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Abstract 
In this paper, we investigate if the choice of the reference density could im-
prove the power of M-estimation-based unit root tests. For this investigation, 
we consider models where the AR-coefficient is very close to one (local-to-unity) 
in the true data generating process. Motivated by the stylized facts that em-
pirical return distributions have large skewness and high leptokurtosis, we 
explore if Johnson SU and Pearson Type IV distributions can be used as the 
reference densities to improve the power of the M-estimation based unit root 
tests. Through extensive simulations, we find that the proposed procedure, in 
finite samples, is as powerful as the Dickey-Fuller test for normal errors and 
is significantly more powerful than several existing tests for non-normal er-
rors. We apply the proposed test to the Nelson and Plosser data set and to the 
nominal monthly interest rate of India. 
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1. Introduction 

Following the seminal work of Dickey and Fuller [1], there has been immense 
interest in the statistical test for the unit root hypothesis in time series data. 
Stock [2], Phillips, and Xiao [3] have surveyed many such tests. Elliot, Rothen-
berg, and Stock [4] proposed a family of tests and also a modified Dickey-Fuller 
test for Gaussian time series with an unknown mean or a trend. Most of these 
tests are based on the OLS method assuming Gaussian errors. Monte Carlo pro-
cedure indicates that these tests do not have high statistical power when the er-
rors show a heavy-tailed behaviour. 
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Many scholars explored tests with higher power for non-Gaussian errors 
based on M-estimation. Cox and Llatas [5], Lucas [6], Rothenberg and Stock [7], 
Knight [8], Herce [9], Xiao [10], Thompson [11] and [12] and others have made 
significant contributions in the M-estimation domain. 

They all assumed a known density function on the error process for the model to 
estimate the model parameters using the M-estimation procedure. Henceforth we 
shall call this assumed density function on the error process the “reference density”. 

For example, Lucas [6] investigated student t distribution. Herce [9] used 
the absolute value function (double exponential density). Hansen [13] pro-
posed a unit root test using a covariate approach. However, identifying the 
covariates may be difficult in practice. Hasan and Koenker [14] proposed 
rank-based tests. Thompson [11] and [12] showed that for each rank-based test, 
there exists an M-estimation test with the same asymptotic power. Shin and So 
[15] used a nonparametric method to estimate the unknown error process. The 
method developed by them is difficult to implement. Moreover, for the Cauchy 
errors, their test has very poor power [11]). Koenker and Xiao [16] apply 
quantile regression to analyse the unit root process. In his monograph, Choi 
[17] has explained (page 97) that the LAD estimation-based test of Herce [9] 
has lower power than that of the quantile regression test. Using the approach 
proposed by Potscher and Prucha [18], Lima and Xiao [19] used a partially 
adaptive estimation method (PADF) to estimate the unknown error density. 
Hallin, Van Den Akker, and Werker [20] proposed a class of tests using the 
ranks of the samples. The rank-based test, however, requires an independently 
and identically distributed (IID) error process which may not be feasible in 
many practical applications. 

Johnson SU (JHSU) and Pearson Type IV (PIV) distributions have been used 
to model financial time series data and in the risk management literature. Na-
gahara [21] used PIV density to model the stock return distribution. Bhattacharyya 
and Madhav [22] used the Johnson SU distribution and other methods to esti-
mate the VaR for leptokurtic equity index returns. Bhattacharyya, Chaudhary, 
and Yadav [23] used PIV distribution to obtain the conditional VaR. Bhat-
tacharyya, Misra, and Kodase [24] used PIV distribution to obtain the condi-
tional MaxVaR. 

Johnson SU distribution covers a wide range of shapes depending on its pa-
rameter values. It may also be a good approximation of Pearson type IV distri-
bution [25]. The main advantage of this distribution is its ability to capture high 
kurtosis and skewness which is commonly observed in financial and economic 
time series data. 

The main objective of this paper is to explore if the use of Johnson SU distri-
bution (see Section 2) as a reference density (hereafter we call this test the JHSU 
test) could improve power. This is, perhaps, the first use of Johnson SU distribu-
tion in M-estimation literature. Using some results in Lucas [6], Xaio [10], and 
Thompson [11] [12], we obtain our test statistic and its asymptotic properties. 
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In our simulation studies, we generate data assuming various time series 
models such as AR (1), MA (1), etc. with error processes assumed as standard 
normal, 𝑡𝑡 and chi-square distributions. Please note that, in practice, the data 
generating process, and therefore, the error process will be unknown. We use the 
M-estimation method to estimate the parameters of a selected model from the 
data thus generated. In the M-estimation method, we need to assume a probabil-
ity density for the error process, unlike OLS estimation. This assumed density is 
called the “reference density”. We explore Johnson SU and Pearson Type IV as 
the reference densities. These choices are especially explored to investigate if 
there is any improvement in the local power. We compare our choices with two 
other well-known tests such as ADF, PADF and test with reference density as 𝑡𝑡 
distribution with 3 degrees of freedom. 

