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Abstract 
Value at Risk (VaR) and Expected Shortfall (ES) is commonly used measures 
of potential risk for losses in financial markets. In literature VaR and ES for 
the Normal Inverse Gaussian (NIG) distribution, a special case of Generalized 
Hyperbolic Distribution (GHD), is frequently used. There are however, Nor-
mal Inverse Gaussian related distributions, which are also special cases of 
GHD that can also be used. The objective of this paper is to calculate VaR for 
Normal Weighted Inverse Gaussian (NWIG) distributions. The Expectation- 
Maximization (EM) algorithm has been used to obtain the Maximum Like-
lihood (ML) estimates of the proposed models for the Range Resource Cor-
poration (RRC) financial data. We used Kupiec likelihood ratio (LR) for back-
testing of VaR. Kolmogorov-Smirnov test and Anderson-Darling test have 
been used for goodness of fit test. Akaike Information Creterion (AIC), Baye-
sian Information Creterion (BIC) and Log-likelihood have been used for model 
selection. The results clearly show that the NWIG distributions are good al-
ternatives to NIG for determining VaR and ES. 
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1. Introduction 

The most popular measures for financial risk are Value at Risk (VaR) and Ex-
pected Shortfall (ES). VaR was proposed by Till Guldimann in the late 1980s 
while working for J. P. Morgan as the head of global research. It is generally de-
fined as possible maximum loss over a given holding period within a fixed con-
fidence level. An attractive feature of VaR is the backtestability of the measure. 
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Backtesting is a method that uses historical data to gauge accuracy and effec-
tiveness (Zhang and Nadarajah [1]). Backtesting VaR is used to compare the 
forecast/predicted losses from the actual calculated losses realised at the end of a 
fixed time horizon. However, the main shortcoming of VaR is that it ignores any 
loss beyond the value at risk level. That is, it fails to capture tail risk. It also lacks 
a mathematical property called subadditivity as stated by Wimmerstedt [2]. That 
is, VaR for two combined portfolios can be larger than VaR for the sum of the 
two portfolios independently. This implies that diversification could increase 
risk, a contradiction to standard beliefs in finance. Artzner, Delbaen, Eber and 
Heath ([3] [4]) have proposed the use of Expected Shortfall (ES) also called con-
ditional Value at Risk (CVaR) to circumvent the problems inherent in VaR. Ex-
pected Shortfall is the conditional expectation of loss given that the loss is beyond 
the VaR level. However, the main problem with ES is that it lacks a mathemati-
cal property called elicitability, Gneting [5], necessary for the backtestability of 
the risk measure. The Basel Committee [6] proposed to replace Value at Risk 
with Expected Shortfall but concluded that the backtesting will still be done on 
VaR even though the capital would be based on Expected Shortfall. Therefore 
the two measures of risk still remain the most popular and useful in financial 
management. 

Notebly, Nadarajah et al. [7] have given a detailed review of VaR and ES for 
various distributions. One of the distributions reviewed is the Generalized 
Hyperbolic Distribution (GHD) introduced by Barndorff-Nielsen [8] as a Nor-
mal Variance-Mean Mixture with the Generalized Inverse Gaussian (GIG) dis-
tribution as the mixing distribution. The GIG is a three-parameter distribution 
denoted as ( ), ,GIG λ δ γ . It embraces a number of special and limiting cases. 
The GHD and its subclasses fit high frequency financial data well which are 
characterised by skewness, excess kurtosis and fat tail. The most common special 
case is Normal Inverse Gaussian (NIG) distribution introduced by Barndorff- 
Nielsen [9] with the Inverse Gaussian (IG) as the mixing distribution. However, 
there are other special cases of GHD which are related to the NIG distribution 
which have not been considered for VaR an ES. These special cases are Normal 
Weighted Inverse Gaussian Distributions. 

The objective of this paper is to determine VaR and ES for Range Resource 
Corporation (RRC) financial data using Normal Weighted Inverse Gaussian 
(NWIG) distributions. In particular we consider Normal mixtures with  

1 , ,
2

GIG δ γ 
 
 

, 3 , ,
2

GIG δ γ − 
 

 and 3 , ,
2

GIG δ γ 
 
 

 as mixing distribution. We  

study their properties and estimate parameters using the Expectation Maximiza-
tion algorithm introduced by Dempster et al. [10]. Kolmogorov-Smirnov test 
and Anderson-Darling test have been used for goodness of fit test. Akaike In-
formation Creterion (AIC), Bayesian Information Creterion (BIC) and Log-like- 
lihood have been used for model selection. 

The concept of a weighted distribution was introduced by Fisher [11] and 
elaborated by Patil and Rao [12]. Reciprocal Inverse Gaussian and the finite 
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mixture of Inverse Gaussian and Reciprocal Inverse Gaussian distribution are 
shown to be Weighted Inverse Gaussian (WIG) distributions by Akman and 
Gupta [13]; Gupta and Akman [14]; Gupta and Kundu [15]. The Special cases  

3 , ,
2

GIG δ γ − 
 

 and 
3 , ,
2

GIG δ γ 
 
 

 are also WIG distributions. 

For value at Risk of these models we use the Kupiec likelihood ratio (LR) in-
troduced by Kupiec [16]. The remainder of this paper is structured as follows: 
Section 2 deals with the concept of VaR and ES. Section 3 deals with Generalised 
Inverse Gaussian and its special cases. Weighted distribution is covered in Sec-
tion 4. The concept on Generalised hyperbolic distribution is illustrated in Sec-
tion 5 while its special cases of interest are in Section 6. Parameter estimation of 
the proposed models is performed in Section 7. Application to Range Resource 
Corporation is done in Section 8 and Section 8 deals with conclusion.  

2. Value at Risk and Expected Shortfall: Mathematical  
Background 

The most important risk measures despite their drawbacks are Value at Risk 
(VaR) and Expected Shortfall (ES). VaR was proposed by Till Guldimann in the 
late 1980s, and at the time he was the head of global research at J. P. Morgan.  

