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Abstract 
Robust regression is playing an increasingly important role in fitting time 
series and cross-section factor models for stock returns. We introduce and 
study the properties of a Hausman type test for comparing factor model re-
gression coefficients computed with LS, which is fully efficient under idea-
lized normal data distributions, and a Robust MM-estimate, which is highly 
efficient for normally distributed data but also controls variance inflation and 
bias for outlier generating non-normal data distributions. The test is based on 
the asymptotic distribution of the difference between the two estimators, one of 
which is fully efficient. The test can detect a significant difference between the 
LS and Robust estimate due to the inefficiency of the LS estimator under out-
lier-generating non-normal error distributions, and due to bias of the LS esti-
mator relative to the Robust estimator caused by bias inducing distributions. 
The applications efficacy of the new test is demonstrated for comparison of LS 
and Robust estimates of both CAPM betas and Fama-French three-factor 
model betas. Monte Carlo studies of the finite sample level and power of the 
test reveal good performance for sample sizes of at least 100 to 200, which are 
typical for weekly and daily returns for such models. 
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1. Introduction 

Factor models have an important role in empirical asset pricing and quantitative 
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portfolio management research, for which a very large literature exists. Examples 
in empirical asset pricing include papers by Fama and French [1] [2] [3], Hou et 
al. [4] [5], Feng et al. [6], and the overview book by Bali et al. [7]. Examples in 
quantitative portfolio management include significant coverage in books such as 
Grinold et al. [8] and Qian et al. [9], and papers such as Menchero and Mitra 
[10], Menchero and Davis [11], Ding and Martin [12], and Ding et al. [13]. The 
main types of factor models appearing in the literature are cross-section factor 
models and time series factor models, both of which are specific forms of linear 
regression models. 

Linear regression models in quantitative finance are universally fit using or-
dinary least squares (LS) estimates of the coefficients or weighted least squares 
(WLS) estimates. Both LS and WLS estimates are relatively simple, widely avail-
able in software packages, and blessed by being the best linear unbiased esti-
mates (BLUE) under standard assumptions. In addition, LS estimates are the 
best among both linear and nonlinear estimates when the errors are normally 
distributed. However, asset returns and factors often have quite non-normal dis-
tributions, and LS coefficient estimates are quite non-robust toward outliers in 
that they can be very adversely distorted by even one or a few outliers. In statis-
tical terms, LS estimates can suffer from a substantial loss of efficiency when the 
errors have a fat-tailed non-normal distribution, in that they can have much larger 
variances than maximum-likelihood estimates (MLEs) for such non-normal dis-
tributions. Furthermore, under some types of deviations from normality LS es-
timates will be biased, even asymptotically as the sample size goes to infinity. 

Fortunately, several robust factor model fitting alternatives to LS estimates ex-
ist that suffer relatively little from severe inefficiency and bias. See for example 
the books by Huber [14], Huber and Ronchetti [15], Hampel et al. [16], Rous-
seeuw et al. [17], and Maronna et al. [18], and the references therein. See also the 
papers on robust time-series estimation of CAPM betas by Martin and Simin 
[19], Bailer et al. [20], and the paper on robust cross-section factor models by 
Martin and Xia [21]. Various types of outlier-robust regression methods are im-
plemented in commercial statistical software programs such as SAS and STATA, 
and in the open-source R packages robust, robustbase, and RobStatTM that are 
available on CRAN (https://cran.r-project.org/). Regression M-estimates of one 
form or another are the most widely used robust regression methods. 

Statistical inference methods for robust regression coefficients such as robust 
t-tests, F-tests, robust R-squared, and robust model selection criteria have been 
available in the literature for many years, and these are described in Maronna et 
al. [18] and are available in the companion R package RobStatTM. On the other 
hand, the literature on statistical tests for evaluating the difference between LS 
and robust regressions fits is minimal. In this regard, we recall Tukey [22] who 
stated “It is perfectly proper to use both classical and robust/resistant methods 
routinely, and only worry when they differ enough to matter. But when they dif-
fer, you should think hard.” This is good advice that leaves open the question of 
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how much is the “enough” in “when they differ enough”, and it is highly desira-
ble to have a reliable test statistic whose rejection region defines “enough”. 

If such a test statistic has a reliable level and adequate power, then acceptance 
of an appropriately defined null hypothesis would lead a user who routinely 
computes both LS and robust regressions to be confident in the LS results. On 
the other hand, rejection of the null hypothesis would support reliance on the 
robust regression estimate and associated robust inferences. Unfortunately, there 
does not at present exist a well-accepted statistical test for determining whether 
LS and robust regression estimates differ significantly from one another. We 
propose and study the properties of a viable test that uses the robust regression 
an MM-estimator that is well known in the robust statistics literature. 

Our test statistic is focused on differences between LS and Robust MM-estimator 
factor model slope coefficients, based on a key idea in the specification tests pa-
per by Hausman [23]. We consider composite null and alternative hypotheses 
where the null hypothesis is that of a linear regression factor model with errors that 
are normally distributed. The alternative hypothesis consists of outlier generating 
non-normal error distributions as well as more general types of bias-inducing joint 
distributions for the returns and factor variables. Rejection of the null hypothesis 
can occur due to any of the following LS estimator behaviors: inefficiency only, 
bias only, or both inefficiency and bias. 

The novelty of our results is that for the first time there is a reliable signific-
ance test for differences between LS and Robust estimates of time series and 
cross-section factor model coefficients, for selected subsets of coefficients as well 
as the set of all coefficients. In particular, rejection of the null hypothesis that the 
data is normally distributed will lead the analyst or risk manager to favor the use 
of the Robust estimator model fit for risk and performance analysis, and to carry 
out further analysis to determine the extent and type of non-normality that gives 
rise to the rejection of the null hypothesis. 

