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Abstract 
The objective of this article is to use Jacod decomposition to develop different 
types of semimartingale structure conditions. We make the following contri-
butions to that end: When a continuous semimartingale meets the structure 
condition (SC), we prove that there is a minimal martingale density and a 
predictable variation part. When a special semimartingale meets the minimal 
structure condition (MSC) and the natural structure condition (NSC), we de-
rive a Radon-Nikodym decomposition and a Natural Kunita-Watanabe de-
composition from a given sigma martingale density, which is written under 
the Jacod decomposition. 
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1. Introduction 

According to [1], the fundamental theorem of asset pricing (FTAP) gives an 
economic meaning to the no-arbitrage condition: the no-free lunch with va-
nishing risk (NFLVR). This theorem guarantees that (NFLVR) is necessary 
and sufficient for the presence of a particular pricing operator, an equivalent 
σ-martingale measure. The weaker requirements that make up (NFLVR) are the 
no-arbitrage condition (NA) and the no unbounded profit with bounded risk 
condition (NUPBR). 

Several researchers have proposed reformulations of the (NUPBR) condition that 
are similar. For example, [2] recently demonstrated the equivalence of (NUPBR) 

How to cite this paper: Mwigilwa, W., 
Aduda, J., Mbele, B.M.L.D. and Kube, A. 
(2022) Different Types of Structure Condi-
tions of Semimartingale with Jacod Decom-
position. Journal of Mathematical Finance, 
12, 367-381. 
https://doi.org/10.4236/jmf.2022.122021 
 
Received: February 10, 2022 
Accepted: May 23, 2022 
Published: May 26, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2022.122021
https://www.scirp.org/
https://doi.org/10.4236/jmf.2022.122021
http://creativecommons.org/licenses/by/4.0/


W. Mwigilwa et al. 
 

 

DOI: 10.4236/jmf.2022.122021 368 Journal of Mathematical Finance 
 

and the existence of a rigorous sigma-martingale density for one-dimensional but 
in general semimartingale. The (NUPBR) condition is also equivalent to the ex-
istence of a strictly positive σ-martingale density for the underlying semimar-
tingale, as [3] demonstrated. The fundamental benefit of these equivalent refor-
mulations is that they all guarantee the existence of a fair pricing operator to 
price the terminal wealth of all 1-admissible trading strategies. 

However, how can we identify a natural candidate for a strictly positive 
σ-martingale density for an arbitrary, locally square-integrable semimartingale 
S M A= + , where M denotes the local martingale part and A denotes a predict-
able variation part? A weak structure condition (SC’) that leads to a structure 
condition (SC) for a continuous semimartingale was proposed by [4] [5]. Struc-
ture condition (SC) is a useful tool that leads to the minimal martingale density, 
which is a natural candidate for a strictly positive σ-martingale density. 

Although (SC) and its related structure theorem are stable for a large class of 
semimartingales, they have some flaws. This is because they’re only useful for 
finding σ-martingale densities for a continuous semimartingale that are strictly 
positive. Furthermore, under the (proper) measure, the structure condition (SC) 
is not invariant. To address these flaws, [6] chose to take a fresh look at the spe-
cial semimartingale and its unique decomposition, resulting in the creation of 
more than one new type of structure condition: minimal structure condition 
(MSC) and natural structure condition (NSC). 

The goal of this paper is to use Jacod decomposition to establish the concept 
of several types of semimartingale structure conditions. We’ll start by deriving 
the minimal martingale density from a positive exponential sigma martingale 
density, which is stated using Jacod decomposition when a continuous semimar-
tingale S meets the structure condition. For the circumstances when P-minimal 
martingale density and Q-minimal martingale density exist, we will additionally 
show a predictable variation part of a continuous semimartingale. Finally, when 
a special semimartingale meets the minimal and natural structure conditions, we 
will derive Radon-Nikodym decomposition and natural Kunita-Watanabe de-
composition from sigma martingale density. 

The following is how the rest of the article is structured: Important defini-
tions, theorems, assertions, and Lemmas are discussed in Section 2. In Section 3, 
we show that a continuous semimartingale has minimal martingale density and 
drift part. We derive Radon-Nikodym decomposition from a given sigma mar-
tingale density and prove a drift variation part of minimal structure condition in 
Section 4. We derive natural Kunita-Watanabe decomposition (NKWD) and 
prove the existence of sigma martingale from (NKWD) in Section 5. Finally, 
conclusions and suggestions are in Section 6. 