Value at Risk is generally defined as possible maximum loss over a given 
holding period within a fixed confidence level. Mathematically VaR at the  
(100 α− ) percent confidence level is defined as the lower 100α  percentile of 
the profit-loss distribution. 

In statistical terms, VaR is a quantile of distribution for financial asset returns. 
More formally, VaR is defined as  

{ }1
XP X VaR α α−≤ − =                      (1) 

where X represents the Asset’s returns. In integral form it can be expressed as  

( )d
XVaR

f x xα α
−∞

=∫                       (2) 

where f(x) is the profit-loss distribution. 
The concept of Expected Shortfall (ES) was first introduced in Rappoport [17]. 

Artzner et al. ([3] [4]) formally developed the concept. ES is the conditional ex-
pectation of loss given that the loss is beyond the VaR level and measures how 
much one can lose on average in the states beyond the VaR level. 

From Equation (2.2)  

( )1 d 1
VaR

f x xα

α −∞
=∫                      (3) 

Therefore 
( )f x
α

 is a pdf for x VaRα−∞ < <  and we refer to it as “Tail loss 

distribution”. 
Conditional Expectation  

[ ] ( )
| d

VaR f x
E X X VaR x xα

α α−∞
< = ∫                 (4) 
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is the Expected Shortfall denoted as ESα . This version was used by Yamai and 
Yoshiba [18] to obtain the ES for a normal distribution. Equation (2.4) can be 
expressed in a different version as follows: Defining F(x) as the cdf of the ran-
dom variable X, let  

( ) ( )1u F x x F u−= ⇒ =  

( )d du f x x∴ =  

when 

0x u= −∞⇒ =  

x VaR uα α= ⇒ =  

( )1
0 0

1 1d duES F u u VaR u
α α

α α α
−∴ = =∫ ∫                (5) 

as presented by Zhang et al. [19]. 
Remarks: Equation (2.3) is the mean of the loss distribution. Equation (2.4) 

represents the average of the VaR between 0 and α . The loss distribution, 
( )f x
α

, x VaRα−∞ < <  gives the tail distribution. 

For the purpose of VaR and ES analysis, a model for the return distribution is 
important because it describes the potential behaviour of a financial security in 
the future Bams and Wilhouwer [20]. A Normal distribution supposedly unde-
restimates the tail and hence VaR. Recently alternative distributions have been 
proposed that focus more on tail behaviour of the returns. One such candidate is 
the Normal Inverse Gaussian (NIG) distribution. We consider extensions of NIG 
distribution as Normal Weighted Inverse Gaussian (NWIG) distributions. In the 
next few sections we give a detailed illustration on their construction, properties 
and parameter estimation via EM-algorithm.  

3. Generalised Inverse Gaussian Distribution 

The Generalised Inverse Gaussian (GIG) Distribution is based on modified Bes-
sel function of the third kind. Modified Bessel function of the third kind of order 
λ  evaluated at ω  denoted by ( )Kλ ω  is defined as  

( )
1

1 2
0

1 e d
2

x
xK x x

ω
λ

λ ω
 − + ∞ −  = ∫                    (6) 

with the following properties  

a) ( ) ( )1 1
2 2

e
2

K K ωω ω
ω

−

−
= =

π                   (7) 

b) ( ) ( )3 3
2 2

1e 1
2

K K ωω ω
ω ω

−

−

 = = + 
 

π                (8) 

c) ( ) ( )5 5 2
2 2

3 3e 1
2

K K ωω ω
ω ω ω

−

−

 = = + + 
 

π              (9) 
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d) ( ) ( )7 7 2 3
2 2

6 15 15e 1
2

K K ωω ω
ω ω ω ω

−

−

 = = + + +


π



           (10) 

e) ( ) ( )9 9 2 3 4
2 2

10 45 105 105e 1
2

K K ωω ω
ω ω ω ω ω

−

−

 = = + + + +


π



        (11) 

f) ( ) ( )11 11 2 3 4 5
2 2

15 105 420 945 945e 1
2

K K ωω ω
ω ω ω ω ω ω

−

−

 = = + + + + + 
 

π     (12) 

which are necessary in deriving the properties and estimates of the proposed 
models. For more definition and properties see Abramowitz and Stegun [21]. 

Using Parametrization ω δγ=  and transformation x zγ
δ

=  then formula (2.1) 

becomes  

( )
2

1 2
0

1 1exp d
2 2

K z z z
z

λ
λ

λ
γ δδγ γ
δ

∞ −     = − +   
     

∫  

Hence  

( ) ( )
1 2

21exp
2 2

zg z z
K z

λ λ

λ

γ δ γ
δ δγ

−     = − +   
     

           (13) 

0; , 0, 0z λ δ γ> −∞ < < ∞ > >  

which is a Generalized Inverse Gaussian (GIG) distribution with parameter 
, ,λ δ γ . 
Thus  

( ), ,Z GIG λ δ γ  

with 

( ) ( )
( )

r
rr K

E Z
K
λ

λ

δγδ
γ δγ

+ 
=  
 

 

where r can be positive or negative integers. 

4. Weighted Inverse Gaussian Distribution 

Let X be a random variable with pdf ( )f x . A function of X, ( )w X  is also a 
random variable with expectation  

( ) ( ) ( )dE w X w x f x x
∞

−∞
=   ∫  

( )
( )

( )1 d
w x

f x x
E w X

∞

−∞
∴ =

  
∫  

Thus  

( ) ( )
( )

( ) ,W

w x
f x f x x

E w X
= −∞ < < ∞

  
               (14) 

is a weighted distribution. It was introduced by Fisher [11] and elaborated by 
Patil and Rao [12]. 
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From Equation (3.8) When 1
2

λ = −  we have 
1 , ,
2

GIG δ γ − 
 

 with pdf  

( )
3 2

22
1

e 1exp
22

g z z z
z

δγδ δ γ
−    = − +  

   π
               (15) 

This is called Inverse Gaussian (IG) distribution. 
The following special cases of GIG distribution can be expressed in terms of 

IG distribution. They are weighted Inverse Gaussian distributions. 