2. Robust Regression MM-Estimates 

We consider estimation in a linear regression time-series factor model of the form 

( ), , 1, ,t t t ty t N
α∗  ′= + = + = 
 

′x x  θ
β

1              (1) 

with the assumption that the observed data ( ), , 1, ,t ty t N′= =tz x  , consists of 
independent and identically distributed random variables. Here, ty  is a return 
of a specific asset at time t, typically in excess of a risk-free rate,  

( )1, 2, ,, , ,t t t K tx x x′ =x   is a vector of K factor returns at time t, α  is an un-
known intercept, β  is a K-dimensional vector of unknown regression slope 
coefficients, and the t  are the regression errors. 

Major applications of such time series factor models in finance include: 
• The CAPM model with K = 1, where t ty r=  is an asset return in excess of a 

risk-free rate at time t, and 1,tx  is a market return in excess of a risk-free 
rate at time t, 
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• The Fama and French [2] 3-factor model (FF3) with K = 3, which in addition 
to the CAPM term, has two more terms: 2,tx  is a small-minus-big (SMB) 
factor return, and 3,tx  is a high-minus-low (HML) factor return, 

• The Fama-French-Carhart [24] 4-factor model (FFC4) adds the momentum 
factor to the FF3 model. 

We focus on the important class of robust regression MM-estimators intro-
duced and studied by Yohai [25], which have both the highest possible break-
down point (BP) of 0.5 and high efficiency at normal distributions. Efficiency 
here is defined as the ratio of the variance of the LS estimator to the robust esti-
mator when errors are normally distributed. Since LS has the minimum possible 
variance at a normal distribution, the efficiency of an MM-estimator, expressed 
as a percent, is less than 100%. Typically, an efficiency of 85% to 95% is consi-
dered high. A regression MM-estimate of θ  is obtained by first computing a 
high-breakdown point but relatively inefficient initial estimate 0̂θ  and then 
computing a final estimate θ̂  as the nearest local minimum of 

*

1
 

ˆ

N
t t

c
t

y
ρ

σ=

′ −
 
 
 

∑
x θ

                       (2) 

With respect to θ , where σ̂  is a highly robust scale estimate of the residuals. 
The parameter c is a tuning parameter used to control the trade-off between a 
high normal distribution efficiency of the estimate and robustness toward out-
liers, which we discuss subsequently. With c cψ ρ′=  the resulting θ̂  satisfies 
the stationary local minimum condition1. 

*
*

1

ˆ 
 

ˆ

N
t t

t c
t

y
ψ

σ=

′ −
  =
 
 

∑
x

x
θ

0                      (3) 

A well-established method of computing σ̂  and solving the minimization 
problem (2) was developed by Yohai et al. [26], and is briefly described in Ap-
pendix B for the interested reader. See also Section 5.5. in Maronna et al. [18]. 

Martin et al. [27] demonstrated that to obtain bias-robustness toward outliers, 
one needs to use a bounded loss function cρ . The most popular choice of a 
bounded loss function is the well-known Tukey bisquare function, and the ana-
lytic expressions for the bisquare ρ- and ψ- functions are given in Appendix A. 
Versions of the bisquare loss functions for normal distribution efficiencies of 
85%, 90%, 95%, and 99% are shown on the left plot in Figure 1, and the corres-
ponding psi-functions are on the right. These are all of the rejection type, i.e., 
they have values of zero outside central regions (−c, c), where the choice of re-
jection points ±c determines the normal distribution efficiency. 

For reader convenience, the values of constant c and corresponding fractions 
of data rejected under normality by bisquare psi-function are listed in Table 1 
for the four efficiencies of 85%, 90%, 95%, and 99%. 

 

 

1Throughout this paper, a prime on a scalar-valued function, e.g. cρ′ , denotes its derivative, other-
wise a prime denotes the transpose of a vector or matrix. 
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Figure 1. Bisquare rho (left) and psi (right) functions for four normal distribution efficiencies. 
 

Table 1. c values and fractions of data rejected under normality for the bisquare loss 
functions for four normal distribution efficiencies. The c values are obtained via 
lmRob.effvy function from R robust package. An observation is said to be rejected when 
the corresponding psi function is equal to zero. Hence, the fractions of data rejected is 

( )( )0,1P N c> . 

Efficiency 85% 90% 95% 99% 

Bisquare 
c 3.44 3.88 4.68 7.04 

outliers fraction (%) 0.058% 0.010% 0.0003% 2∙10-10% 

 
Consistency and asymptotic normality of MM-estimator was established by 

[25] under the assumption of independence of the t  and tx , where the data 
( ), , 1, ,t t ty t N′= =z x  , have a joint distribution 

( ) ( ) ( )0 ,F y G F y ′= −x x x β                    (4) 

where x  has a finite positive definite covariance matrix xC . See also Chapter 
10 in [18]. In what follows we focus on the LS and MM-estimators of the slopes 
vector β  in (1). 

Under model (4) the asymptotic covariance matrix of the LS estimator is 

( ) 1
LS xvar −=V C                         (5) 

and the asymptotic covariance matrix of the MM-estimator ˆ
MMβ  is 

2 1
MM xσ τ −=V C                          (6) 

( )
( )( )

2

2
F c

F c

E

E

ψ σ
τ

ψ σ
=

′







                       (7) 
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where σ  is the asymptotic value of the robust scale σ̂  estimator. 
Under normality the robust scale estimator σ̂  converges to the standard 

deviation of the error term, i.e. ( )2 varσ =  , so that the asymptotic covariance 
matrices of the MM and LS estimators differ only by the scalar factor τ . This 
leads to the following convenient relationship under normality. 

.LS MMEFF= ⋅V V                        (8) 

where EFF is the large sample normal distribution efficiency of the MM-estimator 
equal to 

1 EFF τ −=                           (9) 

with   normally distributed with mean 0 and standard deviation σ . 
A finite-sample approximation to the covariance matrix of ˆ

MMβ  is obtained 
by computing estimates of τ , σ  and xC . We use a method of doing so pro-
posed by Yohai et al. [26] that is described in Sections 5.5 and 5.6 of Maronna et 
al. [18], and implemented in the function lmRob in the R robust library. A brief 
summary of the method is given in Appendix B. 