2. Important Definitions, Notations, Theorems and 
Propositions 

i) According to [7] ( )2L X  (resp ( )2
locL X ) is the set of all d-dimensional 
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predictable processes B such that the increasing process ( ),
,

i i j j
i j B c B A⋅∑  is 

integrable, where ( ),

1 ,

i j

j j d
c c

≤ ≤
=  is predictable taking values in the set of all 

symmetric nonnegatives d d×  matrices and A is an increasing predictable 
process and X is a continuous local martingale. 

ii) 2
loc  is the set of all locally square-integrable martingale. 

iii) According to ([7], Proposition 1.14) the random measure µ  associated 
with its jumps is defined by ( ) { } { } ( )0 ,d ,d d ,d

s sS s St u t uµ δ∆ ≠ ∆= ∑1  where aδ  
denotes the Dirac measure at point a. 

iv) According to ([7], Definition 1.27a) ( )loc µ  is the set of all  -measurable 

real-valued function W on Ω  such that the process  

( ) ( )( ) ( ) ( )ˆ, , ,t t D tW w W w t w w t W wβ= − 1  satisfies ( )
1 22

. s locs W +
≤

  ∈  ∑   .  

Therefore the set ( )1
loc µ  is given by 

( ) ( )( ) ( )( )
1

2 21

0

ˆ: , , ,loc s s D s loc
s

W W w s w w s Wµ β +

< ≤

 
  = ∈ − ∈     
∑  1

 

v) According to [8] ( )1
loc µ  is given by 

( ) [ ) ( ){
( ) }

1

2 1 2

: : 0, , , | 0

and

d P
loc

loc

V V V

V

µµ

µ +

= Ω× +∞ × → ∈ =

∗ ∈

    


 

vi) According to ([7], Definition 1.27b) if ( )1
locW µ∈  then the stochastic 

integral ( )W µ ν∗ −  of W with respect to ( )µ ν−  is the unique element of 

d
loc  where { }1

ˆ

1 a
UW U

a <= +
−

1  is in ( )1
loc µ . 

vii) According to ([9], Lemma 3.72) if ( )1
locV µ∈  then the stochastic 

integral ( )V µ∗  of V with respect to µ  is the unique element of loc . 
Definition 2.1 (σ-martingale density) 
According to [5] a σ-martingale density (or local martingale density) for S is a 

local P-martingale ( )0t t T
Z Z

≤ ≤
=  with the following properties 

1) 0 1Z =  
2) 0Z >  up to indistinguishability 
3) iZS  is a P-σ-martingale (a local P-martingale) for each 1, ,i d∈   where 

iS  is a semimartingale. 
Also in addition Z is called in addition strictly positive-σ martingale density if 

0Z > . 
A strictly positive σ-martingale density is in general only a local martingale 

but not a true P-martingale. But if Z happens to be a true P-martingale (on 
[ ]0,T  or equivalently if [ ] 1P TZ = ) we can define a probability measure Q 
equivalent to P via d dTQ Z P= . This Q if it exists is called an equivalent 
σ-martingale measure (equivalent local martingale measure) for a semimartin-
gale S. 
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Definition 2.2. (Weak structure condition/Structure condition) 
According to [5] if ( )0t t T

S S
≤ ≤

=  is an d  valued-continuous semimartin-
gale with canonical decomposition 0S S M A= + +  where the processes 

( )0t t T
M M

≤ ≤
=  and ( )0t t T

A A
≤ ≤

=  are both d  valued, continuous and null at 
0. Then a semimartingale S satisfies the weak structure condition ( SC′ ) if A is 
absolutely continuous with respect to M  in the sense that there exists an d
-valued predictable process ( )

0
ˆ

t̂ t T
λ λ

≤ ≤
=  such that ˆdA M λ= ∫ . i.e. 

0
1 1

ˆ ˆd d , for 1, , and 0 .
d dt iji j j i j

t u uu ui j
A M M M i d t Tλ λ

= =

= = ∈ ≤ ≤∑ ∑∫ 

 
λ̂  is called the (instantaneous) market price of risk for S. 
Definition 2.3. (Mean-variance tradeoff) 
According to [5] if semimartingale S satisfies the weak structure condition 

( SC′ ), we define 

0 0
, 1

ˆ ˆ ˆ ˆˆ d d ,
dt ttr i j i j

t u u u u ui j
K M M Mλ λ λ λ

=

= = ∑∫ ∫
 

( )0t t T
K K

≤ ≤
=  is called the mean-variance tradeoff process of semimartingale 

S. Because M  is positive semidefinite, the process K̂  is increasing and null 
at 0, but note that it may take the value ∞  in general. 

Therefore we say that a semimartingale S satisfies the structure condition (SC) 
if S satisfies ( SC′ ) and ˆ

TK < ∞  P-a.s. 
Proposition 2.4. ([10], Proposition 5a). If Z satisfies 

0
ˆ1 d

t
t u u tZ Z M Rλ

−
= − +∫   

on [ ]0,T  for some ( )2
,0locR P∈  orthogonal to M . Then Z is a martingale 

density and locally square-integrable, when 0R = . The equation is then re-
duced to 

0
ˆ1 d

t
t u uZ Z Mλ

−
= − ∫   whose solution Ẑ  is given by the stochastic ex-

ponential ( )ˆdMλ−∫  . We call Ẑ  the minimal martingale density for S. Since 

it is in a sense the simplest martingale density. Therefore, the perceptive Ẑ  is 
minimal because it is obtained from the simplest choice, 0R = . 