Example 1: 
1 , ,
2

GIG δ γ 
 
 

 

When 1
2

λ = , then the pdf of ( ), ,GIG λ δ γ  becomes  

( )
1 2

22
2

e 1exp
22

g z z z
z

δγγ δ γ
−    = − +  

   π
 

This is a Reciprocal Inverse Gaussian (RIG) distribution. It can be written as  

( )
3 2

22
2

e 1exp
22

g z z z z
z

δγγ δ δ γ
δ

−    = − +   
     π

 

( ) ( )2 1g z z g zγ
δ
 ∴ =  
 

 

i.e.,  

1 1, , , ,
2 2

GIG z GIGγδ γ δ γ
δ

     = −     
     

               (16) 

Thus a 
1 , ,
2

GIG δ γ 
 
 

 is a weighted Inverse Gaussian distribution with 

weights  

( )w Z Z=                           (17) 

where 

1 , ,
2

Z GIG δ γ − 
 

  

( ) ( )E w Z E Z δ
γ

∴ = =    

RIG distribution is called Length Biased Inverse Gaussian distribution. 

Example 2: 
3 , ,
2

GIG δ γ − 
 

 

The pdf is  

( )
( )

( )
2

2153 2
2 12

3 1
e e

12 1

z
zg z z z g z
δδγ γδ δ

δγδγ

 
 − +−   − 

π
= =

++
 

Therefore 3 , ,
2

GIG δ γ − 
 

 is a weighted Inverse Gaussian distribution with 

weights  
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( ) 1w Z Z −=                          (18) 

and 

( ) 2

1E w Z δγ
δ
+

=    

Example 3: 
3 , ,
2

GIG δ γ 
 
 

 

The pdf of 
3 , ,
2

GIG δ γ 
 
 

  

( )

( )

( ) ( )

2
2113

22
4

33 2
2 22

3
2

1

e e
1 2

e 1exp
1 22

1

z
zg z z

z z z
z

z g z

δδγ γ

δγ

γ
δγ

γ δ δ γ
δ δγ

γ
δ δγ

 
 − + 
 

−

=
+

    = − +   +      

=
+

π

π
 

Thus, 3 , ,
2

GIG δ γ 
 
 

 is a weighted Inverse Gaussian distribution with 

weights  

( ) 2w Z Z=                           (19) 

where 

1 , ,
2

Z GIG δ γ − 
 

  

( ) ( )
3

1
E w Z

δ δγ
γ
+

∴ =    

5. Generalized Hyperbolic Distribution 

A stochastic representation of a Normal Variance-Mean mixture is given by let-
ting Let  

X Z ZYµ β= + +  

where 

( )0,1Y N  

and Z, independent of Y, is a positive random variable. 
If F(x) is a cdf of X, then  

( ) { }

( ) ( )

( )

0

0

,0

d d

d

x z
z

F x prob X x

x zY z
z

y g z y z

x z g z z
z

µ β

µ β

φ

µ β

− −

−∞

∞

∞

= ≤

− − 
= ≤ < < ∞ 
 

=

− − 
= Φ 

 

∫ ∫

∫
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where ( )φ ⋅  and ( )Φ ⋅  are pdf and cdf of a standard normal distribution, re-
spectively.  

( ) ( )
( )

( )
2

2
0 0

1 1d e d
2

x z
zx zf x g z z g z z

z z z

µ βµ βφ
− +  −∞ ∞− − 

∴ = =
π 

 
∫ ∫ (20) 

Thus we have a hierarchical representation as  

( ),X Z z N z zµ β= +                   (21) 

being the conditional pdf and g(z) the mixing distribution. 
If  

( ), ,Z GIG λ δ γ                       (22) 

then  

( )
( )

( )
( )

2
213

22
0

e
1 e d
22

x
z x

zf x z z
K

λ
β µ

δα φλ

λ

γ
δ

δγ

−  
 − +−  ∞  

 
 
 

π
= ∫  

where  
2 2 2 2 2α γ β γ α β= + ⇒ = −  

and 

( ) ( )2

21
x

x
µ

φ
δ
−

= +  

This is an integral form of a GHD  
for ; , 0, 0, 0x µ δ α β−∞ < < ∞ −∞ < < ∞ > > > .  

Using the stochastic representation of NVM mixture, the properties are ex-
pressed in terms of the mixing distribution as shown in the following  

Proposition 1  

( )
2

e
2

t
X Z

tM t M tµ β
 

= + 
 

 

( ) ( )E X E Zµ β= +  

( ) ( ) ( )2Var X E Z Var Zβ= +  

( ) ( ) ( )3
3 33X var Z Zµ β β µ= +  

( ) ( ) ( ) [ ] ( )4 2 2 2
4 4 36 6 3X Z Z E Z var Z E Zµ β µ β µ β  = + + +    

6. Special Cases of Interest 

When 1
2

λ = − , the GHD becomes NIG whose pdf can be expressed in the integral 

form as  

( )
( )

2
21

22
1 0

e e e d
2

xx z
zf x z z

δ φβ µ αδγδ
  − − + ∞ −   

π
= ∫              (23) 

Therefore the Normal Weighted Inverse Gaussian formulation can be repre- 
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sented as  

( )
( ) ( )

( )

2
21

22
0

e e e d
2

xx z
zw z

f x z z
E w Z

δ φβ µ αδγδ
  − − + ∞ −   ∴

 π
=


∫          (24) 

Hence  

( )
( )( )

1 1
2

w z
E w Z

λ = − ⇒ =                     (25) 

( )
( ) ( )( )

( )

22
1

1 22

e x K x
f x

x

δγ β µαδ α δ µ

δ µ

+ −

π

+ −
∴ =

+ −
 

which is the Normal Inverse Gaussian (NIG) distribution with properties given 
in Table 1 below.  
when  

( )
( )

1
2

w z
z

E w Z
γλ
δ

= ⇒ =
  

                    (26) 

( )
( ) ( )( )22

0

2

e x K x
f x

δγ β µγ α δ µ+ − + −
=

π
 

Which is the Normal Reciprocal Inverse Gaussian (NRIG) distribution with 
properties given in Table 2 below.  