Here we discuss the behavior of the ordinary least squares (LS) and robust 
MM estimators under several distinct situations with respect to the joint distribution 
of the data. First of all, when F  in model (4) is a normal distribution LS is consis-
tent and fully efficient, and MM is consistent with high efficiency that can be set by 
the user, e.g., use of 90% or 95% normal distribution efficiency is common. Second, 
when F  in model (4) is a non-normal distribution with fat tails but finite variance, 
the LS estimator is consistent but can have an efficiency arbitrarily close to zero, and 
the MM-estimators are consistent and can have high efficiencies. 

A common approach in robustness studies to allow for more general types of 
( ),t ty x  outliers, than those generated by model (4) with a fat-tailed error dis-
tribution, is to use a broad family of mixture distributions 

( ) ( ) ( ) ( )0, 1 , ,F y F y H yγ γ= − +x x x               (10) 

where 0F  is given by (4), the mixing parameter γ  is positive and often small, 
e.g., in the range 0.01 to 0.1, and H is unrestricted. This family of models is mo-
tivated by the empirical evidence that most of the time the data are generated by 
the nominal distribution 0F  but with small probability γ  the data come from 
another distribution H that can generate a wide variety of outlier types. In the 
context of the distribution model (10), the goal is to obtain good estimates of the 
parameters ( )0 0 0,θ α β′ ′=  of 0F . Unfortunately, the LS estimator of θ  can be 
not only highly inefficient but also highly biased for some outlier generating dis-
tributions H. Modern robust regression MM-estimators have been designed to 
minimize the maximum bias due to unrestricted distributions H in the data dis-
tribution model (10), while also obtaining high efficiency when 0γ =  in (10). 

3. Test Statistic 

The test is designed to test a null hypothesis of a regression model (4) with nor-
mally distributed errors. The test is expected to reject when the difference be-
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tween LS and robust MM coefficient estimates is largely due to the inefficiency 
of LS under non-normal error distributions, or due to LS having a large bias rel-
ative to the small bias of the MM estimator under the bias-generating data dis-
tribution model (10). 

It is convenient to motivate our proposed test statistic in the context of esti-
mating the slope parameter β  in a simple CAPM linear regression model. Let 
ˆ

LSβ  and ˆ
MMβ  be LS and robust MM-estimates of β  in finite sample sizes. It 

is known that the efficiency of an inefficient estimate is equal to the squared 
correlation between the inefficient estimate and an efficient estimate (see for 
example [28], Theorem 4.8). Thus for ˆ

LSβ  and ˆ
MMβ  under the normality 

assumption we have: 

( )
( )

2
,

ˆ

ˆ 

LS
MM LS

MM

Var
EFF

Var

β
ρ

β
= =                   (11) 

It follows that under normality: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

,

2 2
, , ,

2 2
, ,

2
,

ˆ ˆ ˆ ˆ ˆ ˆ2 ,

ˆ ˆ ˆ ˆ 2

ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ2

ˆ ˆ1 1

LS MM LS LS MM MM

LS MM LS LS MM MM

MM LS MM MM LS MM LS MM MM MM

MM LS MM MM LS MM MM

MM LS MM

Var Var cov Var

Var Var Var Var

Var Var Var Var

Var Var Var

Var EFF Var

β β β β β β

β ρ β β β

ρ β ρ ρ β β β

ρ β ρ β β

ρ β β

− = − +

= − +

= − +

= − +

= − = − ( )MM  
In view of (11) the above expression may be written in the following alterna-

tive form: 

( ) ( ) ( )ˆ ˆ ˆ ˆ
LS MM MM LSVar Var Varβ β β β− = −

 
A multi-parameter large-sample version of the above result was obtained by 

Hausman [23] in his classic paper on specification tests2. Hausman’s Corollary 
2.6 to Lemma 2.1 states that the asymptotic covariance matrix of the difference 
between two consistent and asymptotically normal estimators, one of which is 
asymptotically fully efficient and the other is inefficient, is equal to the covariance 
matrix of the inefficient estimator minus the covariance matrix of the efficient es-
timator. Thus in our case under normality, we have the following asymptotic co-
variance matrices relationship: 

( )ˆ .ˆ
MM LS MM LSVar − = −V Vβ β                   (12) 

In view of the asymptotic result (8) we have 

( ) ( ) 2 11 1diff MM LS MM xEFF EFF σ τ −≡ − = − = −V V V V C         (13) 

Note that (13) holds only under normality because in that case LS is fully effi-
cient and the MM-estimate is inefficient. A result analogous to (12), namely 

( )ˆ ˆ
MM LS LS MMVar − = −V Vβ β , will hold when the MM-estimator is a maximum 

 

 

2We thank Professor Eric Zivot for pointing out this reference. 

https://doi.org/10.4236/jmf.2022.122023


T. A. Maravina, R. D. Martin 
 

 

DOI: 10.4236/jmf.2022.122023 418 Journal of Mathematical Finance 
 

likelihood estimate (MLE) for a non-normal errors distribution and is therefore 
asymptotically efficient, but the LS estimator is inefficient. Since there is seldom 
an obvious choice of non-normal distribution MLE to use, we do not pursue this 
possibility. 

Hausman [23] showed that asymptotically MM LS−V V  is non-negative defi-
nite under normality. However, this result does not hold under non-normal er-
rors, and furthermore positive semi-definiteness of the finite sample estimate of 
the form ˆ ˆ ˆ

diff MM LS= −V V V  is not guaranteed even under a normal errors distri-
bution. However, since EFF is less than one, the estimate ( )ˆ ˆ1diff MMEFF= −V V  is 
positive definite in the usual situation where the estimate ˆ

MMV  is positive definite3. 
By combining LS and MM-estimate regression coefficient estimates with a 

covariance matrix estimate ˆ
MMV  and specified normal distribution efficiency 

EFF of the MM-estimator, one can construct two types of test statistics. The re-
sults (12) and (13) suggest the following: 

1) A joint test statistic for any subset of k coefficient with 2 k K≤ ≤  coeffi-
cients: 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( )( )

1

1
2 1

,

1ˆ ˆ ˆ ˆˆ  

1ˆ ˆ ˆ ˆ ˆˆ ˆ  

k k k k k
k MM LS MM MM LS

k k k k
MM LS MM LSx k

EFFT
n

EFF
n

σ τ

−

−
−

−′  = − − 
 

−′  = − − 
 

V

C

β β β β

β β β β

        (14) 

where ( )ˆ k
MMβ , ( )ˆ k

LSβ , ( )ˆ k
MMV  and ( )

1
,

ˆ
x k
−C  are the corresponding subsets of ˆ

MMβ , 
ˆ

LSβ , ˆ
MMV  and 1ˆ

x
−C . For k = K, the test is a test for the overall model. 