From the Monte Carlo simulations, we observe that the JHSU test, in finite 
samples, is as efficient as the augmented Dickey-Fuller (ADF) test for normal 
errors, and more powerful than many existing traditional tests for non-normal 
errors. The JHSU test is surprisingly easy to implement. 

In Section 2, we sketch a brief outline of the Johnson SU distribution. Section 
3 presents the time series model that we study in this paper and obtain the test 
statistic and its asymptotic distribution. The method of estimation of parame-
ters, and the calculation of the test statistic, and the critical value have been ex-
plained in Section 4. Section 5 presents Monte Carlo simulation results. Section 
6 describes the empirical studies, and we conclude in Section 7. 

2. Johnson SU Distribution 

Johnson [25] proposed three transformations, f, of the following form: 

,XZ f ξγ δ
λ
− = +  

   
where Z is a standard normal variable and X is a continuous random variable 
whose distribution is unknown with shape parameters γ  and δ , scale pa-
rameter λ  and location parameter ξ . 0λ >  and 0δ > . 

( )f y  may be chosen as ( )log y , ( )1sinh y−  or log
1

y
y

 
 − 

. 

For the Johnson SU distribution, f is chosen as 1sinh−  so that 

1sinh ,XZ Xξγ δ
λ

− − = + −∞ < < ∞ 
   

( )1 1 e e, where .
2

x xZX f f xγξ λ
δ

−
− −  − − = + =   
     

The parameters γ  and δ  control skewness and kurtosis. The distribution 
is positively (negatively) skewed if γ  is negative (positive). Increasing δ , 
holding γ  constant, reduces the kurtosis. Johnson SU distribution can capture 
a wide range of shapes depending on its parameter values. 

The probability density function of Johnson SU distribution is given by 
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( )
21exp ,

22
x xg x R V xδ ζ ζγ δ
λ λλ

 −  −     = − + −∞ < < ∞     π       
   (1) 

The mean ( )1 2 sinhµ ξ λθ= − Φ , where 
2

eδθ
−

=  and γ
δ

Φ = . When mean 

is zero ( )1 2 sinhξ λθ= Φ . 

3. The Model and Asymptotic Distribution of the Test Statistic 

We assume the following data generating process (DGP) for our analysis. 

0 1t ty a a t u= + + , 

( )1 1 ,t t t t t tu u u v F L vπ ε− −− = + =  

The errors tε  are independently and identically distributed with expectation 
zero and finite variance 2

εσ  with 0 0u = . 
The term ( )F L  is the lag polynomial 2

1 21 p
pF F L F L − − − −  . All the 

roots of ( ) 0F L =  lie outside the unit circle. First, we re-write this model in the 
augmented Dicky and Fuller format, which is defined below 

1 0 1 11 p
t t i t i tiy y t yβ µ µ µ ε− + −=

∆ = + + + ∆ +∑  

where 1   t t ty y y −∆ = − , ( )1Fβ π= . For the DGP, the null and alternative hy-
potheses are 

0 : 0H π =  (i.e., 0β = ) 1 : 0H π <  

Let β̂  be the M-estimator of β  using Johnson SU as a reference density. 
Then β̂  will minimize the following objective function 

( )1 0 1 12 1  p
t

N
t i t ii p ih y y t yβ µ µ µ− + −= + =

∆ − − − − ∆∑∑ , 

where ( )logh g= −  (g = Johnson SU density function). 
For Johnson SU density, ( )h x  is given below 

( ) ( )( ) ( ) ( )
2

1 1log log log constant
2 2

K x
h x G x γ δ δ

λ
     = + + − +     

       
   (2) 

where ( )K x  and ( )G x  are given by 

( ) ( ) ( )  K x H x G x = +                      (3) 

( ) ( )22G x xλ ξ= + −                       (4) 

and 

( ) ( )H x x ξ= −                         (5) 

Assumption 1. The function ( )h x  is continuously differentiable and its sec-
ond and higher order derivatives are bounded. 