Similarly, when  

( )
( ) ( )

23
2 1

w z
zE w Z

δλ
δγ

= − ⇒ =
+  

                 (27) 

( )
( ) ( )( )

( ) ( )

22 3 2
2

3 22

e

1

x K x
f x

x

δγ β µα δ α δ µ

δγ δ µ

+ − + −
∴ =

 + + −π 

 

which is the Normal- 3 , ,
2

GIG λ δ γ = − 
 

 with properties given in Table 3 be-

low. 
 

Table 1. Properties of NIG. 

Item Description Expression 

1 E(X) 
δµ β
γ

+  

2 var(X) 
2

3

α δ
γ

 

3 Skewness, 1γ  
( )

1
2

3β

α δγ
 

4 Excess Kurtosis, 2γ  

2

23 1 4 β
α

δγ

 
+ 

   
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Table 2. Properties of NRIG. 

Item Description Expression 

1 E(X) 
( )

2

1β δγ
µ

γ
+

+  

2 var(X) ( )2 2

4

1α δγ β
γ

+ +
 

3 Skewness, 1γ  
( )

( )( )

2 3

3
2 2 2

3 2 2

1

βα δγ β

α δγ β

+ +

+ +
 

4 Excess Kurtosis, 2γ  
( ) ( )

( )( )

2

2

22

2 14 4

1

βδγ δγ
α

β δγ

+ + +

+ +
 

 

Table 3. Properties for Normal- 3 , ,
2

GIG δ γ − 
 

. 

Item Description Expression 

1 E(X) 
2

1
βδµ
δγ

+
+

 

2 var(X) 
( )
( )

2 2

21

δ γ α δ

γ δγ

+

+
 

3 Skewness, 1γ  
3

3

2 2 2 2

3βδ βδ
γ α δγ γ α δγ

 
 +
 + + 

 

4 Excess Kurtosis, 2γ  
( ) ( ) ( )( )

( )

24 4 3 2

23 2

3 1 2 1 2 2α δγ δγ α δγ γ γ α δ

δγ γ α δ

 + + + − + 
+

 

 
Finally, when  

( )
( ) ( )

3 23
2 1

w z z
E w Z

γλ
δ δγ

= ⇒ =
+  

                  (28) 

( )
( ) ( ) ( )( )

( )

2 23 2 2
1

4

e

1

x x K x
f x

δγ β µγ δ µ α δ µ

α δγ

+ −  + − + − 
π

∴ =
+

 

which is the Normal- 3 , ,
2

GIG λ δ γ = 
 

 with properties given in Table 4 below  

7. Parameter Estimation via EM Algorithm 
7.1. Theory/Concept 

EM algorithm is a powerful technique for maximum likelihood estimation for 
data containing missing values or data that can be considered as containing miss-
ing values. It was introduced by Dempster et al. [10]. 
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Table 4. Properties for Normal- 3 , ,
2

GIG δ γ 
 
 

. 

Item Description Expression 

1 E(X) 
( )

( )

2 2

2

3 3
1

β δ γ δγ
µ

γ δγ
+ +

+
+

 

2 var(X) 
( ) ( ) ( )

( )

22 2 2 2 2 2

24

3 1 1 2 3 3
1

α δγ α δ γ δγ β δγ δγ β

γ δγ

+ + + + + +

+
 

3 Skewness, 1γ  
( ) ( ) ( )( )
( ) ( ) ( )( )

3 2 2 3 3 2

3
22 2 2 2 2 2 2

6 1 3 3 1 2

3 1 1 2 3 3

δγ β α δ γ α δγ β
β

α δγ α δ γ δγ β δγ δγ β

+ + + + −

+ + + + + +
 

 
Assume that the true data are made of an observed part X and unobserved 

part Z. This then ensures the log likelihood of the complete data ( ),i ix z  for 
1,2,3, ,i n=   factorizes into two parts, Kostas [22]. 

This implies that the joint density of X and Z is given by  

( ) ( ) ( ),f x z f x z g z=  

The likelihood function is  

( ) ( ) ( ) ( )
1 1 1

n n n

i i i i i i
i i i

L f x z g z f x z g z
= = =

= =∏ ∏ ∏  

( ) ( )

( ) ( )

1 1

1 1

1 2

log log log

log log

n n

i i i
i i

n n

i i i
i i

L f x z g z

f x z g z

l l

= =

= =

∴ = +

= +

= +

∏ ∏

∑ ∑  

where 

( )1
1
log

n

i i
i

l f x z
=

= ∑  

and 

( )2
1
log

n

i
i

l g z
=

= ∑  

Karlis [23] applied EM algorithm to mixtures which he considered to consist 
of two parts; the conditional pdf is for observed data and the mixing distribution 
is based on an unobserved data, the missing values.  

7.2. M-Step for Conditional pdf 

In this study  

( ) ( )2

1
1 1

1log 2 log
2 2 2

n n
i i

i
i i i

x znl z
z

µ β

= =

− −
= − π − −∑ ∑  

Therefore  
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( )1
1

ˆˆ0 0
n

i i
i

l x zµ β
β =

∂
= ⇒ − − =

∂ ∑  

i.e., 
1 1

ˆˆ 0
n n

i i
i i

x n zµ β
= =

− − =∑ ∑  

ˆˆ x zµ β∴ = −  

where 1
n i
i

x
x

n=
= ∑  and 1

n i
i

z
z

n=
= ∑ . 

