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Abstract 
This study examined the endogenous nature of negative bubbles forming in 
meme stocks with the Log-Periodic Power Law (LPPL) Confidence Indicator 
(CI). A meme stock is a stock that has gained a significant amount of at-
tention on a large social media platform such as Yahoo! or Reddit. This study 
examined four meme stocks including Tesla, Inc. (TSLA), GameStop Corp. 
(GME), Koss Corporation (KOSS), and AMC Entertainment Holdings Inc 
(AMC). The CI was able to detect numerous bubbles forming in meme 
stocks, but had difficulty in significantly predicting social media-induced ex-
ogenous rallies. This may have been due to price movements affected by ex-
ternal causes such as short squeezes. However, the model did provide proof 
for the formation of previous bubbles that could have been a catalyst for the 
meme stocks rallies. This study outlines the real unpredictability of many 
black-swan events, and further studies could be done examining exogenous 
bubbles. 
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1. Introduction 

Recently, there has been a rise in commission-free stockbrokers and an increase 
in retail investors easily purchasing securities [1]. With the combination of ac-
cessible social media platforms, such as Reddit, Twitter and Discord, pockets of 
interest groups have begun to impact many investors and the stock market as a 
result. For example, members of the Reddit group r/WallStreetBets have engaged 
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in financial discussions in which they have sometimes created entire movements 
around single stocks, often with speculative reasons for doing so [2]. Conse-
quently, the GameStop Corporation observed a massive short squeeze triggered 
by such a movement in January 2021; the price of its stock was pushed to a stag-
gering USD347.00 per share from around USD5.00 per share just a year before 
[3]. Many such stocks are labeled meme stocks; they are characterized by a belief 
in the potential of the company among those on social media platforms [3]. 
What makes these stocks special is that, unlike the tulip mania and dot-com 
bubbles, many of the speculative gains in meme stocks are non-traditional [2]. 
The phenomenon was began by a group of retail investors who openly coordi-
nated stock decisions, and often, such group decisions were fundamentally dif-
ferent from decisions by institutional investors, such as hedge funds and mutual 
fund investors [2]. 

This study analyzed the endogenous nature of a speculative bubble that many 
of these meme stocks experience by using the log-periodic power law (LPPL) 
model devised by Sornette et al. [4]. The model was initially created to detect 
positive bubbles or a “big crash” that plagues markets on occasion [4]. Born 
from the phase transition idea in statistical physics, the model assumes that such 
crashes result from the collective behavior of “noise” traders imitating each oth-
er against “rational” traders. The noise traders being the ones that act with deci-
sions that they believe is helpful without any proper information [5]. The LPPL 
model formulates the potential for a crash by observing faster than exponential 
growth in an asset’s price and by observing accelerating log-periodic volatility 
fluctuations due to a “battle” between buyers and sellers. It has sufficiently cap-
tured many bubbles, such as the crash of the U.S. Stock Market in 2020 [6], Bit-
coin crashes [7], and Shanghai Stock Exchange crashes [8]. 

The LPPL model has been extensively used to study different types of bubbles. 
Sornette et al. [4] first proposed then illustrated how the model could be fitted 
onto the S&P 500 and Dow Jones historical data. Filimonov and Sornette altered 
the LPPL model by reducing the non-linear parameters to make calibration eas-
ier [9]. Sornette et al. [10] proposed the LPPLS Confidence Indicator (CI) to 
analyze the real-life bubble crash of the 2015 Shanghai Stock Market. Wheatley 
et al. [7] used the LPPLS model to analyze bitcoin bubbles. Shu et al. [6] utilized 
the CI to examine the 2020 Covid crash of the US market as well as the detection 
of Chinese stock market bubbles [8]. This paper adds to the study of rebound 
bubbles by looking at the opposite of crashes-negative bubbles. 