2) A test statistic for any individual coefficient: 

( )
, ,

,

ˆ ˆ

ˆ1
MM i LS i

i
MM i

T
EFF se

β β

β

−
=

− ⋅
                   (15) 

where 

( ) 2 1
, ,

1ˆ ˆˆ ˆMM i x iise C
n

β σ τ −=                     (16) 

with 1
,

ˆ
x iiC−  equal to the i-th diagonal element of 1ˆ

x
−C . 

Under the null hypothesis of normally distributed errors, the statistic kT  will 
have approximately a chi-squared distribution with k degrees of freedom and the 
statistic iT  will have approximately a standard normal distribution. The extent 
to which the use of such an approximation is valid is explored in Section 5. 

4. Two Time Series Factor Model Examples 

In this section, we present two pairs of empirical examples of using the proposed 
test statistic T for determining significant differences between classical LS and 
the robust bisquare MM estimator with 95% normal distribution efficiency, 

 

 

3In principle one might also use the estimate ( )1ˆ ˆ1diff LSV EFF V−= − . While this estimate should 

result in decent accuracy of level in finite sample sizes, we conjecture that it will result in lower 
power under non-normal alternatives due to LS estimates having higher variance than MM esti-
mates. 
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henceforth referred to as the Robust estimator. Subsection 4.1 provides the first 
pair of examples as follows. First, the test T for a difference between LS and Ro-
bust CAPM Betas is computed using observed weekly time series data, with the 
result that the test rejects the null hypothesis of no difference with a p-value that 
is zero to three digits. Then outliers that were detected by the Robust estimator 
were removed and the test was repeated, resulting in accepting the null hypothe-
sis with p-value of 0.387. Subsection 4.2 does likewise for the case of fitting a 
Fama-French 3-factor model (FF3), which first appeared in Fama and French 
[2], to weekly stock returns. In this case, using the original data, the test T for the 
overall model again resulted in a p-value that is zero to three digits. However, 
with outliers detected by the Robust estimator removed, the overall model test T 
accepts the null hypothesis with a p-value of 0.217. However, for the FF3 model, 
we also used the test T for each of the three individual factor coefficients, and for 
the original data, these tests rejected the null hypothesis for the MKT and HML 
factors, but not the SMB factor, and with the outliers removed these tests ac-
cepted the null hypothesis for all three factors. 

4.1. Single Factor CAPM Time Series Model 

The single factor model Beta of a set of asset returns is the slope coefficient in a 
regression of the asset returns on market returns, where both returns are in 
excess of a risk-free rate. Beta plays a central role in the capital asset pricing 
model (CAPM) [29] and is one of the most widely known and widely used 
measures of the expected excess return and market risk of an asset. Figure 2 
shows a scatter plot of the Watts Water Technologies Inc. (WTS) stock weekly 
returns versus the weekly returns of the CRSP (https://www.crsp.org/) val-
ue-weighted market index for the 2-year period from January 2007 to December 
20084. The red dashed line shows the least-squares fit, and the black solid line 
shows the Robust estimator fit. The two dotted lines that are parallel to the solid 
black line define the outliers-rejection region, i.e., all 6 data values plotted as 
small circles outside that region are declared outliers5. Of the six outliers, the one 
with the most negative influence on the slope of the LS line is the one with a 
positive WTS return of close to +0.1 and a negative market return of about -0.18. 
In addition, the cluster of three outliers with slightly positive market returns but 
negative WTS returns also has a negative influence on the LS slope. Note that in 
the legend that displays the LS and Robust estimate values 0.93 and 1.53, the 
numbers in parentheses are classical and robust standard errors (SEs) of the es-
timators, and the two beta estimates differ by about 6 times the robust standard 
error value of 0.103. 

The standard error (SE) and p-value for the test T for the difference in the two 
betas are reported in Table 2. Recall from Equation (15) that the SE of T is just a  

 

 

4The stock returns data used in this paper are from the “Center for Research in Security Prices, 
LLC”. 
5Outliers here are defined as asset and market return pairs for which the absolute value of the robust 
bisquare estimator residual exceeds 3 times a robust residual scale estimate. 
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Figure 2. Scatter plot of the WTS and market weekly returns in excess of the risk free rate 
with the fitted LS and Robust lines. The robust residual scale estimate is 0.033. 

 
Table 2. Test statistic for the difference between OLS and robust beta estimates for the 
WTS example. 

ˆ ˆ−LS MMβ β  SE p-value 

−0.605 0.023 0.000 

 
fraction of the robust beta SE value 0.103, namely  

1 0.95 0.103 0.224 0.103 0.023− ⋅ ≈ ⋅ = , and the corresponding p-value is zero to 
three digits. The Robust estimator beta value of 1.5 much better describes the 
stock and market return relationship for the majority of the data than the LS be-
ta value of 0.93. It should be noted that the difference in the two betas of 0.6 
would be of considerable financial significance to most investors. 

It is interesting to see how the test statistic behaves on a data set that is iden-
tical to that of Figure 2, except for deleting the 6 outliers of Figure 2. The re-
sulting scatter plot shown in Figure 3 reveals that the LS and Robust estimator 
coefficients and straight-line fits are now virtually identical. This result illu-
strates the important characteristic of a good robust fitting method that it gives 
almost the same results as LS when the data contains no influential outliers, 
which is also reflected in the high normal distribution efficiency of 95% for the 
Robust estimator. Not surprisingly then, the Table 3 p-value of 0.387 indicates 
no significant difference between the LS and Robust estimates. 