We denote the first and the second derivatives of ( )h x  by ( )xψ  and ( )xϕ  
respectively. Further, we define the following 
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( ) ( )( ) ( )2, Corr , , Var andt t t tE ε
ψ

ψ

σ ω
ω ϕ ε ρ ε ψ ε σ ψ ε ϑ

σ
   = = = =     

Following Thompson (2004) an approximate estimate of β̂  is 

( )1

1 2
ˆ

ˆ

t

t

X P Y Z M

X PXψ

ψ
β

ωσ

 ∆ −
≈




 




                    (6) 

where ( )1 2 1, , ,
t

p p NX y y y+ + −= 
. 

1Z  is the matrix with row equal to ( )1 21, , , ,,t t t pt y y y− − −∆ ∆ ∆ .  
2, 3, ,t p p N= + +  . 

When time trend is not present (i.e., 1 0a = ) 1Z  is defined by  

( )1 21, ,,,t t t py y y− − −∆ ∆ ∆ . 

( )0 1 2 1, , , ,
t

pM µ µ µ µ +=    




 is a ( )2p +  dimensional parameter vector that 

minimizes the objective function ( )0 1 12 1 N p
it i t ii p h y t yµ µ µ + −== +

∆ − − − ∆∑ ∑ . ˆψσ  
is an estimate of ψσ . 

( )xψ  is ( )1N p− −  dimensional column vector with components ( )ixψ . 

For the case of Johnson SU distribution ( )ixψ  is defined in equation (2.3.15). 

P is the projection matrix defined by ( )( ) 1

111 1
t tI Z Z Z Z

− −  
 where I is the Iden-

tity matrix. For Johnson SU as a reference density ( )xψ  is defined below 

( ) ( )
( )

( )
( )

log
H x K x

x
G x G x

δψ γ δ
λ

     = + +         
            (7) 

( )K x , ( )G x  and ( )H x  are given in Equations (3)-(5), respectively. 
Following Thompson [26], we can remove ω  from the above Equation (6) 

since it does not affect the asymptotic power but, in small samples, can affect the 
size of the test because of poor estimation of ω . After removing ω  test statistic  

in the t-ratio format is 
( )1

1 2
ˆ

ˆ

t

t

X P Y Z M

X PXψ

ψ
β

σ

∆ −
=



 
 

 

. We reject null for small val-

ues of β̂ . Our next task is to find the asymptotic distribution of β̂ . 

In this paper, we restrict our alternative hypothesis to the AR coefficient π  
being very close to 1. We set C Nπ = , where C a constant, when making a 
limiting argument. N is the sample size. So, the parameter space is a shrinking 
neighbourhood of zero (see Chan and Wei [27] and Phillips [28]). In the pres-
ence of unit root, C is equal to zero, obviously. 

Assumption 2 ( ) 0tE ψ ε  =  . 

Asymptotic of the Test Statistic 

The asymptotic distribution function of the test statistic is represented in terms 
of the function of Brownian motion. Let 0W  be a standard Brownian motion 
defined on [ ]0,1  and ( ).CW  be a related diffusion process 

( ) ( )( ) ( )00
exp d

t
cW t c t s W s= −∫  
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that satisfies the stochastic differential equation 

( ) ( ) ( )0d dc cW t cW t W t= + . 

Let CD  be another process defined, for the intercept only model, by 

( ) ( ) ( )1

0
dC C cD r W r W s s= − ∫  

and for the model with time trend by 

( ) ( ) ( )( ) ( )1

0
2 2 3 3 6 dC C CD r W r s r s W s s= − − − −∫  

Thompson [12], under the assumptions (1) and (2), proved that the limiting 
distribution of β̂  converges weakly to the random variable CF , which is de-
fined below 

( ) ( )1
102

d
 1 ?

  
CC

C C
C C

D r W rT
C R

R R
ρ ρ ϑ

 
 ≡ + − +
 
 

∫F

 

From the above, it is clear that, while ρ  controls the null distribution (under 
null, 0C = ), the power is determined by both ρ  and ϑ , because power of the 
test is ( )Prob c tq ρ≤  F , ( )tq ρ  is obtained from ( )0Pr tq ρ α≤ =  F , and 
α  is the size of the test. Thompson [12] argues that ϑ  dominates the power 
function relative to ρ . 

As the value of ϑ  increases, the asymptotic distribution shifts to the left, be-
cause C is negative when the alternative hypothesis is true. Since the alternate 
hypothesis is one-sided (left), the rejection zone is on the left tail of the distribu-
tion of the test statistic. Therefore, a left shift of the asymptotic distribution gives 
the source of power improvement. 

