
Journal of Mathematical Finance, 2022, 12, 138-149 
https://www.scirp.org/journal/jmf 

ISSN Online: 2162-2442 
ISSN Print: 2162-2434 

 

DOI: 10.4236/jmf.2022.121009  Feb. 15, 2022 138 Journal of Mathematical Finance 
 

 
 
 

Brownian Motion &  
the Stochastic Behavior  
of Stocks 

Pantelis Tassopoulos1, Yorgos Protonotarios2 

1Department of Mathematics, Imperial College London, London, UK 
2Department of Mathematics, University College London, London, UK 

 
 
 

Abstract 
In this paper, we test the effectiveness of predicting the behavior of stocks uti-
lizing stochastic calculus. We begin by exploring the intuition of Brownian 
motion by explaining its birth through the observations of Robert Brown and 
later through Bachelier’s work on its applications to the financial market and 
finally its rigorous and concretized form proposed by Norbert Wiener. The 
aforementioned motivates a stochastic differential equation to model the fu-
ture price fluctuations of a stock wherein Itô integration is prominent and 
consequently expanded upon. The final part of this paper focuses on the ac-
curacy of the model by back testing it with Apple stock and deriving a corre-
lation coefficient. 
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1. Introduction 

This paper begins with the contribution of the works of Robert Brown, Louis 
Bachelier and Norbert Wiener which is then followed by the mathematical defi-
nition of Brownian Motion and accompanied with the discretized form of a sto-
chastic differential equation. Furthermore, Chapter 5 focuses on the introduc-
tion to certain preliminary concepts such as sigma algebras, filtrations and pL  
spaces. Finally, we construct the Itô integral and consequently apply it to the li-
miting form of the stochastic differential equation. Finally, Chapter 7 tests the 
equation against Apple Stock. 
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2. Literature Review 
2.1. Robert Brown 

In 1827, a botanist by the name of Robert Brown was examining the motion of 
grains of pollen suspended under water from a species of plants. Curiously, 
Brown observed that the motion of particles ejected from these pollen grains was 
“jittery”; this was the first ever recorded case of such motion and was thus sub-
sequently named “Brownian”. The idea behind this type of motion being that the 
trajectory follows a completely random and “unpredictable” path. Ever since, the 
concept of an unpredictable and random trajectory has been utilized in numer-
ous fields including financial mathematics in the modeling of stock behavior [1]. 

2.2. Louis Bachelier 

Several decades later, in 1900, Louis Bachelier built the foundation of mathemat-
ical finance by integrating Brownian motion with the fluctuation in the price of a 
stock. He postulated that two ideas should be considered when exploring the fu-
ture value of an asset. First, how a collection of anterior (past) events influences 
the asset and second, how the probability of unknown future events could affect it 
[2]. For example, the C.E.O of Apple just got replaced yesterday; that is an ante-
rior event that could influence the future price of an Apple stock. On the other 
hand, if a power outage occurs tomorrow in one of Apple’s factories and halts 
production, that is an unknown future event that might affect the price of the 
stock and falls into the second category. It is said that the fluctuation in the price 
of a stock attributed to the latter follows Brownian motion as it is seemingly un-
predictable and random. Bachelier only focused on the second idea since the an-
terior events were not meaningful because Bachelier defined the mathematical 
expectation for an asset to rise or fall to be zero since the market constitutes of a 
pool of people that trade with opposite beliefs on the future value of an asset [2]. 
For example, suppose a person is buying a call option for an asset, they hence be-
lieve that its price will rise. The person on the other side of the option believes it 
will fall otherwise they would not be selling the option. Hence, since they are both 
aware of past events that can influence the asset and have contradictory beliefs on 
how it will perform, meaning the mathematical expectation of the change in value 
of the underlying asset is neither positive nor negative. The market is therefore 
said to be fair [2]. 

