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Abstract 
The objective of this study is, to show the importance of incorporating jumps 
in both returns and volatility dynamics for Bitcoin. For that purpose, we in-
troduce the Double Exponential Jump-Diffusion model with Stochastic Vola-
tility (DEJDSVJ) that contains asymmetric jumps. The use of the Markov 
Chain Monte Carlo methods for estimation has proved the meaningful pres-
ence of jumps in Bitcoin price and volatility. Moreover, based on the Bitcoin 
options market, a comparison between the underlying model, the Double Ex-
ponential Jump Diffusion model (DEJD) with Stochastic Volatility (no Jumps) 
and the Stochastic Volatility (SV) shows the goodness of the DEJDSVJ model’s 
calibration over others for pricing Bitcoin options. 
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1. Introduction 

Bitcoin is a digital currency that satisfies the technical properties of money. 
Contrary to fiat currencies, there is no central authority acting as a bank for Bit-
coin. Its system is based on solving computational algorithms (cryptographic 
puzzles) known as mining process through a network called blockchain whose 
protocol was released by a pseudonymous Satoshi Nakamoto on 2009 [1]. Since 
it was generated, the price of bitcoin in USD dollar varies over time. This last 
decade, the fluctuations of Bitcoin’s price raised a lot of attention for investors. 
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Many questions are asked about the future of bitcoin. For some people, bitcoin 
does not fill all aspects of money that are medium of exchange, store value and a 
unit of account. Critical mass supports that Bitcoin is not a universal medium of 
exchange as it has small user base. Also, some economists see it as a risky in-
vestment instead of a stable store of value because it is volatile. 

But despite those critics, some studies proved that there will be a future role of 
Bitcoin in financial markets. [2] studied the contributions of Bitcoin exchange 
on price discovery, [3] analyzed the GARCH volatility of bitcoin. Also [4] 
showed that bitcoin can be used as a speculative asset instead of medium of ex-
change. In addition, on December 18, 2017, the Chicago Mercantile Exchange 
(CME) and Chicago Board Options Exchange (CBOE) launched futures for Bit-
coin. Also the US regulator considers it as a commodity. So, it becomes interest-
ing to do study about pricing and hedging Bitcoin derivatives. Doing so will help 
investors to come with efficient risk management and portfolios selection strate-
gies. 

Up to now, few academic researches were done in this direction because of 
some challenges that concern the characteristics of Bitcoin: price discontinuity, 
high level of speculation, high volatility. 

Figure 1 shows the discontinuities in price of Bitcoin. The graph reveals ex-
treme price variations on 2017 and many fluctuations. 

To fulfill such challenges, it is important to model the dynamic of BTC in-
cluding the occurrence of rare or extreme events as jump process in returns. In 
literature about options pricing model, many studies were done using diffusion  
 

 
Figure 1. USD-BTC exchange rate from Coin base market over the period of February 
2015 to July 2020. 
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models with the geometric Brownian motion process [5]. However, such models 
do not incorporate all facts that intervene on data. Thus, some authors have 
chosen to introduce the jump-diffusion models in which the jumps capture all 
facts [6] [7]. 

In addition, the characteristic of the volatility is important for option pricing 
models. Volatility plays an important role in pricing of derivatives. After the fi-
nancial crisis on 1987, many studies have demonstrated that the inefficiency of 
the Black-Scholes model [5] is caused by the constant volatility. Since that, stu-
dies came with many models of volatility in which the variance is randomly dis-
tributed such as the stochastic volatility [8]. [8] considered European call op-
tions price with stochastic volatility and also stochastic interest rates. He found 
the importance of correlation between price and volatility in order to explain the 
return skewness and strike price biases in Black-Scholes model. So, stochastic 
volatility models are considered as models that match well the fair value of an 
option. 

Although few studies are done about bitcoin options pricing, we find many 
relevant considerations in some articles. [9] proposed an option pricing model 
under double exponential jump diffusion with mean reverting stochastic volatil-
ity and stochastic interest rate. The model considered the leptokurtosis and he-
teroscedasticity. They checked the goodness of fit of the model using the 50 ETF 
data exhibited from the Shanghai Stock Exchange and compared the model with 
both [6] and [5] models. The results gave a high pricing accuracy in such model 
rather than the other models. [10] tested the goodness of the model of [6] using 
Bitcoin as the underlying asset. The outcomes gave a good fit of market prices by 
the model in [6] but comparing it with the Black-Scholes model [5]; he found 
that there is not much difference between the results. [7] proposed a model un-
der the stochastic volatility with correlated jumps (SVCJ) on both returns and 
volatility. They found the importance of taking into account the jumps for the 
cryptocurrency derivatives markets. Furthermore, with the development of Ar-
tificial Intelligence, [11] introduced an option model based on non parametric 
method developed on neural network and he calibrated it with the parametric 
methods such as Tree Trinomial, Finite Difference and Monte Carlo simulation. 