Table 1 gives the lists of the functional form of ( )h x  and ( )xψ  for differ-
ent reference densities. 

4. Calculation of the Test Statistic and Critical Value 

To compute the test statistic, we adopt the following steps. 
1) Select lag length maick= , using MAIC criterion developed by Ng and Per-

ron [29] setting the maximum lag at 
1 4

12
100
N  

  
   

. 

 
Table 1. Expressions of ( )h x  and ( )xψ  for different reference density functions. 

Reference 
density 

( )h x  ( )xψ  

Student t3 ( )2log 1 3x+  ( ) ( )23 1 3x x+  

Pearson IV ( )( ){ } ( )2 1log 1 tanm x a x aλ λ− + − +  −     
2 2 2 2

 2
  

x avm
a x a x

λ−   +   + +     

Normal 2 2x  X 
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2) Run the following regression: 

maicdet 1 det det
1 1  k

t t t p tpy y yπ ε− −=
∆ = + ∆ +∑  

det
ty  is the de-trended series according to Elliot, Rothenberg and Stock [4]. 

3) Estimate parameters of Johnson SU density from the estimated residuals of 
the above regression equation by maximum likelihood method with the condi-
tion ( )

1
2 sinhξ λθ= Φ . (Since mean of the true error process is zero) where Φ  

and θ  are as in Section 2. 
4) Find M̂  by minimizing ( )1h Y Z M∆ −  and define ˆˆ Y ZMε = ∆ − , where 

ε̂  is a ( maic 1N k− − ) dimensional row vector, because the errors are estimated 
under the null hypothesis (see Hasan and Koenker [14]). 

5) The estimates of the nuisance parameters ρ  and ψσ  are calculated as: 

( ) ( ) ( )( ) ( )( )2 2
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ,

t t

N Nε ψ

ε ε ε ε ψ ε ψ ψ ε ψ
σ σ

− − − −
= = , 

( ) ( )( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ
t

N ε ψρ ε ε ψ ε ψ σ σ= − −  

where ε̂  and ψ  is the sample means of ε̂  and ( )ˆψ ε  respectively. 

6) Calculate test statistic 
( )

1
1

2

ˆ 
ˆ ˆ

t

t

X P Y ZM

X PX
ψ

ψ
β σ −

  

 
=



−



∆
. 

7) Compute approximate %α  critical value for model M by the polynomial 
in ( )1 ρ−  given below. 

( ) ( ) ( ) ( )2 3
, 0, , 1, , 2, , 3, ,1 1 1M M M M MQ A A A Aα α α α αρ ρ ρ ρ= + − + − + −  

The coefficients of the polynomial ( ),MQα ρ  are adapted from Thompson 
[12] (p. 368) and are reported in Table 2 for two different models, for ready ref-
erence. 

8) Reject null hypothesis 0 : 0H π =  for model M, if ( ),
ˆ ˆMQαβ ρ<  at %α  

level of significance. 

5. Monte Carlo Evidence 

In this section, using Monte Carlo Simulation, we evaluate the small sample per-
formance of the tests for sample size 100. For our simulations, we have considered  

 
Table 2. Estimated coefficients*. 

Model α 0,A α  1,A α  2,A α  3,A α  

Intercept only 5 −2.853 0.780 0.548 −0.118 

Time trend 5 −3.389 1.213 0.658 −0.126 

Intercept only 1 −3.418 0.556 0.636 −0.098 

Time trend 1 −3.934 0.998 0.656 −0.044 

*The suffix M is removed for notational simplicity. Source: Thompson [12] (p. 368). 
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two sets of values for ( )0 1,a a . For each such set, we have assumed three differ-
ent error processes for tv . Finally, we have assumed four different distributions 
for the errors t . Thus, a total of 24 different models have been used in the 
simulations. On all these 24 models, five different tests, based on different refer-
ence densities, have been investigated. All the calculations have been performed 
in R-studio. 

Data have been generated according to the model defined below. 