2.3. Norbert Wiener 

The above considerations by Bachelier were expanded upon within the frame-
work of physics by American mathematician Norbert Wiener in his seminal 
work on “differential spaces” [3]. This was justified by arguments pertaining 
to the motion of a particle suspended in a fluid, where the movement of said 
particle depended on impulses by fluid particulates—akin to Brown’s scenario 
and the initial velocity of the particle, although the influence of the latter was 
deemed negligible by Einstein. For simplicity, one can assume that the par-
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ticle is constrained in one dimension and so are the impulses. Due to the na-
ture of the situation, Wiener, following Einstein assumed that the displace-
ment of the particle between any two-time instants had no bias in any direc-
tion and large movements relative to the time scale were unlikely. This prompt-
ed the use of the normal distribution as a way of describing the above beha-
vior. The use of the normal distribution and the “independence” of the dis-
placement of the particle in disjoint time intervals are crucial in the rigorous 
definition of Brownian motion given below. 

3. Brownian Motion 

In probability theory, one usually considers three objects when setting up a 
probability space; namely, the sample space Ω, that is the collection of out-
comes of a random process, a sigma algebra  , a set containing all measura-
ble events and a probability measure   that measures the probability of said 
events that obeys certain axioms as laid out by Kolmogorov [4]. The above are 
combined to form the Probability Space ( ), ,Ω  . 

A stochastic process defined on a probability space ( ), ,Ω   is a mea-
surable function [ ): 0,X ∞ ×Ω→  . More specifically, a stochastic process 

( ),t ωB  is called a Brownian motion if it satisfies the following conditions 
[5]: 

1) ( )( ); 0, 0 1tω = = B  
2) For any 0 s t≤ < , the random variable ( ) ( )t s−B B  is normally distri-

buted with mean 0 and variance t s− , i.e., 

( ) ( )( )
( )

( )
2

21 e d
2

x
b t s

a
a t s b x

t s

−
−≤ − ≤ =

π −
∫ B B  

3) ( ),t ωB  has independent increments, i.e. for any 1 20 nt t t≤ ≤ ≤ ≤ , the 
random variables 

( ) ( ) ( ) ( ) ( )1 2 1 1, , , n nt t t t t −− −B B B B B  

are independent and identically distributed, as per II. 
4) Almost all sample paths of ( ),t ωB  are continuous functions, i.e.: 

( ){ }( )is cont| . inu s, u 1oω ω∈Ω = B   

Note that the dependence on ω  was dropped in property II and III for sim-
plicity reasons. 

4. Applications to the Stock Market 

We now consider a stock that is tradable on a stock market, such as an S&P 500 
stock like Apple and model it by a stochastic process ( ) [ ): 0,t ω ∞ ×Ω→   on 
the probability space ( ), ,Ω  . One is prompted to ask 

What factors drive the process t ? 
Well, an attempt at answering the above is to view the stock price t  as a 
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sum of a deterministic component and a stochastic component containing “noise” 
meant to represent an underlying uncertainty. Thus, for a small increment in 
time from t to dt t+ , the change in log t  i.e., log td   is given by 

( ) ( ) noisd l g , eo dt tt t tγ σ= ⋅ + ⋅  “ ”  

where ( )tγ  is the growth rate of a stock which is deterministic and ( ), ttσ  . 
“noise” is the volatility of the stock and is the stochastic component [6]. The 
noise part can be modeled by a Brownian Motion tB , following Bachelier and 
Wiener. Thus, the above equation can be recast in the following form [7] 

( ) ( ) ( )d log d , dt tt t t tγ σ= ⋅ + ⋅ B                  (1) 

where dd t t t t+= −B B B . Equation 1 is an example of a stochastic differential 
equation [6]. In order to make precise what we mean by this, we consider a dis-
cretisation of the problem and consider the interval [ ]0, t  where 0t ≥ . We fur-
ther impose a partition 0 1 2 10 k nt t t t t t−= < < < < < =  of the interval and eq-
uation 1 to mean: 

( ) ( ) ( ) ( )1 1 11 1 1log log ,
k k k k kt t k k k k t t tt t t tγ σ

− − −− − −− = ⋅ − + ⋅ −B B    

for k ranging from 0 to 1n − . A summation of the index k yields the process  

[ ]( )

( ) ( ) ( ) ( )
0

1 1

1 1

1 1 1
0 0

. log log

,

n

k k k

n t t t t

n n

k k k k t t t
k k

I

t t t tγ σ
− −

≡

− −

− − −
= =

= −

= ⋅ − + ⋅ −∑ ∑ B B

  


 [6]. 