Similarly,  

1
1 1

1 ˆˆ0 0
n n

i

i ii i

x
l n

z z
µ β

µ = =

∂
= ⇒ − − =

∂ ∑ ∑  

1 1 1

1 1ˆ ˆ 0
n n n

i

i i ii i i

x
x z n

z z z
β β

= = =

∴ − + − =∑ ∑ ∑  

1 1

1

1

ˆ
1

n ni
i i

i i

n
i

i

x x
z z

n z
z

β
= =

=

−
∴ =

−

∑ ∑

∑
 

7.3. E-Step 

Values of random variables iZ  and 1

iZ
 are not known. So we estiamte them 

by considering posterior expectations ( )i iE Z X  and 1

i

E
Z

 
 
 

. 

The posterior distribution is defined as  

( ) ( ) ( )
( ) ( )

0
d

f x z g z
f z x

f x z g z z
∞=
∫

 

Therefore  

( )
( ) ( )
( ) ( )

0

0

d

d

zf x z g z z
E Z X

f x z g z z

∞

∞= ∫
∫

 

( )
( ) ( )

( ) ( )
0

0

1 d

d

f x z g z z
zE Z X
f x z g z z

∞

∞=
∫

∫
 

7.4. For Inverse Gaussian Mixing Distribution 
7.4.1. M-Step 

( )
2 2

2
1 1 1

3 1log 2 log log
2 2 2 2

n n n

i i
i i ii

nl n n z z
z

δ γδ δγ
= = =

= − + + − − −π ∑ ∑ ∑  

2
1

n

i
i

l n zδ γ
γ =

∂
∴ = −
∂ ∑  

2

ˆ
ˆ0l

z
δγ

γ
∂

∴ = ⇒ =
∂
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and 

2
1

10 0
n

i i

nl n
z

γ δ
δ δ =

∂
= ⇒ + − =

∂ ∑  

1

ˆ
1n

i i

n
n

z z

δ

=

∴ =
−∑

 

7.4.2. Posterior Expectations 
For NIG  

( )
( ) ( )( )

( )( )
0

1

K xx
E Z X

K x

αδ φδ φ
α αδ φ

=  

and 

( )
( )( )
( )( )

2

1

1 K x
E X

Z x K x

αδ φα
δ φ αδ φ

  = 
 

 

7.4.3. Iterations 
Let  

( )
( ) ( )( )

( )( )
0

1

ii
i i i

i

K xx
s E Z X

K x

αδ φδ φ

α αδ φ
= =  

where 

( ) ( )2

21 i
i

x
x

µ
φ

δ
−

= +  

and 
2 2α γ β= +  

Therefore is  is a function of , , , ,α β δ γ µ  
Next, let  

( )

( )( )
( )( )

2

1

1 i

i i
i i i

K x
w E X

Z x K x

αδ φα
δ φ αδ φ

 
= = 

 
 

which is also a function of , , , ,α β δ γ µ  
For computation, we have the following in the k-th iteration  

( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

0

1

k k kk k
iik

i k k k k
i

K xx
s

K x

α δ φδ φ

α α δ φ
=             (29) 

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2

1

k k k
k i

k
i k k k k k

i i

K x
w

x K x

α δ φα

δ φ α δ φ
=             (30) 
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( )

( )
( )

1
2

1
1

ˆ k

n k
i ni k

ii

n
nw

s

δ +

=

=

=
−∑
∑

                   (31) 

( )
( )

( )

1
1

1

ˆ
ˆ

1

k
k

n k
ii s

n

δγ
+

+

=

=
∑

                        (32) 

The log-likelihood function of NIG distribution is given by  

( ) ( )( )
( )

( )

( ) ( )

22
1

221

1

1
21

1 1

e
log log

log log

1 log
2

x
n

i

n

i
i

n n

i i
i i

K x
L

x

n n x n

x K x

δγ β µαδ α δ µ

δ µ

α δγ βµ β

φ αδφ

+ −

=

=

= =

 + − 
=  

 π + −
 

= + − + − π

 − +  
 

∑

∑

∑ ∑

         (33) 

The k-th iteration of the loglikelihood function of the NIG distribution is  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1
21

1 1

log log

1 log
2

n
k k k k k k k

i
i

n n
k k k k

i i
i i

l n n x n

x K x

α δ γ β µ β

φ α δ φ

=

= =

= + − + − π

 − +  
 

∑

∑ ∑
      (34) 

7.5. For Length Biased (Reciprocal) Inverse Gaussian Distribution 
7.5.1. M-Step 

( ) ( )
2

2
1 1

1 1, log log 2 log
2 2 2

n n

i
i ii

nl n n z
z

δδ γ γ δγ
= =

= − π + − −∑ ∑  

2

1

ˆˆ0
1n

i
i

nl

z

γδ
δ

=

∂
∴ = ⇒ =
∂ ∑

 

2 1
2

1 1

ˆ0
1n n

ii i
i

nl

z n
z

γ
γ −

= =

∂
= ⇒ =

∂  
−  

 
∑ ∑

 

7.5.2. Posterior Expectation 

( )
( ) ( )( )

( )( )
1

0

K xx
E Z X

K x

αδ φδ φ
α αδ φ

=                (35) 

and 

( )
( )( )
( )( )

1

0

1 K x
E X

Z x K x

αδ φα
δ φ αδ φ

  = 
 

              (36) 

7.5.3. Iterations 
Let  
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( )
( ) ( )( )

( )( )
1

0

ii
i i i

i

K xx
s E Z X

K x

αδ φδ φ

α αδ φ
= =  

and 

( )

( )( )
( )( )