A negative bubble is the opposite of a positive bubble; it often shows critical 
points as lows, and “bursts” of the bubble as rallies or sideways movements [11]. 
This study examined the significantly high sell positions that formulate negative 
bubbles and the nature of meme stocks as “bursts” of related rallies initiated by 
speculating retail investors. This research addressed the recent phenomenon of 
these black-swan rallies and their characteristics. This was done by employing 
the LPPL model using a confidence indicator (CI), which is discussed in the 
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methodology section. To this end, four of the most social media mentioned [12] 
thus influential meme stocks were examined: TSLA, GME, KOSS and AMC. 
They were taken from memestocks.org, a website that displays meme stocks 
mentioned the most in the r/WallStreetBets subreddit [13]. Daily data was col-
lected through Yahoo! Finance [14]. 

The LPPL model detects endogenously created or internally-causing bubbles 
rather than exogenous ones. The abnormal bubble created by the meme stock 
phenomenon appeared to be exogenous. However, this study utilized the model 
to examine the log-periodic nature of prices to determine if the rally truly was 
exogenous [10], as it was possible that the uncommon price movements were 
formulated by an existing endogenous negative bubble movement. With uncer-
tainty plaguing the markets, this paper shows how prices can occasionally be 
driven by completely arbitrary factors that are out of sight. Section 3 presents the 
methodology that was utilized for this research, including the LPPL model, its 
calibration and the CI. Section 4 discusses the results, and Section 5 presents this 
study’s conclusions. 

2. Methods 
2.1. The Log-Periodic Power Law Model (LPPL) 

The Log-Periodic Power Law Model (LPPL) was first devised by Sornette et al. 
[4]. The model incorporates assumptions of the rational expectation of traders, 
the herding and imitation of traders, and the use of the diffusion model concept 
in statistical physics and mathematics [15]. This fusion of concepts characterizes 
the bubble by a faster-than-exponential growth of price deviating from its fun-
damental value as well as accelerating log-periodic fluctuations near the crash 
point [4]. The dynamics of the price in the LPPL model follows as: 

( ) ( ) ( ) ( ) ( )dp t p t dt t p t dW kp t djµ σ= + −              (1) 

where ( )tµ  is the expected return, ( )tσ  is the volatility, dW  is the incre-
ment of a Wiener process [15], dj  defining a jump process with value 0 before 
and 1 after the crash, and k being the amplitude of a potential crash. The concept 
of the crash hazard rate ( )h t , is defined as the dynamics of the jump process 
and is calculated as [ ] ( )E dj h t dt= . The term also determines the growth of the 
price as agents imitate each other [4]. Thus, determining the hazard rate is cru-
cial in finding the critical time.  

With rational expectation conditions, the unconditional expectation of the 
price should follow as [ ] 0E dp = . Thus, 

[ ] ( ) ( )E dp kh t p t dt=                       (2) 

The LPPL model assumes that there are rational traders as well as irrational 
noise traders. The latter is characterized by its collective herding behavior as 
traders imitate each other. The crash occurs when enough traders imitate and 
thus cause a massive sell-off. Borrowing the concept of stochastic dynamical 
model of interacting particles [16], Sornette et al. [4] describes the effect of the 
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noise traders during a bubble with the hazard rate of crash as: 

( ) ( ) ( ) ( )0 1 cos lnc c ch t B t t B t t t tα α ω ψ− − ′ ≈ − + − − +            (3) 

One important characteristic of this model is the increase in accelerating os-

cillation as it reaches a critical time following the log-periodic frequency of 
2
ω
π

 

[17] [18]. Solving Equation (2) with Equation (3), Sorenette et al. [4] shows the 
LPPL model as: 

( ) ( ) ( )( )ln 1 cos lnc cp t A B t t C t tβ ω φ ≈ + − + − +               (4) 

where 0A >  is ( )lnE p t      at the critical time, 
2 2

k

m

αβ

ω
−

+
 is the magni-

tude of oscillations around the critical time and B is the decrease in ( )ln p t     

over the time unit if C is close to zero. 0 1β< <  is the exponent of the PL 
growth, ω  is the log-frequency of the oscillations in the bubble and  
0 2φ< < π  is a phase transition parameter [17]. Equation (4) is therefore the 
LPPL model devised by Sornette et al. [4], and describes the price before a po-
tential crash. There are two main features of the model: a faster than exponential 
growth in the price of the asset before a crash and an increasing number of os-
cillations as the price approaches the critical time [19]. 