Theorem 2.5. ([11], Theorem 1). If S admits a strict martingale density Z ∗  
and that either S is continuous or S is a special semimartingale satisfying 

( )2
0,locM P∈  and ( )2

0,locZ P∗ ∈ . Then S satisfies the structure condition 
(SC). Further Z ∗  can be written as ( )ˆdZ M Lλ∗ = − +∫  where  

( )0,locL P∈  is strongly orthogonal to M. If S is continuous we can simplify 
( ) ( )ˆdZ M Lλ∗ = −∫  , where ( )ˆˆ dZ Mλ= −∫  where Ẑ  is minimal martin-

gale density which is obtained for the simplest choice 0L = . 
Definition 2.6. (Local martingale) 
According to [7] [12], a stochastic process ( ) 0t t

X
≥

 is called a local martin-

gale if there exists a localising sequence ( )n n
T

∈  such that the stopped process 

( ) ( )
0 0

n
nt tt t

X Xτ
τ∧≥ ≥

=  is martingale for every n∈ . 

According to [7] [12] any local martingale M admits a unique decomposition 

0
c dM M M M= + +  
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where 0 0 0c dM M= = , cM  is a continuous local martingale and dM  is a 
purely discontinuous local martingale. 

Definition 2.7. (Semimartingale) 
According to [7] [12], a cadlag, adapted stochastic process ( ) [ ]0,t t T

X
∈

 is called a 
semimartingale for a given filtration t  if it decomposed as 0t t tX X M A= + +  
where tM  is a local martingale and tA  is an adapted cadlag process with a fi-
nite variation. 

A special semimartingale is a semimartingale tX  that admits a decomposi-
tion 0t t tX X M A= + +  with a process tA  that is predictable. 

The presence of arbitrage is not allowed in modelling asset prices. Therefore it 
is important that the underlying asset price process be arbitrage-free. The arbi-
trage possibilities can be eliminated if and only if the underlying asset price 
process is a semimartingale. 

Theorem 2.8. ([12], Lemma 9.6). Let M be a continuous martingale and H be an 
optional process. Then there exists a locL∈  such that [ ] [ ], ,L N H M N= ⋅  
holds for all locN ∈  if and only if [ ]2H M +⋅ ∈ . In this case, there exist a 
predictable process ( )mK L M∈  such as that K M L⋅ = . We say that H is in-
tegrable with respect to M and L is called the stochastic integral of H with re-
spect to M denoted by H M⋅ . 

Lemma 2.1. ([6], Key lemma 2.11). Let S to be an d -valued P-semimartingale 
and Q P . Further, if we let S to be a special Q-semimartingale and denote its 
canonical decomposition (under Q) by 0S S M A= + + . Moreover, if we let 

( )Z N= −  be a strictly positive local Q-martingale. Then Z is a strictly posi-
tive Q-σ-martingale (local Q-martingale) density for S if and only if 

, i iN M A  −   is a Q-σ-martingale (local Q-martingale) 1, ,i d∀ ∈  . 
Lemma 2.2. According to [6] if we let Q P , ( )2

locM Q∈  and H be an 
optional process, such the path-wise Lebesgue-Stieltjes Integral [ ]H M⋅  exists. 
Moreover let [ ]H M⋅  be compensable and denote its compensator by C. There 
exists QM -a.s unique predictable process ( )Qd

mK L M M ∈ −   under Q 
such that QC K M= ⋅  

Jacod Decomposition 

Jacod decomposition was introduced by [8] and has four parameters ( ), , ,B W V N  
that belong to the local martingale sets. 

Theorem 2.9. ([9], Theorem 3.75). 
If we let d -valued semimartingale S to be fixed. Then every (real-valued) 

local P-martingale M null at 0 can be written as 

( )M W V Nµ ν µ= − + +   
Then if you apply the Kunita-Watanabe decomposition under P to N  and 

the continuous local martingale part of cS  of S to write cN B S N= ⋅ + , where 
B is a predictable cS -integrable process and M a local P-martingale null at 0 
and strongly P-orthogonal to cS . We are going to have the following theorem: 

Theorem 2.10. ([13] [14], Theorem 2.4). If we recall the d -valued semi-
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martingale S is fixed. Then every (real-valued) local P-martingale M null at 0 can 
be written as 

( )cM B S W V Nµ ν µ= ⋅ + − + +                  (1) 

where 
1) ( )2 c

locB L S∈  is a predictable cS -integrable process. 

