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Abstract 
We propose a novel actuarial risk model which, unlike the classical Crámer- 
Lundberg model, incorporates a stream of random premiums that offset ran-
dom claims. A key feature of the model is a discrete time accounting of pre-
miums and claims flow, whereby lending itself to random walk type analysis. 
We derive various estimates of ruin probability thereby providing an effective 
method of risk assessment over a future time horizon. 
 

Keywords 
Risk Process, Kolmogorov Maximal Inequality, Stopped Martingale,  
Probability of Ruin 

 

1. Introduction 

Typical risk considerations in the area of insurance and finance are concerned 
with the Risk Process 

( )
1

Nt

i
i

U t u ct X
=

= + −∑                       (1.1) 

where ( )U t  represents the capital available at time 0t > , given the initial cap-
ital ( )0 0U u= ≥ , after paying claims iX  which occurred at random times dur-
ing the interval ( ]0, t  according to a Poisson process Nt . The premium income 
stream ct is deterministic with premium rate c per unit of time. ( )U t  is known 
as the Crámer-Lundberg model and represents the risk reserve of a company at 
time t. The main objective is to calculate the odds that the company reserve will 
ever become negative, referred to as the probability of ultimate ruin. 

Except a few special cases with closed form solutions, the analysis of this process 
is usually carried out by numerical inversion of the associated Laplace Transform 
to solve a renewal equation involving the probability of ruin in infinite time. 
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Since the joint work of Gerber and Shiu [1] [2] in the late 1990’s it has been cus-
tomary to analyze the process in terms of an expected discounted penalty func-
tion. 

Various attempts have also been made to add a Lévy Process component to 
the model in [3] [4] and [5] among many others. Over the years, discrete time 
versions of the model have been studied, see for example [6] for recent work 
along these lines. Lately, a stochastic premium income component has been 
added, see for example [7]. Much of the theory and applications are elucidated in 
[8] and [9]. 

We remark, that while it may be reasonable for an insurance company to 
conveniently collect premiums according to deterministic formula ct, given cus-
tomers contractual obligation to pay premiums to receive coverage for their claims, 
it certainly is not a reasonable assumption for most models of business income, 
as the future number of customers and their respective premiums cannot be guar-
anteed. Furthermore, while it may be true “on average” that an insurance com-
pany receives premiums as a continuous stream, it is still possible that the total 
premiums collected by time t may be substantially smaller than ct, at some fu-
ture times t.  

To remedy this drawback, we propose a model in which ct is replaced by a 
stochastic component leading to a shifted discrete time zero-mean random walk 
representation of the Risk Process that can be analyzed by various tools from 
probability theory. 

The paper is organized as follows. Section 2 introduces our new model. In sec-
tions 3 - 5 we derive estimates for the probability of ruin by Kolmogorov’s Max-
imal Inequality, Stopping a Martingale and Large Deviation Principle. Section 6 
includes summary conclusions and directions for future research. 

2. Derivation of the Model  

An extension of the Crámer-Lundberg model to random premiums, by Boikov 
[7], is as follows 

( )
( ) ( )

[ ) [ )
1 2

1 1
,  0, ,  0,

N t N t

i i i i
i i

U t u X Y XY
= =

= + − ∈ ∞ ∈ ∞∑ ∑           (2.1) 

where ( ) ( )1 2,N t N t  are independent Poison processes and ( ) ( ),i iY X  are in-
dependent sequences of i.i.d. representing the premiums and claims respectively. 

Our objective is to propose a new model that can be considered a discrete 
time counterpart to continuous model (2.1) which provides considerable reduc-

tion in random complexity through replacing random sums 
( ) ( )1 2

1 1
,

N t N t

i i
i i

Y X
= =
∑ ∑  by 

1 1
,

t t

i i
i i

Y X
= =
∑ ∑ . The significance of such model is that it reflects the actual real-world  

practice. Namely, “Ruin” is naturally defined as having a negative balance at the 
end of the day. Likewise, “ruin” has not occurred if the balance at the end of the 
day is not negative. This is irrespective of whether or not the balance may have 
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been negative at some point before the end of the day. 
Dickson and Waters [10] and Dickson [11] studied a discrete model with de-

terministic premiums 

{ }
1

  0,1 ,, , ,  1 2,
t

t i i
i

U u t X X t
=

= + − ∈ =∑                (2.2) 

For our model we discretize time in (2.1) whereby generalize (2.2) to random 
premiums with simultaneous extension of the range of Xi from non-negative in-
tegers to non-negative reals as follows 