Differences between LS and Robust betas are very common, as is revealed in 
[20]. We highly recommend routine use of robust regression betas along with 
their standard errors and the test statistic T p-values as a complement to the LS es-
timates of asset returns provided by many financial data service providers (e.g., 
ValueLine, Barra, Bloomberg, Capital IQ, Datastream, Ibbotson, Google Finance,  
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Figure 3. Scatter plot of the WTS and market weekly returns in excess of the risk-free rate 
with the fitted LS and Robust lines. The robust residual scale estimate is 0.030. 

 
Table 3. Test statistic for the difference between LS and Robust estimates for the WTS 
example after removing outliers. 

ˆ ˆ−LS MMβ β  SE p-value 

−0.019 0.022 0.387 

 
and others). Acceptance of a null hypotheses of no significant differences be-
tween the robust and LS betas would give investors extra comfort in making 
their decisions based on the classical LS beta estimates. On the other hand, large 
significant differences should alert analysts to investigate the returns data closely 
to determine which beta are the most useful guide to investment decisions. 

4.2. Multifactor Time Series Model 

Here we apply our test T to the LS and Robust fits of the Fama-French 3 factor 
model (FF3) to the weekly returns of the stock with ticker ADL for the year 
2008. The FF3 time series factor model has the form: 

, 1 , 2 , 3
e e

t MKT t SMB t HML t tr f f fα β β β= + + + +               (17) 

where e
tr  is a time series of the asset excess returns relative to a risk-free rate, 

,
e

MKT tf  is a time series of market excess returns, ,SMB tf  are the returns of the 
Fama-French “small minus big” (SMB) size factor portfolio, ,HML tf  are the re-
turns on the “high minus low” (HML) value factor portfolio. 

The time series of the ADL weekly returns and the FF3 MKT, SIZE, and HML 
weekly factors for 2008 are shown in Figure 46. Recall that by late 2008 the  

 

 

6The stocks and MKT returns are from the “Center for Research in Security Prices, LLC”, and the defini-
tions of the SMB and HML factors and their time series of factor returns are available at Professor Ken 
French’s website https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.  
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Figure 4. Time series of the ADL 2008 weekly returns and corresponding MKT, SIZE and HML 
factors. 

 
financial crisis that began in 2007 was in full force, and this is reflected in the in-
creased volatility and outlier values to various degrees and timing across the 
ADL returns and FF3 factors. Specifically, one sees in Figure 4 that increased 
volatility starts for retADL in late September of 2008, while that of MKT starts in 
early October, and that of the SMB and HML factors starts near the beginning of 
July 2008. By the end of December 2008, the retADL, MKT, SMB, and HML vo-
latilities have all decreased to pre-crisis levels. 

The Figure 5 display of the pairwise scatter plots of the ADL returns and FF3 
factors reveals clear outliers in each panel, and one expects to get a better FF3 
model fit to the ADL returns with the Robust estimator than with LS. 

Figure 6 contains the time series of appropriately scaled residuals from the LS 
fit in the left panel, and from the Robust fit in the right panel. For the LS esti-
mator, the residuals are scaled by the errors standard deviation estimate, and for 
the Robust estimator, the residuals are scaled by a robust scale estimate of the 
errors. The horizontal dotted lines located at +3 and −3 define a central region 
outside of which scaled residuals are considered outliers. Clearly, the LS fit gives 
no warning whatsoever in the time series of standard deviation scaled residuals 
that the data contains influential outliers, whereas 5 robustly scaled residuals 
outliers are clearly revealed by the Robust fit. 

Figure 7 displays normal QQ-plots of the residuals from the LS and Robust fits. 
The dashed lines in the plots are the pointwise 95% simulated confidence intervals. 
Although the LS normal QQ-plot shows some signs of non-normality by virtue of 
the deviation from the solid straight line in the central region of the plot, no data 
points fall outside the region defined by the dashed lines, so one sees no evi-
dence of significant deviation from the normality of the residuals from the LS fit. 
On the other hand, for the Robust fit, the normal QQ-plot not only fits the 
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Figure 5. Pairwise scatterplots of ADL 2008 weekly returns and corresponding MKT, SMB and HML factors. 

 
straight line quite well in the central region of the plot, but it also very clearly 
exposes the 5 outliers that appear in the Robust fit panel of Figure 6, as well as 3 
other residuals that fall just outside the region defined by the dashed lines. 

The LS and Robust coefficient estimates and their differences based on fitting 
the FF3 model to the ADL returns are displayed in Table 4, together with their 
individual standard errors (SE) and p-values, along with the SE’s and p-values 
for the test T of the difference in the two coefficients for each of the three fac-
tors. This test rejected the null hypothesis for the MKT and HML factors with a 
p-value of zero to the three digits. However, the difference between LS and Ro-
bust coefficients for the SMB factor is small and is not statistically significant 
(test T p-value is 0.539). The joint test statistic based on the 3 degrees of freedom 
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Table 4. Regression results for the ADL multi factor example. The joint test statistic is 
1101 on 3 DF, with a p-value = 0.000. 

 

LS Robust Estimate T 

Coef SE P-value Coef SE P-value ˆ ˆ−LS MMβ β  SE P-value 

Alpha −0.021 0.017 0.236 −0.015 0.009 0.117    

MKT 0.341 0.433 0.435 0.652 0.228 0.006 −0.310 0.051 0.000 

SMB −0.272 0.979 0.783 −0.346 0.539 0.524 0.074 0.121 0.539 

HML −1.895 0.727 0.012 1.125 0.503 0.030 −3.020 0.113 0.000 

 

 
Figure 6. Time series of least squares residuals (LS panel) and robust bisquare residuals (Robust panel). 

 
chi-squared distribution approximation has the value 1101 and a p-value that is 
zero to 3 digits. 

Table 5 reports the same quantities as in Table 4 except that the ADL stock 
and FF3 factor returns are deleted at the times of the five residuals outliers in the 
right-hand panel of Figure 6. Not surprisingly, neither the overall test nor the 
individual coefficients tests reject the null hypothesis of normally distributed li-
near factor model errors. This is consistent with the high 95% normal distribu-
tion efficiency of the Robust estimator, along with the fact that after deleting the 
5 most extreme outliers in the right-hand panel of Figure 7, the distribution of 
the residuals is close to a normal distribution. Note also that the only coefficients 
that changed substantially after removing outliers were the LS estimates for the 
MKT and HML factors, the two factors for which original test T in Table 4 in-
dicated a statistically significant difference with the Robust estimates. As ex-
pected, the removal of outliers did not affect the Robust estimates much. 