2) A measurable function { } ( )1
1

ˆ

1 loca
UW U

a
µ<= + ∈

−
1   in which U ∈   

such that the following integral exists ( ) ( )ˆ dtU U x t xν= ×∫ . 

3) ( )1
locV µ∈  is an optional process and. 

4) 2
locN ∈  is a local P-martingale null at 0 with [ ], 0S N = . 

The difference between Jacod decomposition (1) and a known local martingale 
decomposition from [[7], Definition 4.22] is the addition of the term V µ . 

3. Structure Condition 

In order to explain the importance of (SC) as a good tool for finding strictly pos-
itive σ-martingale densities in continuous paths cases, we recall its definition. A 
continuous semimartingale S satisfies the structure condition (SC) if 

ˆd cS M Mλ= + ∫  
where λ̂  is an d -valued continuous predictable process and M is continuous 
local martingale. Due to this specific structure of the semimartingale, one can 
show that all strictly positive σ-martingale densities ( )N−  for S feature a spe-
cific Kunita Watanabe decomposition 

ˆdN M Lλ= +∫  
where L is a local martingale orthogonal to M. Therefore since S is continuous it 
ensures that the minimal martingale density ( )ˆd Mλ−∫  is a strictly positive 
σ-martingale density for S. 

In this section first, we are going to prove the existence of minimal martingale 
density from a given sigma martingale density written in Jacod decomposition. 
Also since the existence of structure condition rely on the existence of the pre-
dictable process of quadratic variation of the local martingale part, we are going 
to prove in the second part the existence of a continuous predictable process  

1 1, ,A Z S Z M
Z Z− −

′= − ⋅ = − ⋅  for a continuous semimartingale. 

3.1. Minimal Martingale Density 

Proposition 3.1. If we let a sigma martingale density ( )Z M=   where M is a 
Jacod decomposition then ( )0

ˆ d
TP

t tZ Z B S= = −∫  where ˆ PZ  is a minimal 
martingale density if and only if a continuous semimartingale S satisfies a struc-
ture condition. 

Proof 
Given S is a continuous semimartingale and it satisfies the structure condition 
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(SC). We have ( )Z M=   where ( )0,locM P∈ . We can define ( )0,locM P∈   

by 1 dM Z
Z−

=  which is well defined since Z is strictly positive. In order to get  

a required minimal martingale density we are going to multiply by negative both 
sides of ( )cM B S W V Nµ ν µ= ⋅ + − + +   then  

( )( )cM B S W V Nµ ν µ− = − ⋅ + − + +  . 
Since any local martingale admits a unique decomposition of two parts: a conti-

nuous part and a discontinuous part, we can decompose M as ( )1 2M M M− = − +  
with ( )1 2

0,locM P− ∈  and ( )2 2
0,locM P− ∈  such that 2M−  is strongly or-

thogonal to each iM . In this case, we can set 1 cM M− = −  and 2 dM M− = −  as 
the continuous and purely discontinuous local martingale part of M. 

In fact we can choose 2 0M− =  (discontinuous part of local martingale part), 
if ( )2

0,locZ P∈  holds and when S is continuous respectively. 
By the Galtchouk-Kunita Watanabe decomposition theorem, the continuous 

part of the local martingale part 1 cM M− = −  can be written as  

( )1 c cM M B S N− = − = − ⋅ +  where ( )2 c
locB L S∈  and ( )2

0,locN P∈  null at 
0 is strongly orthogonal to cS , where , 0cS N =  and [ ], 0S N = . Since S is 
continuous, we can simplify 

( ) ( )( ) ( ) ( )c c cZ M B S N B S N= − = − ⋅ + = − ⋅ −             (2) 

Let ( ) ( ) ( )
0

ˆd
T PP c

t tM B S Z− = − =∫   from Equation (2), then we can call 
( )ˆ PZ  a minimal martingale density obtained for the simplest choice when 

0N− =  Theorem (2.5). 
Let cS  be a semimartingale with representation 

0 1, 1c c
t tS S M A= + +                        (3) 

where cM  is a continuous local martingale part and A is a finite variation 
process. Then the stochastic integral: 

1, 1
0 0 0

d d d
T T Tc c

t t t t t tB S B M B A= +∫ ∫ ∫                   (4) 

The representation (3) is not unique therefore the stochastic integral (4) is al-
so not unique. If 

0 2, 2c c
t tS S M A= + +                       (5) 

is another presentation, then we can have also another stochastic integral 
2, 2

0 0 0
d d d

T T Tc c
t t t t t tB S B M B A= +∫ ∫ ∫                   (6) 

Then: 

( ) ( )1, 2, 1 2
0 0 0

d d d
T T Tc c c

t t t t t t t tB S B M M B A A= − = − −∫ ∫ ∫           (7) 