2.2. Positive and Negative Bubbles 

In the context of the LPPL model, there are two main types of bubbles: positive 
and negative. The former is a traditional bubble characterized by an increasing 
price with a dramatic fall once a critical time is reached. The latter is a mirror 
image of a positive bubble characterized by a downward accelerating price with a 
rebound or bull run of the price once a critical time is reached [20]. An example 
of a positive bubble can be seen in Figure 1(a), and an example of a negative 
bubble can be seen in Figure 1(b) [21]. In the LPPL model, the difference be-
tween positive and negative bubbles is the B coefficient. B is less than zero for a 
positive bubble, while B is greater than zero for a negative bubble [4]. 

2.3. Calibration 

The LPPL model has seven different parameters, so optimizing the model for a 
specific dataset is an arduous task [9]. Many calibration techniques rely on slav-
ing three linear parameters to four non-linear parameters, making a very com-
plex quasi-periodic structure with multiple minima [9]. This study utilized a ca-
libration method suggested by Filiminov and Sornette; it represents the LPPL 
model with four linear and three non-linear parameters, and this significantly 
reduces the complexity [9]. This is first done by rewriting the LPPL model by 
expanding the cosine term and introducing two new parameters: 1 cosC C φ=  
and 2 sinC C φ=  [8] [9]. This makes the new LPPL representation: 

( ) ( ) ( ) ( )( )
( ) ( )( )

1

2

ln cos ln

sin ln

c c c

c c

Ep t A B t t C t t t t

C t t t t

β β

β

ω

ω

≈ + − + − −  

+ − −
       (5) 
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(a) 

 
(a) 

Figure 1. Positive and Negative Bubbles from the Financial Crash Observatory (FCO) 
presentation. (a) A negative bubble from the FCO presentation [21] (b) A positive 
bubble from the FCO presentation [21].  

 
The function has three non-linear ( ), ,ct ω β  and four linear ( )1 2, , ,A B C C  

parameters. Using the least-squares method, 

( )

( ) ( )

( ) ( )( ) ( )( )

1 2

1
2

1

, , , , , ,

ln

cos ln sin ln

c

N

i c i
i

c i c i c i

F t A B C C

p A B t

C t t t

β

ββ

β ω

τ τ

τ ω τ ω τ

=

= − − −

− − − − 

∑          (6) 

Slaving the four linear parameters to the three non-linear ones, one gets the 
non-linear optimization problem: 
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( ) ( )
( )1, ,

ˆ ˆˆ , , arg min , ,
c

c ct
F t

β ω
τ β ω β ω=                   (7) 

with the cost function ( )F x  given using: 

( )
( )

( )
1 2

1 1 2, , ,
, , min , , , , , ,c cA B C C

F t F t A B C Cβ ω β ω=              (8) 

The linear parameters have the following solution in the form of a matrix eq-
uation [9]. 

2

2
1

2

2

ˆ ln
ˆ ln
ˆ ln

lnˆ

i i i i

i i i i i i i i

i i i i i i i i

i i i i i i i i

AN f g h p
Bf f f g f h f p

g f g g h g g pC
h f h g h h h pC

            =                

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑

 

The change in the LPPL model means that the complexity is significantly re-
duced, and the reduction of minima translates to the possible use of rigorous 
search methods. This study utilized the Nelder-Mead simplex method to search 
for the minima, as suggested by Filiminov and Sornette [9]. To this end, an algo-
rithmic code devised by Joshua Nielsen [22] and based on the method expressed 
by Filiminov and Sornette [9] was used that can be accessed in the references 
section below. 

2.4. The LPPL CI 

The LPPL CI, first introduced by Sornette et al. [11], is defined as “the fraction 
of fitting window in which LPPL calibrations satisfy specified filter conditions” 
[8]. A spike in the indicator’s value suggests the possibility of a bubble as it sug-
gests that the LPPL pattern can be seen in multiple time scales [10]. Small values 
for the indicator signal fragility as they mean the indicator may not capture the 
LPPL model in sufficient time windows [10]. 