( ) [ ) [ )
1 1 1

,   0, ,  0,
n n n

n i i i i i i
i i i

U u X u X YY XY
= = =

= + − = + − ∈ ∞ ∈ ∞∑ ∑ ∑    (2.3) 

and can be viewed as a random walk started at initial capital u at time 0. 
Recall that the safety loading requires the expected value of the Risk Process 

gain = ( )
1

n

i i
i

Y X
=

−∑  to be positive, for otherwise the probability of eventual ruin 

is one. Therefore,  

( ) ( ) ( )
1

, where 1 ,  
n

i i
i

X n EYE Y EY EX En XEX µ θ µθ
=

 − = − = = +  
=∑  (2.4) 

where θ  is a safety loading factor. 

nU  representation below will play a key role in establishing several estimates 
for the probability of ruin. Namely, thanks to (2.1) we have 

1
,  w, where 0,  1, 2,ith i in i

i
i

n

iU u n Z EZ nZ X Yθµ θµ
=

= + − = == − +∑    (2.5) 

which is a zero-mean random walk ( )
1

n

i
i

Z
=

−∑  with linear drift nθµ  started at 
u. 

3. Probability of Ruin by Kolmogorov’s Maximal Inequality 

The results in this section provide an upper estimate on the probability of ulti-
mate ruin in relation to the initial capital. Furthermore, it is shown how to select 
the initial capital to achieve a low probability of ruin in the finite time interval [0, 
T]. 

Theorem 3.1. Let 0n nU u n Sθµ= + − , where 1 2n nS Z Z Z= + + + , and iZ  
are i.i.d. with 1 0EZ = , 2

1EZ < ∞ . 
Then for every positive integer N there exists an initial capital u0 such that 

( ) ( )Ultimate Ruin 10 s.t. 0nP n U
N

P = ∃ > < <  

Proof. For any subsequence of integers 0, 0kn n∞ = , and an integer l  we 
have 

( )

( ]( ) ( ]( )
( )

1 1

1 0

Ruin occurs in 0, Ruin occurs in

Ultimate Ruin

,

1  s.t. 

l k k
k l

l m

P n P n n

P

P m n u m Sθµ

∞

− −
=

−

= +

= ∃ ≤ ≤ + <

∑
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( )

1 1

1

1 0

2 3
0 01

2 3
01 1

 s.t. 

max max

max max

l k k

l k

k k m
k l

m m km n n m nk l

m m km n m nk l

P n m n u m S

P S u P S u n

P S u P S n

θµ

θµ

θµ

− −

−

∞

−
=

∞

≤ ≤ ≤ ≤=

∞

≤ ≤ ≤ ≤=

+ ∃ < ≤ + <

   ≤ > + > +   
   

   ≤ > + >   
   

∑

∑

∑

 

where the last two inequalities follow from the lower bound on 0u mθµ+  de-
picted in our graph below. (See Figure 1) 

Choosing 2 3
0 1lu nθµ −=  and setting 2 3

1
max

k
k m km n

b P S nθµ
≤ ≤

 = > 
 

 we obtain 

( )
1

Ultimate Ruin k
k l

P b
∞

= −

≤ ∑  

To complete the proof it suffices to show that for suitably chosen subsequence 
( kn )the series kk b∑  converges, and consequently there exists an integer l = l(N) 

such that 
1

1
k

k l
b

N

∞

= −

<∑ .  

To this end, by Kolmogorov’s maximal inequality with 6 , 1, 2,kn k k= =    

( )
( )

( )
( )

2 2 2
2 3 1 1

2 2 2 2 4 3 2 2 21 2 3 2 3
max k k

k

n n k
m km n

kk k

Var S E S n EZ EZP S n
n kn n

θµ
θ µ θ µθµ θµ≤ ≤

 > ≤ = = = 
 

 

hence 
2 2 2

1 1
2 2 2 2 2

1 1

1
6k

k k

EZ EZb
kθ µ θ µ

∞ ∞

= =

≤ =
π

< ∞∑ ∑  

as needed. 
Corollary 3.1. For every positive integer N there exist an initial capital u0 and a 

finite time T such that 

( ) 1Ruin by time P T
N

≤  

Proof. Choose 2
0 1u T EZ=  and T N= . Then by Kolmogorov’s maximal 

inequality 

( )
( ) ( )

( ) ( )
0 0

2
1

0 2 2 21
0 1

Ruin by time 

1  s.t. 1  s.t. 