Now, in a certain sense, we have “integrated the process” and have obtained 
an expression for the process at some time t, given an initial time 0t . Indeed, 
two summations that appear are reminiscent of discrete approximations to Rie-
mann-Stieltjes integrals. One is tempted to take a limit of such partitions nπ  
with mesh ( )1max 0n i it tπ −≡ − →  and obtain the corresponding equation 

( ) ( )
0 0 0

log log d , d
n

t t
t t t t tt t tγ σ≡ − = +∫ ∫ B    

The aim of the next chapter is to show that for suitably well behaved ( )( )tγ ω  
and ( ) ( )( ), , tf t tω σ ω≡  , such a limit exists in ( )2L Ω , the space of all square 
integrable random variables on Ω. Making this intuition precise leads to the Itô 
Integral, which will be discussed below. 

5. Preliminaries 
5.1. σ-Algebras 

Consider the space X. A σ-algebra   on X [8] is a set of subsets of X satisfying 
the following conditions: 

1) ,X ∅∈ ; 
2) if A∈  then A∈ ; 
3) if jA ∈  for j∈  then jj

A
∈

∈
   . 

A generator   is a set of arbitrary subsets such that these subsets generate a 
σ-algebra denoted by ( )σ   [8]. This σ-algebra is also known as the smallest or 
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minimal σ-algebra. It is defined as: 

( )
is a -alg

:
k

k

k
σ

σ
⊂

=



 

   

for an arbitrary index k; that is the intersection of all sigma algebras that contain 
 . 

5.2. Filtrations & —Adapted Processes 

Consider the family { }: t t T∈
=   of σ-(sub)algebras of   defined on a mea-

surable space ( ),Ω   is called a filtration if for all ,s t T∈  such that s t≤ , 

s t⊆   

where T is an index set in any of the following: , , ,+    . [8] 
An t -measurable function Z satisfies: 

( )( )1
tZ − ⊂   

which is a shorthand notation for: 

( ) ( )1 ,tZ B B− ∈ ∀ ∈    

where ( )  is the standard Borel σ-algebra. Define a function  
[ ): 0,h ∞ ×Ω→   with a filtration ⊂ Ω . The function is then called t -adap- 

ted if it is t -measurable 0t∀ ≥  [8]. 

5.3. A.M - G.M Inequality & Lebesgue Integral 

The A.M - G.M inequality states the following: 

2
a b a b
′ ′+ ′ ′≥  

for ,a b +′ ′∈ . Now replace 2a a′ =  and 2b b′ = . The inequality then be-
comes: 

2 2

2
a b ab+

≥  

for ,a b∈ . This can be extended to  -measurable functions f and g in the 
context of integration. Using the fact that the Lebesgue integral with respect to 
the probability measure   is monotonic, we can apply it to the inequality 
yielding: 

( )2 2

2 2

d 2 d

2

f g fg

f g fg
Ω Ω

+ ≥

 ⇒ + ≥    

∫ ∫ 

 
. 

5.4. Lp Spaces 

Suppose : nX Ω→   is a random variable and [ )1,p∈ ∞ . The pL  norm of X, 
pLX  is defined as [6]: 

( ) ( )( ) ( )( )11
dp

ppp p
LX X Xω ω

Ω
= =∫   . 
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6. Itô Integration 

A process [ ): 0,φ ∞ ×Ω→   is called elementary if: 

( ) ( ) ( ] ( )1

1

,
1

, 1l
i i

K

j t t
j

t Z tφ ω ω
+

−

=

= ∑  

where 1 20 Kt t t≤ < < < < ∞  and where ( )1jZ i K≤ ≤  is a complex square- 
integrable 

it
 -measurable random variable. [8] The Itô integral for this process 

on the interval [ ],S T  with [ ), 0,S T ∈ ∞  is defined as the following random 
variable: 

( ) ( ) ( )
1

1

1
, d

j j

KT
t j t tS

j
t Zφ ω ω ω

+

−

=

 = − ∑∫ B B B . 