5. Monte Carlo Simulations 

In order to evaluate the finite sample behavior of the level and power of our test  
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Table 5. Regression results for the ADL multi factor example after removing outliers. 
Joint test statistic is 4.45 on 3 DF, with a p-value 0.217. 

 
LS Robust Estimate T 

 
Coef SE P-value Coef SE P-value ˆ ˆ−LS MMβ β  SE P-value 

Alpha −0.017 0.010 0.087 −0.014 0.009 0.138    

MKT 0.625 0.245 0.014 0.659 0.227 0.006 −0.034 0.051 0.503 

SMB −0.270 0.585 0.647 −0.361 0.533 0.502 0.090 0.119 0.449 

HML 1.019 0.538 0.065 1.165 0.501 0.025 −0.146 0.112 0.193 

 

 
Figure 7. Normal QQ-plots of the residuals for the LS fit (left panel) and the robust bisquare fit (right panel). 

 
as a function of the choice of a normal distribution efficiency, we carried out a 
number of Monte Carlo simulation studies with a large-sample significance level 
α  set at 0.05. As approximations to the finite sample level and power of the 
tests, we calculate Monte Carlo rejection rates, i.e., the proportion of times out of 
M replicates that a given hypothesis was rejected. Because of the relative com-
plexity of the analysis, we focus on the slope coefficient β  in a single factor 
model 0 0t t ty xα β= + +  , 1, ,t N=  , where under the CAPM the intercept 

0 0α = . Simulations were conducted in R (version 2.13.0) using the lmRob func-
tion from the R robust library. Note that the test statistic given by (15) is easily 
computed from the output of lmRob and the standard R least-squares fitting 
function lm. 

5.1. Distribution Models 

We assume independent and identically distributed (i.i.d.) random tx  that are 
independent of i.i.d. errors t  for the first two models below. We generate 
samples from the following distributions for the errors t : 

Model 1: Standard normal, which is included in the null hypothesis 
Model 2: Skew-t distribution of Azzalini and Capitanio [30] with skewness 
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parameter 1λ = , and 5 degrees of freedom, as implemented in the R package sn, 
which is included in the composite alternative. 

Model 3: Asymmetric two-term conditional joint normal mixture for tx  and 

t  that is included in the composite alternative: 

1

1

, , N

N

xx   
  

   



 are i.i.d. ( )

2

2

0 1 0 0.25 0
1 N , N ,

0 0 1 0 0.25
xµγ γ
µ

         
− +                     

(18) 

where we condition on the number of “outliers” from the second component to 
be Nγ   , with γ  ranging from 0.01 to 0.1, 2xµ = , 4µ =  and 7. In this case 
the mixture model is such that large positive residuals occur for large values of 

tx , and result in biased LS and robust MM-estimates of β , with the bias of the 
latter being much smaller than for LS. 

We carry out the conditioning in Model 3 as follows. We first generate 

1, , Nx x  as i.i.d. ( )2N 0,1  and 1, , N   as i.i.d. ( )2N 0,1 . Then we randomly 
select Nγ    observations and replace corresponding t  with i.i.d. 
( 20,0.25µ  ), and also replace the corresponding tx  with i.i.d. ( )2N ,0.25xµ . 
As a result, the reported null hypotheses rejection rates are not confounded by 
the randomness of the outlier fraction in each sample. The corresponding un-
conditional rejection rates for these two models can be easily obtained from 
conditional rejection rates as 0 i ii RR p∞

=
⋅∑ , where iRR  is a conditional rejec-

tion rate when the number of outliers is equal to i, and ip  is the probability 
that the number of outliers is equal to i. For example, for 0.02γ =  about 13.3% 
( 0 0.133p = ) of the samples of size 100 will have no outliers, 27.1% ( 1 0.271p = ) 
will have exactly one outlier, 27.3% ( 2 0.273p = ) will have exactly two outliers, 
and 32.3% of the samples will have three or more outliers. 

For all 3 models we set 0 0α = , 0 1β = . For models 1 and 2 we generated 
10,000 replicates. Model 3 includes many combinations of the parameters µ  
and γ , and for each such combination we generated 1000 replicates7. We used 
sample size N ranging from 50 to 500. 

5.2. Results 

Model 1 (normal distribution errors). Figure 8 displays the normal distribu-
tion Monte Carlo level versus sample size for the Robust estimator, and for the 
four normal distribution efficiencies (85%, 90%, 95%, and 99%). 

The actual level of the test is generally larger than the nominal significance 
level of 0.05 for all four normal distribution efficiencies, and decreases with in-
creasing sample size, except for the curious constant or increasing actual level  

 

 

7Standard errors for the Monte Carlo level and power estimates can be obtained from the estimation 

theory of a binomial proportion p. In particular, using classical standard errors, namely ( )ˆ ˆ1p p
M
−

, 

we see that the standard errors are reasonably small even at 1000M =  replicates. The standard er-
rors of the Monte Carlo level, i.e. when ˆ 0.05p = , are approx. 0.0069 for 1000M =  and 0.0022 for 

10000M = . The standard error of the Monte Carlo power is the largest when ˆ 0.5p = , and in this 
case is equal to 0.0158 for 1000M =  and equal to 0.005 for 10000M = . 
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Figure 8. Model 1. Level of the test T for the CAPM β in the single factor model with 
normal residuals. The grey horizontal line is at a large-sample significance level of 0.05. 

 
for sample sizes 250 and 300, and then being right at 5% at sample size 500. It is 
striking that the actual levels are uniformly closest to 5% for the Robust estima-
tor with 99% normal distribution efficiency. For estimating a CAPM beta with a 
sample size of 50 for 4 years and 2 months of monthly returns, the actual error 
rate for even that best 99% efficiency estimator has an unacceptably high level of 
about 6.5%. At all larger sample sizes, the level of the 99% efficient Robust esti-
mator levels are all substantially less than 6% and right on the asymptotic level 
target of 5% at sample size 500. It is notable that for sample sizes 250 and above 
the Robust estimators at all four normal distribution efficiencies have essentially 
equivalent test levels. It remains to explore Monte Carlo results with larger 
numbers of replications to see if the unnatural non-monotonic behavior of the 
test levels for sample sizes 250 and 300 will disappear. 