1

0

1 i

i i
i i i

K x
w E X

Z x K x

αδ φα
δ φ αδ φ

 
= = 

 
 

For iterations we have  

( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1

0

k k kk k
iik

i k k k k
i

K xx
s

K x

α δ φδ φ

α α δ φ
=             (37) 

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1

0

1
k k k

k i
k

i i k k k k ki i i

K x
w E X

Z x K x

α δ φα

δ φ α δ φ

 
= = 

 
      (38) 

( )

( )
( )

1
2

1
1

ˆ k

n k
i ni k

ii

n
ns

w

γ +

=

=

=
−∑
∑

                 (39) 

( )
( )

( )

1
1

1

ˆ
1

k
k

n k
ii w

n

γδ
+

+

=

=
∑

                      (40) 

The loglikelihood function of NRIG distribution is given by  

( ) ( )
1
20

1 1
log log log log

n n

i i
i i

L n n n x K xγ δγ βµ β αδφ
= =

 = − π+ − + +  
 

∑ ∑    (41) 

The k-th iteration becomes  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1

1
20

1

log log

log

n
k k k k k k k

i
i

n
k k k

i
i

l n n n x

K x

γ δ γ β µ β

α δ φ

=

=

= − π+ − +

 +  
 

∑

∑
        (42) 

7.6. Special Case When the Index Parameter Is −3/2 

( ) ( )
2

2
2

1 1

5 13 log log 2 log log 1
2 2 2

n n

i i
i i i

nl n z n n z
z
δδ δγ δγ γ

= =

 
= − π − − + + − + 

 
∑ ∑  

2

2 ˆ0 zl
z

δγ
γ δ
∂ −

∴ = ⇒ =
∂

 

( )
2 2

11 1
2

11 1

3 10 1 0
n n n

i ii i
n n

i ii ii i

n z n znl n n
zz z

δ δ
δγ δ

δ δ δ δ
−= =

=
= =

   − −∂    = ⇒ − + + − =
   ∂    

∑ ∑ ∑
∑ ∑

 

2
4 2 2

1 1 1 1

1 0
n n n n

i i i
i i i ii

n z n z z
z

δ δ
= = = =

   ∴ − + + =   
  

∑ ∑ ∑ ∑  
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2
2 2

1 1 1 1

1 0
n n n n

i i i
i i i ii

n z t n z t z
z= = = =

     ∴ − + + =     
    

∑ ∑ ∑ ∑  

i.e., 2

1

1 0
n

i i

n t nt nz
z z=

 
− − − = 

 
∑  

where 
2t δ=  

Therefore  
1

1 2
2

2
1 1 1 1

2
1 1

14 3
ˆ

12

n n n n
i i ii i i i

i

n n
ii i

i

n z z z n
z

z n
z

δ
= = = =

= =

 
  + −    =

  −  
   

∑ ∑ ∑ ∑

∑ ∑
 

7.6.1. Posterior Expectation 

( )
( ) ( )( )

( )( )
1

2

K xx
E Z X

K x

αδ φδ φ
α αδ φ

=                 (43) 

and 

( )
( )( )
( )( )

3

2

1 K x
E X

Z x K x

αδ φα
δ φ αδ φ

  = 
 

               (44) 

7.6.2. Iterations 
Let  

( )
( ) ( )( )

( )( )
1

2

ii
i i i

i

K xx
s E Z X

K x

αδ φδ φ

α αδ φ
= =              (45) 

and 

( )

( )( )
( )( )

3

2

1 i

i i
i i i

K x
w E X

Z x K x

αδ φα
δ φ αδ φ

 
= = 

 
            (46) 

For iterations we have  

( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1

2

k k kk k
iik

i k k k k
i

K xx
s

K x

α δ φδ φ

α α δ φ
=              (47) 

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

3

2

1
k k k

k i
k

i i k k k k ki i i

K x
w E X

Z x K x

α δ φα

δ φ α δ φ

 
= = 

 
      (48) 

( )
( ) ( ) ( ) ( )( )

( ) ( )

1
1 2

2 2
1 1 1 11

2
1 1

4 3
ˆ

2

n n n nk k k k
i i i ii i i ik

n nk k
i ii i

n s s s w n

s w n
δ = = = =+

= =

 
+ − 

=  
  −   

∑ ∑ ∑ ∑
∑ ∑

     (49) 
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( )
( )

( ) ( )

1
1

1

1

1ˆ
1

k
k

kn k
ii s

n

δγ
δ

+
+

+

=

= −
∑

                      (50) 

The log-likelihood function of Normal- 3 , ,
2

GIG δ γ − 
 

 is given by  

( ) ( )

( ) ( )
1
22

1 1 1

log log log 1 2 log log

log
n n n

i i i
i i i

L n n n n n

x x K x

δγ α δ δγ βµ

β φ αδφ
= = =

= − π− + + + + −

 + − +  
 

∑ ∑ ∑
   (51) 

The k-th iteration becomes  
( ) ( ) ( )( ) ( ) ( ) ( ) ( )(

( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1
22

1 1 1

log log 1 2 log log

log

k k k k k k k

n n n
k k k k k k k

i i i
i i i

l n n n n n

x x K x

δ γ α δ δ γ

β µ β φ α δ φ
= = =

= − π− + + + +

 − + − +  
 

∑ ∑ ∑
(52) 

7.7. Special Case When the Index Parameter Is 3/2 
7.7.1. M-Step 

( )

( ) ( )

2 4
1

1
2 2

1 1

log

1log 1 3 log log
2 2

1
2 2

n

i
i

n

i
i

n n

i
i ii

l g z

n n n n z

z
z

δγ γ δγ

δ γ

=

=

= =

=

= − − + + + +

− −

∑

∑

∑ ∑

 