So that ( )1,c c
t tM M−  is a local martingale of finite variation. Since the differ-

ence between the two local martingales is also a local martingale then 

0 0
d d

T Tc c
t t t tB S B M− = −∫ ∫  

Since S is continuous with integrable quadratic variation then [ ]S S=  

https://doi.org/10.4236/jmf.2022.122021
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means there is no difference between the sharp and square brackets according to 
[15]. We are going to have 

0 0
d d

T T
t t t tB S B M− = −∫ ∫  

Therefore, ( ) ( )0 0
ˆ d d

T TP
t t tZ Z B S B M= = − = −∫ ∫   is a minimal martin-

gale density. 
This means our strictly positive σ martingale density is equal to minimal mar-

tingale density when a semimartingale S is continuous. 

3.2. A Predictable Variation Part When P-Minimal Martingale 
Density Exists 

Structure condition which is defined with continuous semimartingale S of the 
form 0S S M A′= + +  has two aspects: 

i) It requires a predictable variation component A to be absolutely continuous 
with M ′  of martingale component M ′  with density function Z. 

ii) It imposes the square integrability condition on M ′  and a specific inte-
grability condition on the density function Z. 

All two conditions are reinterpretations under square integrability conditions 

of the equation 1 1, ,A Z S Z M
Z Z− −

′= − ⋅ = − ⋅ . That is between the a predict-

able variation part A, the local martingale part M ′  and a strict σ  martingale 
density Z. 

Therefore first we are going to prove the equation  
1 1, ,A Z S Z M

Z Z− −

′= − ⋅ = − ⋅  when P-minimal martingale density ˆ PZ  ex-

ists. 
Proof 

( ) [ ]d d d d ,SZ S Z Z S S Z− −= + +                   (8) 

S M A′= +                           (9) 

d d dS M A′= +                        (10) 

Substitute Equations (9) and (10) into Equation (8). Then we are going to 
have the following equation 

( ) ( ) [ ]
( ) [ ] [ ]
( ) [ ] [ ]

d d d d d ,

d d d d d , d ,

d d d d d , d , d , d ,

ZS S Z Z M A Z M A

ZS S Z Z M Z A Z M Z A

ZS S Z Z M Z A Z M Z A Z S Z S

− −

− − −

− − −

′ ′= + + + +

′ ′= + + + +

′ ′= + + + + + −

 (11) 

From Proposition (2.4) if Z satisfies 0 0
d

t c
t uZ Z Z B S N

−
= − +∫  on [ ]0,T  for 

( )2
0,locN P∈  orthogonal to cS . Then Z is a martingale density and locally 

square integrable when 0N = . The equation then reduced to  

0 0
d

t c
t uZ Z Z B S

−
= − ∫  whose solution ˆ P

tZ  is given by the stochastic exponential 

( )0
d

t cB S−∫  where ˆ P
tZ  is known as minimal density for a semimartingale S. If 
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we let 0 0Z =  we are going to have 
0 0

d d
t tc c

t u t tZ Z B S Z B S Z N
− −

′= − = − = − ⋅∫ ∫  

Therefore from equation (11) since a semimartingale S is decomposed into 
local martingale part and finite variation part then we are going to have 

( ) ( ) [ ] [ ](
)

( ) ( ) [ ] [ ](
)

d d d d , d ,

d , d d ,

d d d d , d ,

d , d d ,

ZS S Z N Z M Z N M Z N A

Z N S Z A Z S

ZS S Z N Z M Z N M Z N A

Z N S Z A Z S

− − − − −

− −

− − − − −

− −

′ ′ ′ ′ ′= − + + − + −

′− − + +

′ ′ ′ ′ ′= − + − −

′+ + +

     (12) 

From Equation (12) we have a local martingale part  
( ) [ ] [ ]d d d , d , d ,S Z N Z M Z N M Z N A Z N S− − − − − −′ ′ ′ ′ ′ ′− + − − +  and a finite vari-

ation part is d d ,Z A Z S− + . 
From Equation (12) we are going to have 

( ) [ ] [ ]( )d d d d , d , ,

d d ,

ZS Z S N M N M N A d N S

Z A Z S
− −

−

′ ′ ′ ′ ′ ′= − + − − +

+ +
     (13) 

Due to Yoeurps Lemma [12], the first bracket term on the R.H.S is a P-local mar-
tingale, and L.H.S is a (differential of) a P-σ-martingale (a local-P-martingale) if and 
only if Z is a strictly positive P-σ-martingale (a local P-martingale) density for a 
semimartingale S. 

Therefore by application of the product rule, this shows that ZS has a predictable 
variation part d d ,Z A Z S− +  which must vanish because ZS is P-σ-martingale. 