Model 2 (skew-t distribution errors). Results for a skewed t-distribution with 
five degrees of freedom are displayed in Figure 9. 

The skewed t-distribution is in the alternative hypothesis for the test and thus 
one would hope for high power results. The power indeed increases with in-
creasing sample size and with normal distribution efficiency. It can be shown 
that the power of the test T for sample size 500 is close to the estimated asymp-
totic value for each of the four efficiencies. Since both the LS and robust esti-
mates are consistent estimators that converge to beta 0β  at the same rate, the 
asymptotic power of the test T will be less than one, and it is not surprising that 
the power of T is less than one for the largest sample sizes in Figure 9. 

Model 3 (bivariate normal mixture distribution). Under this model, the LS 
and MM slope estimates converge to different values, and so one anticipates 
high power of the test for differences between LS and MM estimates, more so the 
larger the sample size and the larger the µ . The power of the test for 4µ =  and 
7 are shown in Figure 10, and the reasons for the results are as follows. First, we note 
that the power is essentially 100% for all sample sizes and all normal distribution  
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Figure 9. Model 2. Power of the test for the CAPM β in the single factor model for 
skewed t5 residuals. The grey horizontal line is at a large-sample significance level of 0.05. 

 

 
Figure 10. Model 3. Power of the test for the CAPM β in the single factor model under bivariate asymmetric contamination with 

2xµ = . Squares correspond to smallish outliers due to the value 4µ = , and diamonds correspond to large outlies due to 7µ = . 
 

efficiencies for 7µ = . This should not be surprising since in this case the outlier 
sizes are quite large relative to the central standard normal distribution in (18), 
and the outliers are rejected by the Robust estimator. The case of 4µ =  is more 
challenging as the outliers are only smallish and are not rejected and only 
down-weighted by the Robust estimator (see Table 1). Not surprisingly, for each 
γ  and each normal distribution efficiency the power of T increases with in-
creasing sample size. For sample sizes 100 and 200 with 4µ = , the power of T is 
essentially 100% for 0.04γ =  and 0.06, and for 0.02γ =  the power increases 
to close to 100% as the normal distribution efficiency increases from 85% to 99%. 
For sample size 50, which is close to the commonly used sample size 60 for esti-
mating a CAPM beta with 5 years of monthly returns, the quite similar decreasing 
power versus normal distribution efficiency relationship for 0.04γ =  and 0.06 is 
distinctly different than the increasing relationship for 0.02γ = . Thus, there is 
an interaction between the value of γ  and the Robust estimator efficiency, for 
which we do not yet have a clear explanation. 
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A surprising result of the Model 1 and Model 2 Monte Carlo study, revealed 
in Figure 8 and Figure 9, is that more accurate levels and higher power are ob-
tained using the robust MM-estimator with a higher normal distribution effi-
ciency of 99% instead of the more traditional 95%. The reason this is surprising 
is that using lower normal distribution efficiency of an MM-estimator generally 
results in lower bias due to bias -inducing outliers. Note however that for sample 
size 50 in Figure 10, higher efficiency yields higher power only for the fraction 
0.02 of outliers, and lower efficiency yields higher power for fractions 0.04 and 
0.06. This represents a curious interaction between the fraction of outliers and 
MM-estimator efficiency, and this behavior needs further study. 

We remark that the increasing empirical levels of the test T as the sample size 
decreases in Figure 4 below sample size 150 is likely due to a small sample bias 
in the estimate ( ),

ˆ
MM ise β  that appears in the denominator of T in (15). It will 

be worthwhile to consider possible bias correction methods to improve the small 
sample size accuracy of the level of the test. 

6. Summary and Discussion 

This paper uses the important Hausman [23] result to construct a new test sta-
tistic T for detecting differences between LS and Robust estimators of the slope 
coefficients of time series and cross-section factor models. This test is available 
as the test T1 in the function lsRobTest contained in the robust package on 
CRAN (https://cran.r-project.org/web/packages/robust/index.html). Rejection of 
the test supports the use of the Robust estimator instead of, or as a diagnostic 
complement to, the LS estimator, and investigation of influential returns and 
factors outliers and their cause. The efficacy of the test statistic T is demonstrat-
ed with two different factor model application examples, and by an extensive 
Monte Carlo study of the level and power of the test. These results support the 
routine use of the new test statistic T as a mathematically and empirically justified 
new method of detecting significant differences between LS estimates and Robust 
MM-estimates of time-series factor models. The test is expected to be equally 
valuable in the context of cross-section factor models, and indeed for any linear 
regression model. 

A limitation of the proposed test is that rejection of the null hypothesis of no 
difference between the LS and Robust estimator does not tell us whether rejec-
tion occurred due to inefficiency of LS under Model (4) with non-normal errors, 
or bias of LS being larger than that of the MM estimator under Model (10), or 
both inefficiency and bias. It is a topic for further research to design a test or 
tests, that can inform the researcher which of the above deviations from the ideal 
normal distribution model gives rise to rejection of the null hypothesis. 

Finally, last but not least, we have focused on the slopes in the factor Model 
(1) and have ignored the intercept α , which is often quite important in 
cross-section and time-series factor models. For example, a test of the null hy-
pothesis that 0α =  is important in tests of the validity of the CAPM model. For-
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tunately, there is a simple method to take care of this by centering the factor model 
response and factor exposures with sample medians and using the MM-estimate of 
regression through the origin for these transformed variables. The robust slope 
coefficients obtained in this manner can be used to compute regression residuals 
whose median will be a robust estimate of the intercept. We plan to study the 
statistical properties of the resulting robust intercept estimate in a separate fol-
low-on study. 
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Appendix A: Analytical Expressions for Bisquare Functions 

The analytic expressions for the bisquare ρ  and ψ  functions are: 

( )

32

1 1 , 1

1, 1
c

r r
c cr

r
c

ρ

    − − ≤      = 


>
  

and 

( )
22

2

6 1c
rr r I r c
cc

ψ
  = −  ≤          

These are the rescaled bisquare ρ  and ψ  functions that are computed by 
the functions rho.weight (…, ips = 2) and psi.weight (…, ips = 2) in R robust li-

brary. Figure 1, however, plots unscaled versions ( )
2

6 c
c rρ  and ( )

2

6 c
c rψ . 