2

2
1

10 0
1

n

i i

nl
z

γ δ δ
δ δγ =

∂
∴ = ⇒ − =
∂ + ∑  

2
1

1

1ˆ
ˆ

1ˆ

n
i

i

n
i

i

n
z

z

γ
δ

γ

=

=

−
∴ =

∑

∑
 

Similarly  
2

2
30 0

1
l zδ γ γ

γ δγ γ
∂

= ⇒ + − =
∂ +

 

( )2 2 3 23 3 0z zγ δ γ γ δ γ∴ + − − + =  

Substituting for δ  and letting 2 tγ =  we obtain  
2

2 2

1 1 1 1

1 1 1 0
n n n n

i
i i i ii i i

n z t n t
z z z= = = =

     
− + + =     

     
∑ ∑ ∑ ∑  

Therefore  
2 4

2
b b act

a
− ± −

=  

where 

2

1 1

1n n

i
i i i

a n z
z= =

= −∑ ∑  
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1

1n

i i

b n
z=

= ∑  

2

1

1n

i i

c
z=

 
=  
 
∑  

1
22 4ˆ

2
b b ac

a
γ

 − + −
∴ =  

  
 

7.7.2. E-Step 
Posterior Expectation  

( )
( ) ( )( )

( )( )
2

1

K xx
E Z X

K x

αδ φδ φ
α αδ φ

=                (53) 

( )( )
( ) ( )( )

0

1

1 K x
E X

Z x K x

α αδ φ

δ φ αδ φ
  = 
 

               (54) 

7.8. Iterations 

Let  
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For iterations we have  
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( ) ( )1ˆ k ktγ + =                         (57) 

( )
( )( ) ( )

( ) ( )

21
11

1
1

ˆ
ˆ

ˆ

nk k
iik

nk k
ii

n w

w

γ
δ

γ

+
=+

+
=

−
=

∑
∑

                 (58) 

The log-likelihood function for the Normal- 3 , ,
2

GIG δ γ 
 
 

 distribution is given 

by  
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( ) ( )( )

( ) ( )( )1
1 1 1

3 log log 1 log

1 log log
2

n n n

i i
i i i

l n n n n

x x K x

γ δγ βµ α δγ δ

β φ αδ φ
= = =

= + − − π + +

+ + +∑ ∑ ∑
          (59) 

For the k-th iteration we have  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )
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l n n n

n x x K x

γ δ γ β µ α δ γ

δ β φ α δ φ
= = =

= + − − π +

+ + + +∑ ∑ ∑
(60) 

Remarks:  
1) For all the proposed models, the β , µ  and α  parameters of the condi-

tional distribution are updated as follows:  

( ) ( ) ( )

( ) ( )

1 1
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n
µ β+ +

=

= − ∑  

( ) ( )( ) ( )( )
1

2 2 21 1 1ˆ k k kα γ β+ + + = +  
 

2) The stopping criterion is when  
( ) ( )

( )

1k k

k

l l tol
l

−−
<  

where tol is the tolerance level chosen; e.g 10−6.  
3) Initial values used are moment estimates of NIG ditsribution as proposed 

by Karlis [23].  

8. Application 
8.1. Fitting of the Proposed Models 

The data used in this research is the Range Resource Corporation weekly returns 
for the period 3/01/2000 to 1/07/2013 with 702 observations. The histogram for 
the weekly log-returns in Figure 1 shows that the data is negatively skewed and 
exhibiting heavy tails.The Q-Q plot shows that the normal distribution is not a 
good fit for the data especially at the tails. 

Table 5 provides descriptive statistics for the return series in consideration. 
We observe that the excess kurtosis of 2.768252 indicates the leptokurtic beha-
viour of the returns. The log-returns has a distributions with relatively heavier 
tails than the normal distribution. We observe skewness of −0.1886714 which 
indicates that the two tails of the returns behave slightly differently. 

The proposed models are now fitted to RRC weekly log-returns. Using the sam-
ple estimates and the NIG estimators to the RRC data we obtain the following 
estimates as initial values for the EM algorithm (see Karlis [23]).  

ˆ ˆˆ ˆ0.3722511, 0.02456226, 2.950864, 0.4284473α β δ µ= = − = = . 
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Figure 1. Fitting Model 1 to RRC weekly returns. 

 
Table 5. Summary Statistics for RRC weekly log-returns.  

Minimum Standard.dev skewness exc.kurtosis Maximum Mean N 

−14.4465 2.824736 −0.03586155 2.768252 13.9830 0.2333 702 

 
The initial values were used in all the proposed models to obtain the maxi-

mum likelihood estimates as shown in Table 6 below  
The parameter estimates from Table 2 are now fitted to RRC weekly log-re- 

turns. Figures 2-5 show the histogram and Q-Q plots of the RRC returns fitted 
with the proposed models. Figure 2-5 show that the proposed model fit the data 
well.  

Table 7 present results of Kolmogorv-Smirnov and Anderson-Darling test 
performed on the models. All models produce high p-values, a strong evidence 
that we can not reject the null hypothesis that the returns data follow the pro-
posed models.  

Table 8 presents values of Alkaike Information Criterion (AIC), Bayesian In-
formation Creterion (BIC) and Log-likelihood. The values illustrate that the mod-
els are alternative to each other. 

Model 3 has the lowest AIC and BIC with the highest log-likelihood. It is the 
best fit for the data.  
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Figure 2. Fitting Model 1 to RRC weekly returns. 

 

 

Figure 3. Fitting Model 2 to RRC weekly returns. 
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Figure 4. Fitting Model 3 to RRC weekly returns. 
 

 

Figure 5. Fitting Model 4 to RRC weekly returns. 
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Table 6. Estimates for the proposed models.  

Parameter α̂  δ̂  β̂  µ̂  

Model 1 (
1
2

λ = − ) 0.4215579 3.285072 −0.03586155 0.5137899 

Model 2 (
1
2

λ = + ) 0.5491998 2.425010 −0.03904892 0.536296 

Model 3 (
3
2

λ = − ) 0.2778586 4.098694 −0.03234413 0.4882795 

Model 4 (
3
2

λ = + ) 0.6724609 1.418126 −0.04177948 0.5546103 

 
Table 7. Results from Kolmogorov-Smirnov Test and Anderson-Darling Test.  