0 1 1 1,t t t t t ty a a t u u u u vπ− −= + + − = +  
Two sets of values considered for ( )0 1,a a  are ( )1,0  and ( )1,1 . Three se-

lected error processes for tv  are:  
1) IID t tv =   
2) AR (1): 10.5t t tv v ε−= + , and 
3) MA (1): 10.5t t tv ε ε −= + . 
We set the initial condition 1 0ε = . 
The error process tε  has been generated from the following four distributions. 
1) Standard normal distribution. 
2) Student t distribution with 3df = . 
3) Lognormal distribution with mean centred at zero. 
4) Chi-square distribution with 1df =  with mean centred at zero. 
Five tests, with the following notations, have been used for all the 24 models 

described above. 
1) ADF—Augmented Dicky-Fuller test. 
2) T3—Student t distribution with 3df =  as the reference density. 
3) PADF—Partially adaptive estimation method proposed by Lima and Xaio 

(2010). 
4) PIV—Pearson Type IV distribution as reference density. 
5) JHSU—Johnson SU distribution as reference density. 
We have used the package Urca and the function ur.df has been used to per-

form the test setting the lag length at maick . JHSU test has been performed ac-
cording to the steps from 1 - 4 described in Section 4. To estimate the parameters 
of the Johnson SU density by the maximum likelihood method, we use the con-
stroptim function. 

We have performed 1000 replications of each test for a sample size of 100. All 
the results have been reported at a 5% significance level. The numbers in the ta-
bles below represent the rejection ratios of the null hypothesis by different tests 
among 1000 replications. We have also investigated the ERS (Elliot et al. [4]) test 
and compared it with ours. We have found that the power of the JHSU test is 
better than that of the ERS test for the asymmetric error process. Hence, we have 
not reported the results of the ERS test. 

Tables 3-5 report the results for only intercept cases with error process tv  as 
IID, AR (1), and MA (1) respectively. Tables 6-8 report the results when the time 
trend is included in the model and the error process tv  as IID, AR (1), and MA 
(1) respectively. The first column in each table represents the assumed distribution 
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Table 3. Rejection ratios of the null hypothesis of different tests among 1000 replications 
with drift only model i.e. ( ) ( )0 1, 1,0a a =  taking i.i.d error process, 5% significance level. 

 C N ADF T3 PADF PIV JHSU 

Normal 

0 100 0.0490 0.0380 0.0390 0.0445 0.0445 

−1 100 0.0460 0.0630 0.0480 0.0510 0.0420 

−5 100 0.0790 0.0940 0.0650 0.0680 0.0920 

−10 100 0.2050 0.1830 0.1660 0.2145 0.2220 

t3 

0 100 0.0450 0.0540 0.0450 0.0510 0.0485 

−1 100 0.0380 0.0720 0.0720 0.0825 0.0685 

−5 100 0.0730 0.2670 0.2760 0.2915 0.2935 

−10 100 0.2150 0.6400 0.6280 0.6480 0.6105 

Log Normal 

0 100 0.0500 0.0590 0.0690 0.0680 0.0605 

−1 100 0.0440 0.1240 0.1120 0.3160 0.4200 

−5 100 0.0860 0.6670 0.6300 0.9805 0.9900 

−10 100 0.2370 0.9510 0.9250 1.0000 0.9965 

Chi-square 

0 100 0.0640 0.0630 0.0650 0.0580 0.0615 

−1 100 0.0460 0.0850 0.0800 0.3815 0.7545 

−5 100 0.0780 0.5010 0.4860 0.9945 0.9875 

−10 100 0.2340 0.8550 0.8650 0.9995 0.9975 
 

Table 4. Rejection ratios of the null hypothesis of different tests among 1000 replications with 
drift only model i.e. ( ) ( )0 1, 1,0a a =  taking AR (1) error process, 5% significance level. 

 
C N ADF T3 PADF PIV JHSU 

Normal 

0 100 0.0340 0.0370 0.0410 0.0400 0.0490 

−1 100 0.0380 0.0340 0.0270 0.0460 0.0520 

−5 100 0.0850 0.0810 0.0690 0.0930 0.0830 

−10 100 0.1950 0.1670 0.1610 0.2000 0.1920 

t3 

0 100 0.0480 0.0420 0.0380 0.0520 0.0410 

−1 100 0.0470 0.0760 0.0770 0.0780 0.0810 

−5 100 0.0590 0.2540 0.2770 0.2930 0.2710 

−10 100 0.1930 0.5740 0.5640 0.5840 0.6000 

Log Normal 

0 100 0.0540 0.0740 0.0560 0.0690 0.0530 

−1 100 0.0430 0.1310 0.1090 0.3110 0.4070 

−5 100 0.0710 0.6430 0.6030 0.9770 0.9750 

−10 100 0.2050 0.9200 0.9040 0.9990 0.9990 

Chi-square 

0 100 0.0440 0.0770 0.0680 0.0560 0.0580 

−1 100 0.0360 0.0880 0.0830 0.3800 0.6880 

−5 100 0.0580 0.4690 0.4520 0.9870 0.9980 

 −10 100 0.1830 0.8320 0.8190 0.9980 1.0000 
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Table 5. Rejection ratios of the null hypothesis of different tests among 1000 replications with 
drift only model i.e. ( ) ( )0 1, 1,0a a =  taking MA (1) error process, 5% significance level. 