In this article, we contribute to the growing academic literature about Bitcoin 
derivative markets by considering the jump diffusion model of [6]. [6] intro-
duced a jump-diffusion model for option pricing in which the jump’s sizes are 
double exponentially distributed. The benefits when using such distribution in 
jump is to capture the asymmetric leptokurtic effect and volatility smile. Also [6] 
were able to find an analytical option price formula of the model contrary to the 
models where the jump’s sizes are not double exponentially distributed. 

Our difference with [6] model is that, we add asymmetric jumps into the Sto-
chastic Volatility process. Thus, the aim of this paper is to study the Double Ex-
ponential Jump Diffusion model with Stochastic Volatility that contains Jumps 
(DEJDSVJ). Another difference with [7] is the distribution of the jumps as we 
consider the double exponential distribution and also, the jump are not corre-
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lated. 
The paper is presented as follows. In Section 2, we analyze the dynamic of 

Bitcoin and introduce the model. In Section 3, we estimate the parameters and 
interpreted the results. We implement in Section 4 the option pricing exercises 
and compare the Double Exponential Jump-Diffusion with asymtric jump Sto-
chastic Volatility (DEJDSVJ) model with the the Double exponential Jump Dif-
fusion model with Mean Reverting Stochastic Volatility (DEJD) (i.e. no jumps in 
volatility) and the Stochastic Volatility (SV) model meaning the absence of 
jumps in both returns and volatility processes and finally, we graph and analyze 
the Implied Volatility surface in Section 5.  

2. Dynamic of Bitcoin  

Currently, Bitcoin knows a huge emergence. Traders and investors give it more 
attention because it is not controlled by a central authority. The technology be-
hind Bitcoin is an open source. Its properties are transparency, anonymous, fast 
transactions and cheap. Also, there is not prerequisites or interest rate for gov-
ernments or banks. All transactions made are registered by the blockchain sys-
tem whose functionnement depends on mining process. Since it was established, 
the price in USD dollar (exchange rate) of Bitcoin fluctuates by going either up 
or down. Thus, it generates a fear sentiment for some people to invest on it. 
Some studies have tried to investigate about the factors that drive the price ([12] 
[13]). The most common macroeconomic variables that were found are the 
supply of bitcoin, the media attention, interest rates. 

2.1. Analysis of Bitcoin Price, Returns and Volatility  

To analyze such dynamic, we use a daily time series data exhibited from the da-
tabase of COINBASE exchange platform one of the popular largest market of 
bitcoin based at USA. The data cover the time period from February 2015 to July 
2020. We use a big sample of data in order to avoid bias. Figure 1 depicts the 
bitcoin price chart with scattered spikes. 

It directly shows that the time series of the underlying is not stationary; there 
are discontinuities. The graph depicts many phases: 
• From February 2015 to April 2017, the graph fit to a very flat curve line; that 

period is considered as normal because there is not high fluctuations of the 
BTC-USD values. 

• From May 2017 to November 2017, data exhibit some steeply fluctuations. 
Regular ups and downs spikes are observed. 

• However the end of 2017 is marked by unregular increasing spike of the ex-
change rate that reaches for the first time a value around $20,000. Such 
change can be defined as an irregular component because it was unpredicta-
ble. During that period, the interest of media and governments about cryp-
tocurrencies increased. 

• After that, we notice a mildly decreasing curve up to half of 2019 again fol-
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lowed by some fluctuations of BTC-USD exchange rate. 
The aspect of the Geometric Brownian Motion (GBM) process is directly ob-

served. It represents the continuity part of a process. Generally, GBM assumes 
that a constant drift is accompanied by random shocks. 

Many options pricing models consider a given underlying asset as a conti-
nuous process (Black Scholes model [5], Heston model [8], etc.). However, em-
pirical analysis of data showed the presence of discontinuity on many processes 
like stock price, exchange rate, etc. Those discontinuities are defined as jumps 
processes. Jump processes provide more realistic results. The importance of 
jump-diffusion model is its ability to capture stylized facts as skew, leptokurtosis, 
volatility smile/skew etc as shown by [6]. Furthermore, many studies have 
shown the presence of jumps on bitcoin dynamics ([14] [15]) and therefore they 
are incorporated on pricing Bitcoin derivatives. 

As the price is nonstationary, we take the log returns as a response variable. 
Log returns are the first difference of the logarithm of the prices (see Equation 
(1)). 

( ) ( )1ln ln .t t tr P P−= −                       (1) 

where: 

tr  is the log returns at time t. 

tP  is the price of Bitcoin in USD at time t. Here, we took the log returns as 
percentage meaning that we multiply tr  by 100. In Figure 2, we have plotted 
the daily log returns of Bitcoin for the same data sample. 
 