In our case, a square integrable random process is defined as 

( ) 2
d

T

S
t tφ  < ∞  ∫ . 

Define ( ),S TL  to be the class of functions [6]: 

[ ): 0,f ∞ ×Ω→   

such that: 
1) ( ),f t ω  is ( )+ ×  -measurable; 
2) ( ),f t ω  is t -adapted; 

3) ( ) 2
, d

T

S
f t tω  < ∞  ∫ . 

Construction of the Itô Integral 

We will know construct the Itô integral. We will omit the proofs of the steps 
needed for such a construction for the purpose of brevity. In brief, the construc-
tion comprises of approximation lemmas for processes ( ),g S T∈L  in terms of 
elementary functions, and then one utilises the isometry property of the Itô 
integral for elementary processes and the completeness of the metric space 

( )2L Ω  to define a limit and call it the Itô integral. 
STEP I 
Let ( ),g S T∈L  be bounded and continuous for all ω∈Ω . Then there ex-

ists elementary processes ( ),n S Tφ ∈L  such that [6] 

( )2 d 0
T

nS
g tφ − →  ∫ , as n →∞ . 

STEP II 
Let ( ),h S T∈L  be bounded. Then there exist bounded functions  

( ),ng S T∈L  such that they are continuous for all ω  and n and [6] 

( )2 d 0
T

nS
h g t − →  ∫ , as n →∞ . 

STEP III 
Let ( ),f S T∈L . Then there exists a sequence { } ( ),nh S T⊂ L  such that nh  

is bounded for each n and [6] 
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( )2 d 0
T

nS
f h t − →  ∫ , as n →∞ . 

Now, using the above steps we show that for ( ), ,nf S Tφ ∈L : 
2 d 0

T
nS

f tφ − →  ∫ , as n →∞ . 

First, maintain the definition for , ,nf gφ  and h as they were in steps I, II and 
III. We have by section 4.3: 

( ) ( ) ( )

2

2

2 2 2

d

d

2 d 4 d 4 d

T
nS

T
k k m m nS

T T T
k k m m nS S S

f t

f h h g g t

f h t h g t g t

φ

φ

φ

 −  
 = − + − + −  
     ≤ − + − + −          

∫

∫

∫ ∫ ∫





  

 

where for now kh  and mg  are arbitrary functions. Let 0>  be arbitrary. By 
Step III, fix a k large enough such that: 

2 d
6

T
kS

f h t − <  ∫ 
. 

By Step II, fix an m large enough such that: 

2 d
12

T
k mS

h g t − <  ∫  . 

By Step I, fix an N large enough such that for all n N≥ : 

2 d
12

T
m nS

g tφ − <  ∫  . 

Hence, for all n N≥ , combining the above parts yields that 
2 d

T
nS

f tφ − <  ∫  . 

We now will state without proof a key property of the Itô integral for elemen-
tary processes ( ),S Tφ ∈L , known as Itô Isometry and states the following and 
can be found in [6] 

( )( ) ( )
2 2d d

T T
tS S

t t tφ φ   =     
∫ ∫ B . 

Now, armed with the above results, we are going to show that the sequence  

( ){ }, d
T

n tS n
tφ ω

∈
∫


B  

is Cauchy in ( )2L Ω , where the ( ),n tφ ω  are elementary approximants of  

( ),f t ω  in the sense that ( )2 d 0
T

nS
f tφ − →  ∫  as n →∞ . Indeed, 

( ) ( )( )
( )

( ) ( )( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2

2

2 2

2 2

, , d

, , d , , d

2 , , d 2 , , d 0

T
n m tS L

T T
n m t n mS S

T T
n mS S

t t

t t t t t

f t t t f t t t

φ ω φ ω

φ ω φ ω φ ω φ ω

ω φ ω ω φ ω

Ω
−

   = − = −     
   ≤ − + − →      

∫

∫ ∫

∫ ∫

 

 

B

B  
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as ,n m →∞  by the A.M-G.M. inequality, the approximation lemma and the 
isometry property of the Itô integral. The completeness of ( )2L Ω  implies that 
there is a random variable [ ] ( )2T

SI f L∈ Ω  such that 

[ ] ( )( )2
, d 0

TT
n tS S

I f tφ ω − →  
∫ B  

as n →∞ . We can now define the Itô integral of ( ),f t ω  as 

( ) [ ]
( )

( )
2

, d : lim , d
LT TT

t n tSS Sn
f t I f t

∞
ω φ ω

Ω

→
= =∫ ∫B B . 