1 1max

m m

T
mm T

P T

P m T u m S P m T u S

Var S TEZP S u
T Nu T EZ

θµ

≤ ≤

= ∃ ≤ ≤ + < ≤ ∃ ≤ ≤ <

≤ > ≤ = = =

 

Corollary 3.2. Starting with capital 2
1N EZ  the probability of no ruin by 

time N is at least 11
N

− . 

4. Probability of Ruin by Stopping a Martingale 

We show how martingale method can be applied to calculate the probability of 
ultimate ruin for our model. Recall that by (2.3) - (2.4) the risk process reads 
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Figure 1. Linear income trend and its lower bound. 

 

( )
1 1

,   1 ,   0
n n

n i i
i i

U u Y E EXX Y EXθ
= =

= + = + < ∞− <∑ ∑        (4.1) 

where ~ , ~i iX X Y Y  are nonnegative independent random variables. 
Theorem 4.1. Suppose 0r∃ ≠  such that ( )e 1r X YE − = . 
Then 0r >  and  

( )Ultimate Ruin e ruP −≤ .                  (4.2) 

Proof. Let i i iW X Y= −  so ~W X Y−  and 0EW EXθ= − < . By Jensen’s in-

equality for ( ) erxxϕ =  we have e erEW rWE≤  and therefore r must be positive. 

For any , 0a b >  and 1
n

n inS W
=

= ∑  we have 

( ) ( ), 1
  and min crosses  before crossinga b n i ni n

P P n S a S b P S a b
≤ ≤

= ∃ ≥ > − = −  

and 

( ) ( ), 1
 and max crosses before crossingb a n i ni n

P P n S b S a P S b a
≤ ≤

= ∃ ≤ − < = −  

Define a stopping time N by 

{ } ( )min |  or smallest  s.t.  exits the interval ,n n nN n S a S b n S a b= ≥ ≤ − =  

with N = ∞  in the case no such n exists. 
Then e nrS

nM =  is a martingale as  

1

1

1 2 1 1 2 1

1 2 1

1

e | , , , e | , , ,

e e | , , ,

n n n

n n

rS rS rW
n n

rS rW
n

n

E W W W E W W W

E W W W

M

−

−

+
− −

−

−

   =   
 =  

=

 

  

where the conditional expectation becomes expectation, due to indepedence of 
( iW ) and equals 1 by assumption. It is standard to check that ( ) 1P N < ∞ =  ([12]) 
whence 1N nEM EM= = . Now 
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, , ,1 e |  e |  en NrS rS ra
N a b N b a a bE S a P E S b P P   = ≥ + ≤ − ≥     

giving 

, e ra
a bP −≤                          (4.3) 

By taking , 1, 2,b k k= =    

( ) { }( ), 1 1
crosses  before crossing mina k n n n ii n

P P S a k P S a S k∞
= ≤ ≤

= − = ≥ ∩ > −  

and setting 

{ }, 1 1 , , , 11
min ,   n k n n i n n n k n k n ki n

C S a S k A B B B∞ ∞
= = +≤ ≤

= ≥ ∩ > − ≡ ∩ ⊂   

it follows that ,n kC  is increasing in k. Consequently, by continuity of ( )P ⋅  for 
monotone sequences 

( ) ( ) ( )

( )( )

( )

, 1 , 1 1 ,

1 1 , 1
1

1
1

lim

min  

,    thanks to min  1

n k k n k k n n n kk

n n k n k n n i
i n

n n i
i n

P C P C P A B

P A B P A S

P A P S

∞ ∞ ∞
= = =→∞

∞ ∞ ∞
= = =

≤ ≤

∞
=

≤ ≤

= = ∩

  = ∩ = ∩ > − ∞    
 = > − ∞ = 
 

  

  



  

Consequently by (4.3) 

( ) ( ) ( )

( )
, , 1lim lim

ever crosses e

n k n k n n nk k
ra

n

P P C P A P n S a

P S a

∞
=→∞ →∞

−

= = = ∃ ≥

= ≤



 

Finally by (4.3) with a = u 

( ) ( ) ( ) ( )
( )

Ultimate Ruin 0 0

ever crosses e
n n n

ru
n

P P n U P n U P n u S

P S u −

= ∃ < ≤ ∃ ≤ = ∃ ≤

= ≤
 

Example 4.1 (Exponential case). Let the claim size X ~ exponential with mean 
µ  and premium size Y~ exponential with mean ( )1λ θ µ= + . Then the condition 

( )e 1r X YE − =                          (4.4) 

in terms of the moment generating function is as follows 

( )

1 1

1
1 1X YM r

r r

µ λ

µ λ

− = ⋅ =
− +

. 