From this finite variation part 
d d , 0

1d d ,

1 1, ,

Z A Z S

A Z S
Z

A Z S Z M
Z Z

−

−

− −

+ =

= −

′= − ⋅ = − ⋅

                (14) 

3.3. A Predictable Variation Part When Q-Minimal Martingale  
Density Exists 

For the case of Q-minimal martingale density ˆ QZ  it depends on the ˆ PZ  by Bayes 
Rule. 

Then 
( )

( )
( )

ˆˆ
PP

Q
c c

MZZ
M M

= =


 
. 

Since we have seen that structure condition is satisfied in ˆ PZ  it is also be sa-
tisfied on ˆ QZ  because they depend on each other. According to [6] the pre-
dictable quadratic variation of a locally square-integrable martingale is not inva-
riant under equivalent measure changing. Therefore, in this case under ˆ QZ  we  
are going to have 1 1, ,Q QA Z S Z M

Z Z
′

− −

= − ⋅ = − ⋅ . 

4. Minimal Structure Condition 

Although the SC theorem holds for every locally square-integrable semimartin-
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gale, it has several limitations in terms of working as an indication for a strictly 
positive sigma-martingale density. SC lacks the ability to be invariant under 
equivalent measure changes, and when it comes to arbitrary locally square in-
tegrable semimartingales, SC is neither required nor sufficient for the presence 
of a strictly positive sigma martingale density, as [6] pointed out. 

We present a new structure condition in this part that solves the weakness of 
the structure condition (SC), which is the minimal structure condition (MSC). A 
MSC is equivalent to the SC for a continuous semimartingale, a property that the 
SC’ does not possess. The MSC definition is derived from the first structure 
theorem. A theorem that sheds light on the relationship between strictly positive 
sigma martingale densities, on the one hand, and the structure of locally square 
integrable semimartingale and potential decomposition of its predictable finite 
variation part on the other. 

In the first part, we are going to prove the existence of Radon-Nikodym de-
composition from sigma martingale density Z if we let this density be written 
under Jacod decomposition with the condition that a semimartingale satisfies 
minimal structure condition (Proposition 4.3). We are going to prove a predict-
able variation part of MSC in the second part. 

Theorem 4.1 ([6], Theorem 2.24, First Structure theorem). Let S to be 
P-semimartingale and Q P  be a probability measure such that ( )2

locS Q∈ . 
And we denote by canonical decomposition of 0S S M A= + + . Further, we 
denote by cM  and dM  the continuous and purely discontinuous local mar-
tingale part of M. Then, if we let ( )Z N= −  to be a positive local 
Q-martingale, we can denote a Radon-Nikodym decomposition of N with re-
spect to M by equation 

c d

c
N M H M Lλ= ⋅ + • +

 
Definition 4.2. ([6], Definition 2.27). Let S to be a P-semimartingale and 

Q P  a probability measure. We say that S satisfies the Minimal Structure 
condition (MSC) under Q if the following properties hold. 

i) S is a locally square-integrable Q-semimartingale with canonical decompo-
sition 0S S M A= + + , where cM  and dM  are continuous and purely dis-
continuous local martingale parts of M. 

ii) There exists a process ( )c
mL Mλ ∈  and ( )Qd dM Mη  ∈ −   under Q 

such that d dc dA M Mλ η= +∫ ∫  

Proposition 4.3. If we let a sigma martingale density ( )Z M=   where M is 
a Jacod decomposition then there is the existence of Radon-Nikodym decompo-
sition c d

c
M B S H S N= ⋅ + • +  from M if a semimartingale S satisfies a minimal 

structure condition. 
Proof 
We are required to prove the existence of Radon-Nikodym decomposition 

c d

c
N M H M Lλ= ⋅ + • +  from a given Jacod decomposition if a semimartingale 
S satisfies a minimal structure condition. 
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If we recall that the d -valued semimartingale S is fixed. Then every 
(real-valued) local P-martingale 1M  null at 0 can be written as 

( )1 1 1 1M W V Nµ ν µ= − + +                  (15) 

If we apply the Kunita-Watanabe decomposition under P to 1N  and the 
continuous martingale part cS  of S to write 1 1cN B S N= ⋅ +  then every 
(real-valued) local P-martingale 1M  null at 0 can be written as 

( )1 1 1 1cM B S W V Nµ ν µ= ⋅ + − + +               (16) 

We can modify Equation (15) if we apply the Radon-Nikodym-decomposition 
under P on 1N  and if we let H to be Radon-Nikodym derivative of 1d , dN S    
with respect to d dS   . We define 11 1 d

locc
N N H S= − • ∈ . Then 11, dN S    is 

a σ-martingale and the decomposition 1 11d

c
N H S N= • +  is a Radon-Nikodym 

decomposition of 1N  with respect to dS  where 1N  is a local martingale and 
dS  is a discontinuous local martingale part of S. Then a local P-martingale null 

at 0 can be written as 

( )2 2 2 11d

c
M H S W V Nµ ν µ= • + − + +              (17) 

now let’s add two Equations (16) and (17) 
( )

