2 20

20

, , 0, , d d

ˆ, d d ,

x t x

x x
t x

x

t x t x t x a t x x

t x x W

δ δ

δ

δ υ υ υ

τ υ υ ν

+ +

+

ϒ + − ϒ = ϒ + + + −

+ + −

∫ ∫ ∫

∫ ∫  
hence Equation (38) can be rewritten as; 

( ) ( ) ( ) ( ) ( )ˆd , , , d d , d .
x x

x x
V t x t x a t t t W

δ δ
δ υ υ τ υ υ ν

+ + = ϒ + − ϒ + +  ∫ ∫   (39) 

Adopting the notations; 

( ) ( ) ( )2 21, d , , ,
2

t

x
a t u t x t x

δ
υ ψ δ ψ

+
= + −∫

 

( ) ( ) ( ), , , ,
t

x
t t x t x

δ
τ υ ψ δ ψ

+
= + −∫  

Equation (39) can be simplified further as; 
ˆd d d ,v v tV t wµ σ= +                       (40) 

where: 

( ) ( ) ( ) ( )2 21, , , , ,
2v f t x f t x t x t xµ δ ψ δ ψ= + − + + −          (41) 

( ) ( ), , .v t x t xσ ψ δ ψ= + −                    (42) 

The quantity dV and application of Ito’s lemme can be used to derive the SDE 
of ( ),L t t x δ+ +  (henceforth ( ),L t δ ) as; 

( )
( ),exp 1, ,

V t x

L t δ
δ

−
=                      (43) 
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1 2 11 ˆd exp exp d .
2

V V
v v v tL Wδ µ σ δ σ− − = + + 

 
            (44) 

By observing that; 

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

1

1

d , exp , , , ,
d

1 , , , ,

x

x
L t t t x t t x t t x

x
L t t t x t t x

δ
δ δ δ

δ δ δ δ

+−

−

= ϒ + ϒ + + − ϒ +

= + ϒ + + − ϒ +

∫

 
the SDE for ( ),L t δ  can be expressed as; 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

1

1

dd , , 1 , , , , d
d

1 , , , .

L t L t L t t x t x t x t
x

L t t t x t t x

δ δ δ δ δ ψ δ ψ δ ψ

δ δ δ δ

−

−

= + + + + −

+ + + ϒ + + − ϒ +
 (45) 

By further adopting the BGM volatility function 

( )( ) ( ) ( ) ( ) ( )1 1 , , , , , ,L t t x t x t x L tδ δ δ ψ δ ψ γ δ− + + − =
 

where ( ),t xγ  is a function of time and maturity, Equation (45) can be rewrit-
ten as; 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )

2 2, ,dd , , , , , d
d 1 ,

ˆ, , d .

t x L t
L t L t t x L t t x t

x L t

t x L t W

δγ δ
δ δ γ δ ψ

δ δ

γ δ υ

 
= + + 

+  

+

   (46) 

Formulation (46) is the log-normal dynamics of the libor process that helps to 
recover the Black’s formula for Swaption prices, albeit it has a complicated drift 
term. BGM solution to the drift problem is considering another process 

( ) ( ), ,K t T L t T t= − . By taking differential with respect to the second argument, 

( ) ( ) ( )2d , , , d ,K t T t L t T t L t T t t− = − − −              (47) 

in deriving the equation above, BGM used the fact that that ( )2 ,L t T t−  is 
smooth function of ( ),L t δ . A combinatorial of the BGM volatility function, 
Equation (45), and (47), the SDE for Libor process becomes 

( ) ( ) ( ) ( )1
ˆd d dj j j jL L t t t t W tγ ψ +

 = +                (48) 

Applying Girsanov theorem from risk -neutral measure to forward ( 1jT + ) 
measure, changes BGM SDE to 

( ) ( ) ( )1d d jT
j j jL L t t W tγ +=                    (49) 

which is drift-less,( indicating it a martingale under the measure) and also posses 
the desirable property of being log-normal. 
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