Solving for r we get 

( )

( )

( )

2
2 42

1 1
r

θ
µθ

θ µ θ µ

 
+ −  

 = ±
+ +

                (4.5) 

Some comments regarding (4.5) are in order and we collect them in the fol-
lowing.  

Remark. For solutions r to be well defined and positive, some conditions must 
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be satisfied as follows. 

1) ( )
2

2 42 0θ
µ

 
+ − ≥ 

 
, 

which is always satisfied for 1µ ≥ , whereas 0 1µ< < , 12 1 0θ
µ

 
≥ − > 

 
. 

2) r+  is always a positive solution, however r−  can also be solution if 

0 < r−  and 2

1 12 1 1θ
µ µ

 
− ≤ ≤ − 

 
 with 0 1µ< < . 

Consequently r r+=  if 2

1 1θ
µ

> −  and r r−=  if 2

1 12 1 1θ
µ µ

 
− ≤ ≤ − 

 
. 

Example 4.2 (Binomial case). For claim and premium ( )~ ,XX Bin p k , 

( )~ ,YY Bin p k  with 0 X Yp p< < , 1Y

X

pEY EX
EX p

θ −
= = − . Then condition 

(4.4) 
( )e 1r X YE − =                          (4.6) 

in terms of the moment generating function reads 

( )
( )
1

ln
1

X Y

Y X

p p
r

p p
 −

=  
−  

 

and (4.2) has the form 

( ) ( )
( )
1

Ultimate Ruin e
1

u
Y Xru

X Y

p p
P

p p
−  −

≤ =  
−  

 

Notice that the assumption 0 X Yp p< <  gives ( )
( )
1

1
1

Y X

X Y

p p
p p

α
−

≡ <
−

. 

For example, 0.5, 0.67X Yp p= =  gives 0.492α =  whence 

( ) 1Ultimate Ruin with initial capital 
2

u

P u  ≤  
 

 

Namely, every extra dollar of initial capital halves the probability of the Ulti-
mate Ruin! 

5. Probability of Ruin via Large Deviation Principle 

This section is concerned with the derivation of the upper bound for the proba-
bility of ruin on the interval [ ),n ∞ , which we will refer to as Tail Ruin probabil-
ity. Our arguments are based on the rate function—a key ingredient of the Large 
Deviation Principle, so for the sake of completeness we recall some relevant facts. 

Large deviation results show that probabilities of atypical events An, away 
from typical events, all off to zero at an exponential rate. That is,  
( ) ( )~ expnP A nα−  for large n where the constant 0α >  is directly computa-

ble. One of the first and important rates is concerned with the Law of Large  

Numbers and states 1 ~ e nnX X
P A

n
α−+ + ∈ 

 



, whenever iEX Aµ= ∉ . 
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A large deviation result we need is attributed to Crámer and stated below with-
out proof. 

Large Deviation (Th. I.4, [13]). 
Let ( )iX  be i.i.d. with the moment generating function  

( ) ( )1
1

etX
XM t E= < ∞ , t∈ , and 1

n
n iiS X

=
= ∑ . Then for any 1a EX>  

( ) ( )1lim log nn
P S an I a

n→∞
≥ =  

and rate function 

( ) ( )
1

sup log X
t

I a at M t
∈

 = − 


. 

Remark 5.1. The above result has a straightforward extension ( )XM t < ∞  
for t from some subset of  . Key properties of the rate function ( )I ⋅  are as 
follows: ( )0 I≤ ⋅ , ( )I ⋅  is convex, ( ) ( ) 0iI EX I µ= = , ( )I x  may assume  
+∞ , ( )I x 

 for x µ< , ( )I x 
 for x µ> . ( )I x  is a convex conjugate or 

Legendre Transform of the convex function ( )ln XM t . 
Lemma 5.1 (upper bound). Assume ( ) ( )etX

XM t E= < ∞ , 0t ≥ . Then for a
x EXµ> =  

( ) ( )e nI x
nP S nx −≥ ≤                       (5.1) 

Proof. By Markov’s inequality 

( ) ( ) ( )( ) ( )( )loge 1 e e e Xn n
n n xt M ttS txn tS txn txn

n XP S nx P E M t − −− − −≥ = ≥ ≤ = = . (5.2) 

Since t is arbitrary one can optimize this upper bound by maximizing the 
function ( ) ( )ln Xh t xt M t= −  over t. We have 

( ) ( )
( ) 0

 0X

X t

M t
h t x x

M t
µ

=

′
′ = − = − > , 

and therefore ( ) 0h t >  in some vicinity of t = 0, because ( )0 0h = . This in 
turn, since ( )h t  is concave down, shows that ( )h t  has a unique strictly posi-

tive maxim um, which can be readily obtained by solving ( )
( )

0X

X

M t
x

M t
′

− =  for 

some ( )t t x= , whence ( ) ( )max ln Xt
xt M t I x− =   . 