( )

1 2 1 1

2 2 1 11

c d

c
M M B S H S W V

W V N N

µ ν µ

µ ν µ

+ = ⋅ + • + − +

+ − + + +

 

 
         (18) 

According to [16] [17] [18] [19] a sum of two local martingales is itself a local 
martingale. therefore we are going to have the following local martingales from 
Equation (18) 

( ) ( )( ) ( ) ( )

1 2 1 11

1 2 1 1 2

for RHS, and for LHSM M M N N N

W W V V W Vµ ν µ ν µ µ µ ν µ

+ = + =

− + − + + = − +       
From above we are going to have the following equation 

( )c d

c
M B S H S W V Nµ ν µ= ⋅ + • + − + +             (19) 

From Equation (19), let multiply both sides by negative sign then we are going 
to have ( )( )c d

c
M B S H S W V Nµ ν µ− = − ⋅ + • + − + +  . 

Our local martingale admits a unique decomposition of two parts: a compen-
sated stochastic integral part and a discontinuous part, we can decompose M as 

( )1 2ˆ ˆM M M− = − +  where ( )1ˆ c d

c
M B S H S N− = − ⋅ + • +  and  

( )( )2M̂ W Vµ ν µ− = − − +  . 
In fact, we can choose 2ˆ 0M− =  if [ ]2

locH S +⋅ ∈  then 1ˆ
c

H M•  exists 
and also when S satisfying the Radon-Nikodym decomposition on 1M̂ . Then 

1ˆM M− = −  which implies that  
( ) ( ) ( )( )1ˆ c d

c
Z M M B S H S N= − = − = − ⋅ + • +   . 

Therefore, there is the existence of Radon-Nikodym decomposition  
c d

c
M B S H S N= ⋅ + • +  from a sigma martingale density. 

A Predictable Variation Part of (MSC) 

According to the 1st structure theorem and the minimal structure conditions Z is 
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a strictly positive σ-martingale (local martingale) density for a semimartingale S 
under Q if there exists a process ( )c

mL Mλ ∈  and ( )Qd dM Mη  ∈ −   un-
der Q such that d dc dA M Mλ η= +∫ ∫ . 

Then from the key Lemma (2.1) Z is a strictly positive σ-martingale (local 
martingale) density for S if and only if [ ]1ˆ ,M S A H S A  − = ⋅ −  . Then we are 
going to adapt the proof as from [6]. Due to the Radon-Nikodym decomposition 
of 1M̂  w.r.t S we are going to have 

[ ]1ˆ ,
c d

Qd c

M S A H S A

B S H S A

H S B S A

  − = ⋅ − 
   = ⋅ + ⋅ −   

 = ⋅ + ⋅ − 

              (20) 

According to Lemma (2.2), we know there exists a 
QdS  a.s unique pre-

dictable process ( )Qd dM Mη  ∈ −   such that 

0
Qd dH S Sη ⋅ − ⋅ =                      (21) 

Is a σ-martingale (local martingale). 
If you conclude from Equations (20) and (21) then we are going to have 

d d
Q Qc dA B S Sη= +∫                    (22) 

5. Natural Structure Condition 

The fact that all strictly positive sigma-martingale semimartingale densities have 
a natural Kunita-Watanabe decomposition is essentially equal to the NSC. NSC 
addresses MSC’s flaw by demonstrating that if ( ),λ η  is a version of MSC, we 
may be certain that d cMλ∫  exists. However, we don’t know if d dMη∫  exists, 
and it’s a local martingale. As a result, NSC concentrates on those parts of MSC. 

In this section, when a semimartingale meets the natural structure condition, 
we will prove the existence of natural Kunita-Watanabe decomposition of sigma 
martingale density Z stated in terms of Jacod decomposition. (Proposition 5.3). 
Also, we are going to prove the existence of strictly σ martingale density from 
(NKWD). 

Definition 5.1. ([6], Definition 2.35). Let a semimartingale S be a locally 
squire-integrable P-semimartingale with canonical decomposition 0S S M A= + +  
that satisfy minimal structure condition (MSC). We say S satisfies the natural 
structure condition (NSC) if there is exist a version ( ),λ η  of (MSC) such that 

( )d
mL Mη ∈ . A pair ( ),λ η  satisfying this condition is called a version (NSC). 