 
C N ADF T3 PADF PIV JHSU 

Normal 

0 100 0.0430 0.0350 0.0570 0.0430 0.0590 

−1 100 0.0390 0.0430 0.0420 0.0370 0.0430 

−5 100 0.0560 0.0570 0.0680 0.0770 0.0870 

−10 100 0.1380 0.1350 0.1320 0.1650 0.1700 

t3 

0 100 0.0470 0.0480 0.0410 0.0430 0.0610 

−1 100 0.0470 0.0610 0.0680 0.0840 0.0660 

−5 100 0.0530 0.2420 0.2650 0.2590 0.2590 

−10 100 0.1380 0.5500 0.5250 0.5270 0.5290 

Log Normal 

0 100 0.0370 0.0480 0.0520 0.0560 0.0470 

−1 100 0.0360 0.0980 0.0970 0.2500 0.3020 

−5 100 0.0500 0.5500 0.5250 0.9550 0.9660 

−10 100 0.1570 0.5200 0.5250 0.9970 0.9990 

Chi-square 

0 100 0.0520 0.0560 0.0520 0.0570 0.0570 

−1 100 0.0320 0.0610 0.0630 0.2660 0.4220 

−5 100 0.0500 0.4080 0.3620 0.9740 0.9860 

−10 100 0.1390 0.7530 0.7520 0.9980 1.0000 
 

Table 6. Rejection ratios of the null hypothesis of different tests among 1000 replications 
with time trend model i.e. ( ) ( )0 1, 1,1a a =  taking i.i.d error process significance level at 5%. 

 
C N ADF T3 PADF PIV JHSU 

Normal 

0 100 0.032 0.038 0.025 0.031 0.0395 

−1 100 0.036 0.04 0.03 0.05 0.035 

−5 100 0.055 0.046 0.055 0.079 0.064 

−10 100 0.103 0.091 0.08 0.136 0.1105 

t3 

0 100 0.045 0.039 0.047 0.056 0.042 

−1 100 0.045 0.046 0.058 0.06 0.059 

−5 100 0.061 0.205 0.186 0.221 0.218 

−10 100 0.098 0.468 0.449 0.495 0.483 

Log Normal 

0 100 0.046 0.054 0.026 0.048 0.045 

−1 100 0.045 0.106 0.107 0.226 0.3235 

−5 100 0.063 0.556 0.512 0.894 0.9475 

−10 100 0.108 0.882 0.877 0.921 0.973 

Chi-square 

0 100 0.043 0.039 0.043 0.057 0.0555 

−1 100 0.05 0.07 0.071 0.243 0.7295 

−5 100 0.063 0.349 0.35 0.865 0.9185 

−10 100 0.114 0.767 0.738 0.852 0.9265 
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Table 7. Rejection ratios of the null hypothesis of different tests among 1000 replications with 
time trend model i.e. ( ) ( )0 1, 1,1a a =  taking AR (1) error process significance level at 5%. 

 
C N ADF T3 PADF PIV JHSU 

Normal 

0 100 0.0370 0.0320 0.0210 0.0390 0.0370 

−1 100 0.0370 0.0360 0.0330 0.0440 0.0420 

−5 100 0.0570 0.0510 0.0440 0.0550 0.0440 

−10 100 0.0880 0.1010 0.0600 0.1340 0.0990 

t3 

0 100 0.0230 0.0450 0.0450 0.0470 0.0460 

−1 100 0.0400 0.0520 0.0500 0.0640 0.0560 

−5 100 0.0540 0.1990 0.1930 0.1960 0.1980 

−10 100 0.1030 0.4480 0.4280 0.4200 0.4170 

Log Normal 

0 100 0.0450 0.0390 0.0460 0.0950 0.0530 

−1 100 0.0410 0.1010 0.0960 0.1610 0.2500 

−5 100 0.0540 0.5320 0.4690 0.6300 0.8480 

−10 100 0.1110 0.8500 0.8220 0.6770 0.8790 

Chi-square 

0 100 0.0400 0.0500 0.0400 0.1050 0.0510 

−1 100 0.0270 0.0680 0.0640 0.1980 0.2220 

−5 100 0.0490 0.3350 0.3380 0.5470 0.7940 

−10 100 0.1200 0.7040 0.6860 0.5600 0.8580 
 

Table 8. Rejection ratios of the null hypothesis of different tests among 1000 replications with 
time trend model i.e. ( ) ( )0 1, 1,1a a =  taking MA (1) error process significance level at 5%. 