 
Figure 2. Daily log returns (percent %) of Bitcoin from Coin base market over the period 
of February 2015 to July 2020. 
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The series of returns fluctuates around zero. Figure 2 depicts sustained pe-
riods of low or high volatility; it shows an effect of volatility clustering meanig 
that small returns are followed by small returns and large returns are followed by 
large returns. From 2015 to 2017, the values of returns are almost the same and 
slow. By 2017, we have high values. That sudden change in returns can be ex-
plained by the fact that the price was too high by that year. 

Thus, the residual is conditionally heteroskedastic. The use of stochastic vola-
tility in our work is supported by such effect of clusters. Also, [16] proved that 
the local and the time dependent volatility model do not necessarily capture the 
volatility clusters. Furthermore, the results of [17] showed that the dynamic of 
bitcoin is better modeled by the stochastic volatility model than the GARCH vo-
latility. 

In Figure 3, we depict the volatility of the same data frame used for the log 
returns. An analysis of such data gives an evidence that the volatility tends to 
fluctuate. Graphically, from the beginning to year 2017, we observe standard 
fluctuations (up and down movements). By end of 2017, there is a high move of 
the volatility that reverts down by 2018. 

2.2. The Model  

Here, we introduce the jump diffusion process with Stochastic Volatility Jump to  
 

 
Figure 3. Bitcoin volatility from coinbase market over the period of February 2015 
to July 2020. 
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model the dynamic of bitcoin. 
Let define e tX

tS =  with S the underling process of BTC-USD price and X is 
the basic state process such that:  

( )11d d d e 1 d .ty
t t t tX t V W Nµ= + + −                  (2) 

where µ  is the constant drift term, V  is the Stochastic Volatility with Jump 
defined as:  

( ) ( )22d d d e 1 d .ty
t t t t tV V t V W Nκ φ σ= − + + −              (3) 

1dW , 2dW  are the Brownian motion processes that are correlated. 1
ty , 2

ty  
are independent double exponentially distributed random variables such that:  
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= + −              (4) 
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′= + − ′              (5) 

where 1 1η > , 2 0η > , 1 0η′ >  and 2 0η′ > . 
dN  is a pure jump process following a poisson distribution with constant 

mean jump arrival rate λ . 
Let ( ), ,Ω    be the filtered probability space. Then using Itô’s formula un-

der the probability measure  , we introduce the diffusive price process d tS  of 
[6] 

( ) ( )log log e t
t

XS =  

( )( ) ( )d log dt tS X=  

( )( )11d d d e 1 dty
t t t t tS S t V W Nµ−= + + −     (6) 

By combining the above process with the stochastic volatility, we obtain the 
following dynamic model:  
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              (7) 

S is the exchange rate (BTC-USD price), V is the stochastic variance with 
asymmetric jumps. κ  is the mean reversion rate or the degree of volatility clus-
tering, φ  is the long-run mean of V; the process reverts to that level with a 
spread governed by κ . 

1
tW  and 2

tW  are two Brownian motion ρ -correlated; they represent respec-
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tively the diffusion processes for the S and V, 
N is a pure jump process following a poisson distribution with constant mean  

jump arrival rate λ  (i.e. ( ) ( ) ( )de d
d d

!

kt

k t

t
t N k

k

λ λ
λ

−

= = =  ). 

σ  is the volatility of volatility that controls the kurtosis. 
ρ  the correlation coefficient between the log returns and the volatility that 

affects the asymmetry or skewness. As there is not dividend yields on Bitcoin, we 
will not consider such parameter in the drift term of the log return process. 

Under the square root variance process, the model allows for systematic vola-
tility risk.  

3. Markov Chain Monte Carlo Estimation  
3.1. Procedure  

For the above model to be applicable in order to get option prices in following 
section, we have to estimate the values of parameters and the latent variables. 
Since [6] has introduced the double exponential jump diffusion model, many 
methods for estimation of the model’s parameters were used. Among them, we 
have the Maximum Likelihood Estimation (MLE) method ([18]), the Genera-
lized Method of Moment (GMM) ([19]), the Empirical Characteristic Exponent 
(ECE) ([20]), the Markov Chain Monte Carlo(MCMC) method ([9]) etc. In this 
study, we also consider the MCMC method. Our motivation is its efficiency to 
identify the latent variables such that the stochastic volatility, the jump sizes and 
the jump. First used in stochastic volatility model’s estimation by [21], MCMC 
method was extended in jump-diffusion models by [22] and it becomes very 
popular in quantitative finance. 