The CI is calculated by fitting specified time window dt  from the beginning 
of dataset 1t  until the end of the dataset 2t  [10]. Then the model is gauged 
and the number of specified frames that the dataset fits with respect to filter 
constraints is counted. The number is divided by the total number of fitting 
windows, dt . Nielsen’s code included in the indicator for both positive and 
negative bubbles [22]. The calibration conditions follow Sornette et al.’s recom-
mendation to prevent data overfitting by altering conditions [2]. The algorithms 
and conditions were standardized for all the datasets used in this study. 

3. Results and Discussion 

Numerous studies that have used the LPPL model have examined positive “tra-
ditional” crashes (e.g., a study by Brée and Joseph [23]), but this study re-
searched negative, non-traditional crashes by examining TSLA, GME, KOSS and 
AMC datasets exported from Yahoo! Finance [14] using the code made by Niel-
sen [22]. Yahoo’s data is compiled directly from exchanges thus reliable [24]. 
Most of the stocks experienced enormous gains in price that followed oscillating 
downward prices. CIs indicated local minima for the stocks’ prices in many cases. 
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Rallies were then forecasted using a negative bubble indicator. Though the study 
focused on bull runs, positive bubbles were also shown in the results as Nielsen’s 
code also calculated them. 

In Figures 2-5, as aforementioned, red denotes positive bubble indicators and 
green denotes negative bubble indicators. All the datasets have more than 900 
data points; Demirer et al. has noted that long-term bubble indicators should 
have more than 500 data points to ensure a study’s efficacy [11]. A summary of 
the rally statistics and related information is in Table 1. 

It should be noted that the indicators showed the formation of potential bub-
bles spikes more often than they showed actual bubbles. Thus, they were not ac-
curate in that they showed only when bubbles formed, but they were accurate in 
that they showed potential bubbles [17]. This study therefore focused on the in-
dicator values that accurately predicted bubbles. This paper’s interpretation of 
the data can be seen, for example, in Figure 5. The figure shows multiple signals 
for negative bubbles; the relevant signals are indicator values greater than or 
equal to 0.3. 

 
Table 1. Negative bubble statistics for the meme stocks, detected using the LPPL CI and based on daily data. 

Stock Bottom Day Bottom Price Rally Date Rally Price Rally Size CI Value 

TSLA June 3rd, 2019 35.7 February 20th, 2020 180 404% ~0.58 

GME August 15th, 2019 3.21 December 6th, 2019 6.68 108% ~0.8 

KOSS April 3rd, 2020 0.82 January 29th, 2021 64 7705% ~0.15 

AMC April 13th, 2020 2.08 June 8th, 2020 6.45 210% ~0.27 

 

 
Figure 2. The TSLA stock price from July 11th, 2017 to February 9th, 2021. The negative LPPL CI is shown in green, while the 
positive LPPL CI is shown in red. 
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Figure 3. The GME stock price from September 1st, 2016 to August 31st, 2021. The negative LPPL CI is shown in green, while the 
positive LPPL CI is shown in red. 
 

 
Figure 4. The KOSS stock price from September 6th, 2016 to September 3rd, 2021. The negative LPPL CI is shown in green, while 
the positive LPPL CI is shown in red. 
 

This study found a spike in the TSLA stock price right after a negative bub-
ble indicator showed an uptick of about 0.58 with a bull run from June 2019 to 
a pullback in March 2020. The indicator failed to capture a rally that began af-
ter March 2020. However, entering into trades right after the negative bubble  
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Figure 5. The AMC stock price from September 1st, 2016 to August 31st, 2021. The negative LPPL CI is shown in green, while the 
positive LPPL CI is shown in red. 
 

indicator was a sign that would have generated enormous profit of 404% for in-
vestors (Table 1). 

For the stock GME, the highest negative bubble indicator peak showed a value 
of about 0.8 in August 2019, which was a strong signal that a bounce-back in 
price was about to occur. However, the LPPL indicator failed to capture an 
enormous rally that began in the second half of 2020. The rally was potentially 
fueled by an influx of retail investors in meme stocks, as suggested by Costola et 
al. [2]. Thus, it was exogenous in nature, which the LPPL indicator could not 
capture. One could argue that an indicator value of about 0.25 in March 2020 
implied a negative bubble, but it may have been only a fragility that resulted 
from the model as mentioned by Sornette et al. [10]. 