 
C N ADF T3 PADF PIV JHSU 

Normal 

0 100 0.0320 0.0410 0.0210 0.0300 0.0370 

−1 100 0.0250 0.0410 0.0330 0.0360 0.0420 

−5 100 0.0350 0.0470 0.0440 0.0470 0.0630 

−10 100 0.0680 0.0860 0.0600 0.0890 0.0940 

t3 

0 100 0.0310 0.0370 0.0330 0.0310 0.0470 

−1 100 0.0330 0.0560 0.0480 0.0600 0.0420 

−5 100 0.0510 0.1870 0.1630 0.1560 0.1620 

−10 100 0.0760 0.3860 0.3670 0.3340 0.3590 

Log Normal 

0 100 0.0380 0.0440 0.0210 0.0870 0.0430 

−1 100 0.0410 0.0780 0.0620 0.1610 0.1890 

−5 100 0.0540 0.3860 0.4090 0.6030 0.8190 

−10 100 0.1110 0.7760 0.7500 0.6740 0.9190 

Chi-square 

0 100 0.0290 0.0260 0.0350 0.0880 0.0510 

−1 100 0.0350 0.0510 0.0520 0.1590 0.2220 

−5 100 0.0360 0.2740 0.2390 0.4900 0.7940 

−10 100 0.0750 0.6010 0.5920 0.5630 0.8580 
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of tε , the second gives the values of C, the third column shows the sample size, 
and the fourth to eighth columns report the rejection ratios when the tests 1 - 5 
(described above) respectively applied to the DGP. The boldface numbers in the 
table indicate the highest rejection ratios. The R-code of the simulation studies 
can be available upon request. 

The above results clearly suggest that the JHSU test, in respect of power, has a 
very good small sample performance. JHSU test is as powerful as the ADF test 
when the innovation process is Gaussian and has substantial gain in power when 
the errors are non-Gaussian. In terms of power JHSU test also has higher power 
than that of PIV, T3, and PADF tests for Lognormal and chi-square error dis-
tribution processes. 

6. Empirical Evidence 

We have considered two data sets for application. The first is the extended Nel-
son and Plosser (1982) data set and the second is the nominal monthly interest 
rate of India from January 2005 to March 2017. Nelson and Plosser extended 
data set are openly available at NPEXT: Nelson and Plosser extended data in 
urca: Unit Root and Cointegration Tests for Time Series Data (rdrr.io). The 
second data are collected from International Monetary Fund International Fi-
nancial Statistics (IMF-IFS) database  
(https://data.imf.org/?sk=4c514d48-b6ba-49ed-8ab9-52b0c1a0179b&sId=140915
1240976). 

First, we consider the case of the Nelson and Plosser data set. Many research-
ers have used the data of Nelson and Plosser [30] to investigate whether macro-
economic time series are random walks or stationary processes around a level or 
a trend. As their data set is considered a testing ground for new procedures, we 
also implement our proposed method on Nelson and Plosser data. Lag length is  

obtained by MAIC criterion setting maximum lag at 
1 4

12
100
N  

  
   

, where N is 

the sample size. 
Table 9 reports the Jarque-Bera test statistic for all the series of Nelson and 

Plosser data sets. Table 10 contains the unit root analysis. We considered three tests, 
viz., ADF, ERS, and JHSU. We have taken the time trend model for our analysis. 

We observe from Table 10, that the JHSU test rejects the hypothesis of unit 
root for “GNP per Capita” at 1% and for “Unemployment” at 5% level. For “Real 
GNP and “Unemployment”, ERS test rejects only at 5% level but for no series at 
1% level. For “GNP per Capita” ADF test rejects at 5% level. 

Normality assumption is rejected at 5% significance level for the “GNP per 
capita series”. JHSU test rejects the unit root hypothesis at 1% level and ADF test 
rejects it at 5% significance level. ERS test is not able to reject the null hypothe-
sis. This clearly shows the power improvement in the power of the JHSU test. 