Theorem 5.2. ([6], Theorem 2.40, Second structure theorem). Let a semimartin-
gale S satisfy (NSC) and denote its canonical decomposition by 0S S M A= + + . 
Moreover, if we let ( ),λ η  be a version of strictly positive local martingale. 
Then Z is a strictly positive σ-martingale (local martingale) density for S if and 
only if N features a natural Kunita-Watanabe decomposition 

c dN M M Lλ η= ⋅ + ⋅ +  
where L is a local martingale and [ ],L M  is a σ-martingale (local martingale). 
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Proposition 5.3. If we let a sigma martingale density ( )Z M=   where M is 
a Jacod decomposition then there is the existence of a natural Kunita-Watanabe 
decomposition c dM B S S Rη= ⋅ + ⋅ +  from M if a semimartingale S satisfies a 
natural structure condition. 

Proof 
From Jacod theorem (15) if we apply the natural Kunita-Watanabe decompo-

sition under P to N  where we have a continuous part cS  of S and the discon-
tinuous part dS  of S then we write c dN B S S Rη= ⋅ + ⋅ +  then we are going 
to have the following decomposition 

( )3 3 3c dM B S S W V Rη µ ν µ= ⋅ + ⋅ + − + +             (23) 

From Equation (23) let 3 1 2M M M= +   where 1 c dM B S S Rη= ⋅ + ⋅ +  and 
( )2 3 3M W Vµ ν ν= − +   . In order to satisfy the conditions of second struc-

ture theorem and natural structure conditions, a positive σ-martingale density 

( )3Z M= −  can be written in terms of ( )3 1 c dM M B S S Rη− = − = − ⋅ + ⋅ +  
while ( )( )3 2 3 3 0M M W Vµ ν ν− = − = − − + =    if ( )0,locZ P∈  hold and 
when S satisfy the natural Kunita-Watanabe decomposition (NKWD) of 1N  
with respect to S. Therefore, ( ) ( )( )c dZ M B S S Rη= − = − ⋅ + ⋅ +  . 

Therefore, there is the existence of Natural Kunita-Watanabe decomposition 
c dM B S S Rη= ⋅ + ⋅ +  from a given sigma martingale density ( )Z M=  . 

Existence of Strictly σ Martingale Density from (NKWD) 

We are going to prove the existence of strictly σ martingale density if given 
(NKWD) c dM B S S Rη= ⋅ + ⋅ + . 

From the definition of σ-martingale: SZ is a σ-martingale if and only if 
[ ]( ),S S M−  is a σ-martingale. 

Therefore 

[ ]
[ ] [ ]
[ ] [ ] ( )
[ ] [ ]

, ,

, , ,

, , , when

, , , , , ,

c d

c d

c d c d c d

c c c d d c d d

S S M S B S S R S

S S M S R S B S S S

S S M S R S B S S S S S S S

S S M S R S B S S B S S S S S S

η

η

η

η η

 − = − ⋅ + ⋅ + 
 − = − − ⋅ + ⋅ 
 − = − − ⋅ + ⋅ + = + 
       − = − − ⋅ − ⋅ − ⋅ − ⋅       

(24) 

From Equation (24) we are going to apply Lemma 2.2 and known properties 
of quadratic covariation 

[ ] [ ]
[ ]

[ ] ( ) ( )
( ) ( )

, , , , , ,

, , ,

,

, ,

c c c d d c d d

c c d d c d

Q Qc c d d

Qc d c d

S S M S R S B S S B S S S S S S

S R S B S B S S S S S

S R S B S S S S

B S S S S

η η

η η

η

η

       − = − − ⋅ − ⋅ − ⋅ − ⋅       
       = − − ⋅ − ⋅ − ⋅ − ⋅       

   = − − ⋅ − − ⋅ −   

 − + ⋅ − 

(25) 

is a σ-martingale (local martingale). Due to natural structure condition (NSC), 

we can say ( )Qc cB S S ⋅ −  , ( )Qd dS Sη  ⋅ −   and  
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( ) ( ), ,
Qc d c dB S S S Sη  + ⋅ −   are local martingales. Therefore ( )Z M= −   

is a strictly positive σ-martingale (local martingale) density for S if and only if 
[ ],S R S−  is a σ-martingale.  

6. Conclusions and Suggestions 

There have been no meaningful uses of Jacod decomposition since the introduc-
tion of structure condition (SC), which allows for the existence of minimal mar-
tingale measure until the introduction of new types of structure conditions 
(MSC and NSC) of special semimartingale. According to [20] [21] [22], the ne-
cessary results can be obtained by writing a sigma martingale density in terms of 
a Dolean-Dade exponential of Jacod decomposition. 

We were able to prove the existence of minimal martingale density when a 
continuous semimartingale satisfies SC and derive a Radon-Nikodym decompo-
sition and a Natural Kunita-Watanabe decomposition in our case, by writing a 
sigma martingale density in terms of Dolean-Dade exponential of Jacod decom-
position. 

We can suggest that, if the sigma martingale density is stated in a different 
way from the one we studied, the minimal martingale density can be derived. 
However, this will only be achievable if continuous semimartingale satisfies the 
structure conditions’ features. 
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