It is also important to mention that the above limit does not depend on the 
choice of approximants. So suppose the approximants ( ),n tφ ω  and ( ),n tψ ω  
converge in the ( )2L Ω  sense to [ ]1

T

SI f  and [ ]2
T

SI f  respectively, then we 
have 

[ ] [ ]
( )

[ ] ( )( ) [ ] ( )( )
( )

[ ] ( )
( )

[ ] ( )
( )

[ ] ( )
( )

[ ] ( )
( )

( ) ( )
( )

2

2

2 2

2 2

2

2

1 2

2

1 2

2 2

1 2

2 2

1 2

2

, d , d

, d , d

, d , d

, d , d 0

T T

S S L

T TT T
n t n tS SS S L

T TT T
n t n tS SS SL L

T TT T
n t n tS SS SL L

T T
n t n tS S L

I f I f

I f t I f t

I f t I f t

I f t I f t

t t

φ ω φ ω

φ ω φ ω

φ ω ψ ω

φ ω ψ ω

Ω

Ω

Ω Ω

Ω Ω

Ω

−

≤ − − −

≤ − + −

≤ − + −

− →+

∫ ∫

∫ ∫

∫ ∫

∫ ∫

B B

B B

B B

B B

 

as n →∞ . This is because 

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )

2

2 2

2 2

, d , d , d

2 , d 2 , d 0

T T T
n t n t n nS S SL

T T
n nS S

t t t t

f t t f t t

φ ω ψ ω φ ψ ω

φ ω ψ ω

Ω

 − = −  

   ≤ − + − →      

∫ ∫ ∫

∫ ∫



 

B B
 

by the fact that nφ  and nψ  are approximants to f and the definition of the Itô 

integral. This shows that [ ] [ ]
( )2

2

1 2 0T T

S S L
I f I f

Ω
− =  which means that  

[ ] ( ) [ ] ( ){ }( )1 2| 1T T

S SI f I fω ω ω∈Ω = = , that is that the limits are “almost surely” 

equal, hence they are identified in ( )2L Ω . 

7. Numerical Results  

Now, for some numerical results to buttress the theory, we consider the case 
where the stock price process t  from some initial time 0t =  to some final 
time t T=  follows the law 

0 0 0
log log d d

t t
t tt− = Γ + Σ∫ ∫ B                   (2) 

for [ ]0,t T∈ , where ( )tγ = Γ  and ( ),t tσ = Σ  are constants. The above for-
mula is well defined as constant functions are members of the space ( )0,TL  
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for which the Itô integral is defined. The above can be solved analytically, but a 
numerical treatment will be explored within the context of Apple’s stock price. 

In the following example, the model will be tested against historical data from 
January 1 2020 to December 31 2020. Γ and Σ will be estimated using historical 
daily log-returns from 11 October 2007. By daily log-returns at a given date, we 
mean the natural logarithm of the ratio of the price at said day by the price at the 
previous date. First, we partition the period from 1 January 2020 to 31 December 
2020 into 

{ } th trading day in the yeari i i
T

≡
=T  

starting from 0i =  and we call the collection of log-returns 

{ }
0

log
i i

t t T
R

∈
ℜ =

T
log  

where 

1

i

i

X
R

X −

=  

and iX  is the price of Apple’s stock at some { }0it T∈T . We use the above to 
compute Γ and Σ: 