From Table 10, we note that for the “Real GNP” series, ERS rejects the null 
but ADF cannot reject the null at 5% significance level. Also, for the “Real GNP” 
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series, the Normality assumption is rejected (See Table 9) at 5% significance level. 
JHSU test cannot reject the null for the “Real GNP” series. This supports the 
finding of the JHSU test for the Real GNP series. 

 
Table 9. Jarque-Bera statistic of Nelson Plosser data set. 

Macroeconomic Variables Jarque-Bera Statistic p-value 

Real GNP 6.6436 0.0360 

Nominal GNP 5.4668 0.0650 

GNP deflator 7.3095 0.0258 

GNP per capita 6.5721 0.0374 

Unemployment Rate 0.3426 0.8426 

CPI 24.9690 0.0000 

Nominal interest rate 60.5820 0.0000 

Velocity 19.4730 0.0000 

Employment 3.4307 0.1799 

Industrial Production 6.7842 0.0336 

Real Wages 9.0637 0.0107 

Nominal Wages 5.5135 0.0635 

Money Stock 4.2857 0.1173 

Stock Prices 13.1330 0.0014 

 
Table 10. Unit root analysis of Nelson Plosser data set. 

 N Lags JHSU ADF ERS 

Real GNP 80 1 0.2099 −3.4545 −3.0400* 

Nominal GNP 80 1 −2.0597 −2.0204 −1.9205 

GNP deflator 100 1 −0.4035 −1.5902 −1.1553 

GNP per capita 80 1 −3.969** −3.5225* −3.0149 

Unemployment Rate 99 2 −3.2545* −3.4031 −3.2594* 

CPI 129 3 3.6686 −1.1985 −1.1247 

Nominal interest rate 89 5 −0.7742 −1.1068 −1.2283 

Velocity 120 1 7.0521 −1.5944 −0.9363 

Employment 99 2 0.5982 −2.8744 −2.7711 

Industrial Production 129 9 −2.6359 −2.3291 −1.7402 

Real Wages 89 1 −1.69 −1.6841 −1.8075 

Nominal Wages 89 2 −2.5657 0.5716 −1.8808 

Money Stock 100 2 −0.6342 −2.507 −2.5815 

Stock Prices 118 5 −1.5731 −1.1877 −0.8581 

Note: * 5%; ** 1%. 

https://doi.org/10.4236/jmf.2022.122019


T. Kar, M. Bhattacharyya 
 

 

DOI: 10.4236/jmf.2022.122019 353 Journal of Mathematical Finance 
 

Table 11. Descriptive statistics of interest rate of India. 

Series N Kurtosis Jarque-Bera statistic 

Nominal interest rate 147 4.3642 0.0000 

 
Table 12. Unit root analysis of interest rate of India. 

Series Lags Deterministic component ADF ERS JHSU 

Nominal interest rate 6 Drift −2.4249 −1.1526 −2.97686* 

 
JHSU and ERS tests give the same result (reject the null at 5% significance 

level) when the normality assumption has not been rejected, e.g., for the “Un-
employment” series. 

In our second study, we consider the case of the nominal monthly interest rate 
of India from January 2005 to March 2017. Table 11 gives the descriptive statis-
tics and Table 12 reports the unit root analysis. 

Here, we use the drift-only model. In this study, the series has excess kurtosis 
(Table 11) and also rejects the normality assumption. JHSU test rejects the unit 
root hypothesis at 5% significance level (Table 12) but other tests do not. Again, 
this shows that the JHSU test has higher power than that of others. 

7. Conclusions 

In this paper, we have explored the unit root test based on Johnson SU distribu-
tion as a reference density. A step-by-step method for computing the test statis-
tic is detailed. Monte Carlo evidence shows a significant power improvement 
over the ADF test when the innovations are non-Gaussian. The choice of JHSU 
is much better than other reference densities that are used in literature. JHSU 
test is very powerful for asymmetric error processes. JHSU test dominates the 
partially adaptive estimation method proposed by Lima and Xiao (2010). It also 
dominates Pearson Type IV and student t3 density-based tests when the error 
follows asymmetric distributions. For symmetric errors, the JHSU test performs 
89as well as most other traditional procedures. 

We have also obtained very satisfactory results when the proposed test proce-
dure has been applied to real data sets. Therefore, the JHSU test can be a viable 
and much better option for the practitioners and researchers. 

Apart from the application of this test procedure, future studies can be carried 
out on whether one should use a deterministic time trend model or drift while 
testing stationarity using the JHSU test. 
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