Remark 5.2 We would like to point out and emphasize the often overlooked 
draw-back of the probability of ultimate ruin, which stems from that fact that it 
does not provide any information as to when the actual ruin occur during the 
time interval [ )0,∞ . For this very reason, our theorem below fills this gap and 
sheds some light on the time window where the ruin is most likely to occur. 

Theorem 5.1 Let n nU u n Sθµ= + − , where 1 2n nS Z Z Z= + + + , and iZ  
are i.i.d. with 1 0EZ = . Then we have the following upper bounds for the prob-
ability of ruin 

[ ]( )
( )1

1 eRuin in , e

1 e

un m Iu nmI
n

uI
n

P m n
θµ

θµ

θµ

 − + +    − + 
 

 − + 
 

 
 −

≤  
 − 

          (5.3) 
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Proof. We have 

[ ]( )
( ) { }( )

( )

( )1

Ruin in ,

| 0

e e

1 ee

1 e

n
k k m k

u un n nkI kI
k n

k
k m k m k m

un m Iu nm I
n

uI
n

P m n

P m k n u k S P u k S

P u k S
θµ θµ

θµ
θµ

θµ

θµ θµ

θµ

=

   − + − +   
   

= = =

 − + +    − + 
 

 − + 
 

≤ ∃ ≤ ≤ + − < = + <

≤ + < ≤ ≤

 
 −

=  
 − 

∑ ∑ ∑



 

In the example below we will illustrate how the upper bounds (5.3) can be 
used to estimate the probability of ruin in a [ ]0, 1m − , when an upper bound for 
the probability of ultimate ruin is available. 

Example 5.1 Consider our previous Example 4.1 where the claim size X is 
exponential with mean µ  and the premium size Y is exponential with mean 
( )1 θ µ+ . 

Then 

( ) [ )( )Ultimate Ruin Ruin i e0,n ruP P −≤∞= , 
( )

( )

( )

2
2 42

1 1
r

θ
µθ

θ µ θ µ

 
+ −  

 = ±
+ +

.  

(5.4) 

Furthermore, 

( ) ( ) ( )

1 1

e e
1 1

t t
Z X Y X Y

t t
M t M t M tθµ θµ

θµ
µ λ

µ λ

− + −= = = ⋅
− +

 

and for ux
n

θµ= +  as in (5.2) 
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(5.5) 

Let us choose 25, 0.2, 75uµ θ= = = . Then by (5.5) 

( ) 0.079805 75Ultimate Ruin e e 0.002515ruP − − ×≤ = =  

or 
1
4

 of 1%. 
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On the other hand 
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−

 

which is 100 fold smaller than the probability of Ultimate Ruin, thus negligible 
in comparison! 

A word about why 75 0.0083675
3650

uI I
n

   = =   
   

 is in order. Given  
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was obtained numerically. We include our graph of concave down h(t) below. 
(See Figure 2) 

Similarly, 
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is negligibly small and can be dropped. By comparing the order of smallness of 
the respective probabilities we infer that, if the ruin occurs, it will most likely 
happen within the first five years.  
 

 

Figure 2. The graph of ( )
1 1
25 30log log1 1

25 30

h t xt
t t

   
   

= − −   
   − +   
   

. 
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6. Conclusions 

We have introduced a discrete time risk model that features a convenient way of 
maintaining end of the day net balance of company’s capital reserve, resulting 
from the random size premiums income minus the incoming random size 
claims on the daily basis. Three different methods of estimating the probability 
of ruin (i.e., negative capital reserve) were presented and illustrated by examples. 
The key innovation is a reduction of complexity associated with randomness of 
the Risk Process by modeling random premiums and random claims arriving at 
discrete deterministic times in our model, as opposed to random claims arriving 
at random times according to Poisson process in the Crámer-Lundberg model 
studied in the literature. 

Future research will focus on extending the model to allowing investment of 
the collected premiums into stock market equities.  
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