( )2Var
2
ℜ

Γ = ℜ−
log

log  

( )VarΣ = ℜlog  

where ℜlog  is the (sample) mean and ( )Var ℜlog  the (sample) variance of 
ℜlog  respectively. We are now able to consider discrete approximation to equ-

ation 1. As per section 4, we consider the discrete stock price process  
:t ×Ω→ 

T
T  given by: 

( ) ( )( ) ( )

( )( ) ( ) ( )( )

0

1 1

1

1 1
0

1

1
0

exp

exp ,

n

k k k

n

t t k k k
k

n

k t t t
k

H t t t

t

ω γ ω

σ ω ω ω
− −

−

− −
=

−

−
=

 
= × ⋅ − 

 
 

× ⋅ − 
 

∑

∑

T

B B




 

where 
0 0t tH=
T

 , nt ∈T  and ω∈Ω . (Figure 1) 
It is clear from Figure 2, the simulated paths capture most of the historical 

time series of Apple’s stock price which is another indicator that the model is 
qualitatively speaking, a good approximation. However, only ten projections were 
performed, justifiably casting doubt on the statistical significance of the above 
result. 

To try and quantify the above intuition, we will try and compute numerically 
the expected value, a central tendency indicator, ( )Cor ,t tH 

 
T

  of the cor-
relation between t T  and { }t t

H
∈T

- tH  in short the historical price time series 
of Apple Stock in the above period. 

To achieve this, we consider N independent and identically distributed copies 
n

t T
  where [ ]1,n N∈  , of the discrete process t T ; intuitively, they cor-
respond to N distinct projections. The correlation between the historical data 
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and the nth projection is denoted by 

( )Cor ,n
t tH
T

  

with cumulative mean 

( )1
Cor ,N n

t tnN
H

N
==

∑
Cor


 

taking N →∞ , we obtain Figure 3. 
 

 
Figure 1. Plot Apple Stock Price (black) from January 2020 to De-
cember 31 2020 and projections (coloured) for 10 sample paths 
generated from the model. 

 

 
Figure 2. Plot of historical Apple stock price from January 2020 to 
January 2021 (black) and the area enclosed between the maximal 
and minimal prices in the simulated paths in figure 1, assuming the 
law in equation 2 with Γ = 0.0008316271 and Σ = 0.01648899. 
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Figure 3. Plot of mean correlation NCor  for values of N 
in { }1,2,3, ,1000 . The plot seems to converge to a value 

of approximately 0.36. 
 

According to basic probability theory, NCor  converge in the sense of proba-
bility to the expected value of the correlation between the discretised path and 
the historical trial data ( )Cor ,t tH 

 
T

  [9]. This means that considering pro-
gressively larger values of N (that is taking N →∞ ), NCor  should approach a 
constant value (see Figure 3). 

Figure 3 suggests that  

( )Cor , N
t tH  ≈ 
T

Cor  

tends to a constant value of 0.36 for N large. This suggests, in a rather heuristic 
way, that the model “captures” 36% of the variability in stock prices. Granted, 
further investigation is warranted over different stocks and more involved mod-
els could of course be considered. 

8. Conclusions 

A unique contribution of this report was the empirical verification of a theoreti-
cal model for Apple’s stock price predicated on Brownian Motion as a quantifi-
cation of the volatility therein. This was achieved by comparing the projected 
stock price against historical data from January 1 2020 to December 31 2020. 
The model used data going back to 2007, and used the discretised version of the 
price process of the Apple Stock. A limiting value of 0.36 was observed for the 
mean correlation between the theoretical and actual stock prices, upon numeri-
cal simulation for a larger and larger sample size. This suggests that the model 
“captures” 36% of the variability in the stock price. Granted, the above method 
has limitations such as the fact that volatility is estimated from historical data. 
Further investigation is warranted to compute such correlation coefficients over 
different stocks and one could construct more involved models, could of course 
be considered (see [10]). 
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Since the model considers a deterministic volatility factor, it would be an in-
teresting extension to derive and test the accuracy of a similar model with vola-
tility being purely stochastic. Brownian Motion has seen extensive use in the 
world of financial mathematics, especially in the construction of pricing models 
for more involved financial instruments including options and other derivatives 
(see [11] and [12]). 
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