Appendix B: Regression MM-Estimates 

Consider a regression model (1) and let ( ),α′ ′=θ β  and ( )* 1,t t
′ ′=x x  and 

1p K= + , the length of parameters vector θ . An effective computational pro-
cedure for MM-estimates was developed in Yohai et al. [26] and consists of the 
following key steps, where it is assumed that the bisquare function ( )c uρ  is 
used, and without loss of generality is standardized so that ( )max 1u c uρ = : 

1) Compute an initial robust S-estimate 1̂θ  with high breakdown point of 
one-half, but low normal distribution efficiency as follows (see Rousseeuw and 
Yohai [31]). 

With 1 1.548c =  and for any θ  let ( )
1c

s θ  be the solution of 

( )
1

*

1

1 0.5
N

t t
c

t c

y
n p s

ρ
=

′ −
  =
 −  

∑
x θ
θ

 
where the value 0.5 on the right-hand side ensures that the S-estimator 1̂θ  has a 
BP = 0.5. 

The regression S-estimate of θ  is a value 1̂θ  that minimizes ( )
1c

s θ : 

( )
11̂ arg min csθ=θ θ                      (A.1) 

2) Let ( )11 1̂ˆ csσ = θ  be the robust scale estimate determined by the regression 
S-estimator 1̂θ . The choice 1 1.548c =  is used so that 1σ̂  is a consistent esti-
mator of the standard deviation of the t  when they have a normal distribu-
tion. 

3) The final estimate 2̂θ  is obtained as a local minimum of (2) with 1ˆ ˆσ σ= , 
that is nearest to 1̂θ , where the loss function is now 

2cρ  with 2 1c c>  chosen 
to yield a user-specified “high” normal distribution efficiency. Constant 2c  
values for the normal efficiencies of 85%, 90%, 95% and 99% can be found in 
Table 1. 
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The final MM-estimate 2̂θ  inherits the high breakdown point of initial esti-
mate because of re-descending psi-function 

2cψ  and the fixed scale 1σ̂ , but has 
a high efficiency. 

Standard Errors 
We report MM standard errors as returned by the lmRob function in R robust 

package. In particular, the three components of the covariance matrix, 2 1
xσ τ −C , 

are estimated as follows. 
The scale parameter σ  is estimated by the initial scale estimate 1σ̂ , and the 

parameter τ  is estimated by 

( )
( )

2

2

2

1

1

ˆ
ˆ  

ˆ 
c t

t
j c j

rn ave
n p ave r

ψ σ
τ

ψ σ

    =   − ′   

              (A.2) 

where ( ) ( )
2 2c cu uψ ρ′= , the tr  are residuals from the final MM fit and the 

factor 1
n p−

 is used to recapture the classical formula for LS for which 

( )u uψ = . See Equation (5.33) in Maronna et al. [18]. 

Let ( ) ( )*
* * 1

 x
x

x
E

E
 

≡ =  
 

′
′

V x x
xx
µ

µ
 with ( )x E≡ xµ  denoting a vector of 

expected values of x . The matrix block-inversion formula suggests that 

*

1 1
1

1 1

1 x x x x x
x

x x x

− −
−

− −

 ′ ′+ −
=  

− 

C C
V

C C
µ µ µ

µ
                 (A.3) 

where ( )x Var≡C x  is a covariance matrix of x . Yohai et al. [26] proposed the 
following robust estimate of *x

V : 

{ }
*

* *

ˆ t t t t

x
t t

ave w

ave w

′
=

x x
V                     (A.4) 

The robust weights tw  are needed to down-weight the influence of high-leverage 

tx  outliers when estimating the covariance matrix xV . lmRob uses weights 
computed from the initial S-estimate residuals and final MM estimate psi-function,  

i.e. 
( )2

ˆ

ˆ

S
c t

t S
t

r
w

r

ψ σ

σ
= . 1ˆ

x
−C  is the corresponding subset of the *

1ˆ
x
−V . The *

ˆ
x

V  is  

a consistent estimator of *x
V . Thus, by Slutsky theorem, *

1ˆ
x
−V  is a consistent es-

timator of *
1

x
−V  and, consequently, 1ˆ

x
−C  is a consistent estimator of 1

x
−C . 

The test statistic T standard errors are obtained by multiplying the MM beta 
standard errors returned by lmRob by 1 EFF−  where EFF is the normal dis-
tribution efficiency of the MM estimator. 

Appendix C: Breakdown Point and Bias 

The breakdown point (BP) of an estimate is defined as the smallest fraction of 
contamination that can cause the estimator to take on values arbitrarily far from 
its value for outlier free data. For example, moving a single data value to ±∞ 
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cause the sample mean to move to ±∞, i.e., BP = 0 for the sample mean. On the 
other hand, the sample median tolerates up to 50% of arbitrarily large outliers 
before it can be moved to ±∞, and, therefore BP =.5 for the sample median. See 
Hampel [32] for the introduction of the concept of breakdown point in robust 
statistics. 

Let ∞θ  be the asymptotic value of an estimator θ̂ , i.e., ˆ
p ∞→θ θ  (where 

p→  denotes convergence in probability), and θ  be the true parameter value. The  
asymptotic bias ( )ˆB θ  of a multivariate estimator θ̂  may be usefully defined as  

( ) ( ) ( )*
ˆ

x
B ∞ ∞

′= − −Vθ θ θ θ θ . See Sections 3.3, 3.4, 3.6 and 6.7 in Maronna 

et al. [18]. 
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