Parameter 
Kolmogorov-Smirnov 

p-value 
Anderson-Darling 

p-value 
statistic statistic 

Model 1 (
1
2

λ = − ) 0.0168 0.9890 0.24765 0.9716 

Model 2 (
1
2

λ = + ) 0.0166 0.9904 0.23564 0.9775 

Model 3 (
3
2

λ = − ) 0.0165 0.9912 0.26102 0.9643 

Model 4 (
3
2

λ = + ) 0.0155 0.9958 0.27744 0.9541 

 
Table 8. AIC, BIC and Log-likelihood Values.  

Model Model 1 Model 2 Model 3 Model 4 

AIC 3399.776 3400.898 3398.976 3402.382 

BIC 3417.992 3419.114 3417.192 3420.598 

Log-likelihood −1695.888 −1696.449 −1695.488 −1697.191 

8.2. Risk Estimation and Backtesting 

We use the parameter estimates for our proposed model to determine the VaR 
(Table 9) and ES (Table 10) at levels { }0.001,0.01,0.05,0.95,0.99,0.999α ∈ . 
The first three level are used to measure the risk of long position, while the last 
three levels are used to measure the risk of short positions. We apply the Kupiec 
Likelihood Ratio (LR) test given by Kupiec [16] which test the hypothesis that 
the expected proposition of violations is equal to α . The method consist of 
calculating ( )τ α  the number of times the observed returns, tx  falls below 
(for long position) or above (for short position) the VaRα  estimates at level α ; 
i.e., tx VaRα<  or 1tx VaR α−< , and compare the corresponding failure rate to 
α . 

The likelihood ratio statistic is given by  
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( ) ( ) ( ) ( )
( ) ( ) ( )( )2log 1 2log 1

n
n

n n

τ α τ α
τ ατ ατ α τ α

α α
−

−   
− − − −   

   
      (61) 

where ( )τ α  is the number of violations. Under the null hypothesis this statistic 
is distributed as 2χ  distribution with one degree of freedom. Table 11 gives the 
number of violations for the models. Table 12 gives the p-values based on Ku-
piec test.  

Model 3 has the highest VaR and ES value indicating that it perform well than 
the other models at the tails.  

 
Table 9. VaR Values of RRC log-returns based on normal and proposed models.  

 0.001 0.01 0.05 0.95 0.99 0.999 

Normal −8.495775 −6.33803 −4.412962 4.879592 6.804634 8.962406 

Model 1 −12.175020 −7.483157 −4.387882 4.621687 7.300979 11.305172 

Model 2 −11.676119 −7.396380 −4.414590 4.635737 7.248426 10.976183 

Model 3 −12.770428 −7.524902 −4.344605 4.605084 7.328694 11.666360 

Model 4 −11.206503 −7.271316 −4.422422 4.646686 7.176342 10.659890 

 
Table 10. ES Values of RRC log-returns based on normal and proposed models.  

 0.001 0.01 0.05 

Model 1 −14.31580521 −9.51044987 −6.32267305 

Model 2 −13.54898243 −9.25410370 −6.26915453 

Model 3 −15.35943879 −9.77595177 −6.35304744 

Model 4 −12.88318596 −8.98494206 −6.18936754 

 
Table 11. Number of violations of VaR for each distribution at different levels.  

 0.001 0.01 0.05 0.95 0.99 0.999 

Normal 5 9 33 24 12 3 

Model 1 2 5 33 28 11 1 

Model 2 2 5 33 28 10 1 

Model 3 2 5 33 27 11 1 

Model 4 2 5 33 27 11 1 

 
Table 12. P-value for the kupiec test for each distribution at different levels.  

 0.001 0.01 0.05 0.95 0.99 0.999 

Normal 8.8068 × 10−4 0.471717 0.7134756 0.04196382 0.086239 0.0422255 

Model 1 0.2067157 0.4191802 0.7134756 0.20316 0.1632629 0.7381375 

Model 2 0.2067157 0.4181802 0.7134756 0.144112 0.1632629 0.7381375 

Model 3 0.2067157 0.4191802 0.7134756 0.20316 0.287939 0.7381375 

Model 4 0.2067157 0.4181802 0.7134756 0.1444112 0.1632629 0.7381375 
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Remark: At 5 percent level of significant, the Normal distribution is rejected 
at levels: 0.001, 0.95 and 0.999. In addition it is also rejected at level 0.99 at 10 
percent level of significant. The Normal weighted Inverse Gaussian distributions 
were all effective and well specified on all levels of VaR. It can be noted model 3  

(Normal- 3 , ,
2

GIG δ γ − 
 

) outperforms the other models at level 0.99. 

9. Conclusions 
In this paper we obtained VaR using NWIG distributions. We first constructed 
Normal Variance-Mean Mixture when the mixing distributions are  

1 , ,
2

GIG δ γ − 
 

, 1 , ,
2

GIG δ γ 
 
 

, 3 , ,
2

GIG δ γ − 
 

 and 3 , ,
2

GIG δ γ 
 
 

. We have 

shown that these mixing distribution are WIG distributions. 
The parameters of the mixed models are estimated using EM-algorithm. The 

iterative schemes used are based on explicit solutions of normal equations. We 
used method of moment estimates of NIG as initial values and obtained mono-
tonic convergence. 

We used AIC, BIC and loglikelihood for model selection. Normal- 
3 , ,
2

GIG δ γ − 
 

 was found to be the best model. The results show that the three 

NWIG distributions are as good as NIG for VaR computation. 
Further work can be done on Normal Mixtures when the mixing distributions 

are Finite mixtures of WIG distributions.  
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