The negative bubble indicator did capture a KOSS rally that started at the 
bottom in April 2020. A cluster of indicator values formed around that time, 
wherein local minima formed and the highest indicator value was about 0.15. 
However, the study also found two other indicator clusters that formed around 
August 2019 and December 2019, respectively, but no signs of actual negative 
bubbles forming. In addition, a positive bubble indicator that spiked in January 
2021 suggested a crash but was instead met with a significant increase in price 
over a short period of time. This could have been due to the fact that the LPPL 
model captures endogenous bubbles and the spike in January 2021 had an ex-
ogenous origin [25] due to a short squeeze catalyzed by an increase in social me-
dia herding [2]. 

Figure 5 shows negative bubble indicator spikes in August 2017, July 2019, 
April 2020 and October 2020, with values of about 0.5, 0.27, 0.27 and 0.2, respec-
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tively. The highest indicator value was about 0.5 in August 2017, but the price 
did not follow a rally. Moreover, a significant spike that followed in January 2021 
was not captured by the LPPL model. Again, this may have been due to an ex-
ogenous influence on the AMC stock price as a result of the emergence of the 
meme stock phenomenon. An indicator of about 0.05 right before the spike may 
have been only the fragility of the signal [10]. 

As aforementioned, Table 1 shows the statistics for the negative meme stock 
bubbles detected using the CI. The rallies shown in the table are not necessarily 
the largest, nor did they precede high CI values. Thus, this study examined ral-
lies that were sufficiently indicated by a CI beforehand. For example, the stock 
AMC showed a large spike in its CI value around August 2017 but did not indi-
cate a large bubble that formed in January 2021 due to a low CI value. The table 
shows a rally that followed in April 2020; it is indicated by a CI value of about 
0.27. The rally price was the highest price that was achieved in that specific local 
rally. This study therefore concluded a rally by affirming a pullback in price after 
the rally’s price. Hence, the GME rally, for example, was concluded in December 
2019. 

Group agreements among traders in social media organizations may have re-
sembled agents imitating each other through a network, causing massive upticks 
in price (i.e., negative bubbles). Those using social media platforms may have 
increased the susceptibility of agents by creating a “fear of missing out” context, 
creating demand for specific stocks and pushing prices upwards. Meanwhile, 
hedge fund and other institutional investors may have seen these meme stocks as 
losses and fought to keep prices down by short-selling the stocks, thereby caus-
ing oscillations in price. The CIs may have not shown this clearly as the rallies 
may have been caused by short squeezes, which were triggered when retail trad-
ers engaged in simultaneous buying [12]. 

4. Conclusions 

This study examined sudden rallies experienced by many meme stocks; this was 
done by employing the LPPL model and its indicators. The model was run using 
several different daily datasets for four different stocks, namely TSLA, GME, 
KOSS and AMC. Many of the meme stocks observed weekly gains of more than 
50%, as shown in Table 1. The purpose of examining the stocks was to consider 
the endogenous natures of such gains, which could be predicted using the LPPL 
bubble model. The results indicated that there were some endogenous signals 
several months before the actual rallies the stocks experienced. For example, by 
running the LPPL Confidence Indicator with the daily adjusted returns of the 
stock GME, a spike at around August 2019 with a CI value of about 0.8 was 
found. This indicated a clear negative LPPL bubble pattern that formed as a re-
sult of a higher than exponential decline in the stock’s price. However, an actual 
“big rally” was barely captured. This may have been due to the fact that the un-
natural increase in prices stemmed from exogenous factors. 
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Indeed, the LPPL model sufficiently predicted when bubbles formed months 
in advance and thereby signaled rallies, but market instability showed that such 
rallies may have had a completely different cause: short squeezes. The prediction 
of meme stock bubbles is a difficult task given exogenous factors, even if initial 
“causes” of bubbles are endogenous. This uncertainty outlines variability of the 
market as prices are occasionally driven by completely arbitrary factors. It must 
be stated that, a bubble or rally must be endogenous for the fluctuations of price 
to be captured by the LPPL model. This is a limiting factor when many of the 
meme stocks have completely exogenous natures. Further studies could be con-
ducted to examine the exogenous and endogenous natures of bubbles in detail 
using the LPPL model or otherwise. 
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