Markov Chain Monte Carlo methods are a class of algorithms that allows to 
find a posterior distribution and to sample from it a Markov chain for the set of 
parameters. Primarly, such methods were used in Bayesian statistics, computa-
tional physics, computational linguistics in order to address multi-dimensional 
problems. 

MCMC becomes popular in field of quantitative finance this year because of 
its ability to estimate the parameters of complex dynamic models that are devel-
oped to solve the problems in finance such as risk management and options 
pricing. The most meaningful part of the MCMC methods is the approximation 
of the posterior. Also called the conditional joint distribution of random va-
riables (parameters and latent variables) given the data, the posterior is derived 
from Baye’s formula such that:  

( ) ( ) ( ), | | , , .P L Y P Y L P Lθ θ θ∝                    (8) 

where Y is the data, θ  is the set of parameters of a given model and L 
represents the latent variables. 

After setting the initial values and the prior for each parameter, there are two 
approaches to get the posterior for each parameter: the Gibbs sampling method 
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and the Metropolis-Hastings M-H algorithm. For the former, it is used when the 
posterior distribution derived can be approximated to a known probability dis-
tribution or in case of conjugate posterior that means the prior and the posterior 
for a given parameter have the same distributions with different input hyperpa-
rameters. The M-H algorithms is considered when there is not a standard dis-
tribution that links with the posterior. A good overview of the MCMC methods 
can be found in [23]. 

In what follows, we highlight the different steps to consider before imple-
menting the MCMC algorithm in Matlab software. 

First of all, we discretize both the log returns and the stochastic volatility un-
der Euler-Maruyama discretization method.  

( )( )1 1
1t t t t tS S t V W t Z Jµ−∆ = ∆ + ∆ +  

1 1
t t t t tr t V B Z Jµ⇒ = ∆ + +  

1

t
t

t

S
r

S −

∆
= .  

t t t tV V V −∆∆ = −  

( ) ( )2 2
1 1t t t t tV V t V W t Z Jα β σ− −⇒ = + ∆ + ∆ +  

( ) 2 2
1 1t t t t t tV V t V B Z Jα β σ− −⇒ = + ∆ + +  

where 1,2, ,t T∈   is discrete daily time ( 1t∆ = ), α κφ=  and 1β κ= − , 
( )1tP J tλ= = ∆ . 

1B  and 2B  are respectively the standardized residuals of the diffusive 
processes 1W  and 2W . Regarding the properties of a geometric brownian mo-
tion, ( )W t  follows a gaussian distribution ( )0, t . Hence, it has the same 
distribution than itB  with ( )0,1iB  , { }1,2i∈ . 

The discretized model becomes:  
1 1

2 2
1 1

t t t t t

t t t t t t

r V B Z J

V V V B Z J

µ

α β σ− −

 = + +


= + + +
                  (9) 

After the discretization, we assume { }1 1 2, , , , pθ µ λ η η=  the set of parameters 
in returns, { }2 1 2, , , , , qθ α β σ η η′ ′=  contains the parameters of the stochastic vo-
latility and { }1 2, , ,V Z Z JΣ =  the set for the latent variables. 

Thus, { } { }1 2 1 2 1 2, , , , , , , , , , ,p qθ θ θ ρ µ λ η η η η α β σ ρ′ ′= =   represents the set 
of all parameters to estimate. 

Thus, we define the posterior distribution based on Baye’s formula to respect 
the principle of MCMC method. We obtain:  

( ) ( ) ( )1 2 1 2 1 2, , , , | | , , , , , , , ,P V Z Z J r P r V Z Z J P V Z Z Jθ θ θ= ×      (10) 

( ) ( ) ( ) ( )1 2 1 2 1 2, , , , | | , , , , , , , |P V Z Z J r P r V Z Z J P P V Z Z Jθ θ θ θ= × ×   (11) 

( )1 2| , , , ,P r V J Z Zθ  represents the likelihood of the data, 

( )1 2, , , |P V J Z Z θ  is the prior of the latent variables given their parameters 
respectively. 
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( )P θ  is the prior of the parameters. 
Furthermore, we assume that all parameters have mutually independent prior 

distributions. That implies  

( ) ( ) ( ) ( )1 2P P P Pθ θ θ ρ=                     (12) 

where 

( ) ( ) ( ) ( ) ( ) ( )1 1 2P P P P P P pθ µ η η λ=  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2P P P P P P P qθ α β σ η η′ ′=  

Based on relevant studies [7] [9] [24], we consider the following prior distri-
butions: ( )0,25Nµ  , ( )2,40Betaλ  , ( )1 10,40IWη  , ( )2 10,40IWη  , 

( )2,40p Beta , ( ) ( )2 1 2 2, 0 ,N Iα β × × , ( )2.5,0.1lnNσ  , ( )1 10,40IWη′ , 
( )2 10,40IWη′  , ( )2,40q Beta , ( )1,1Uρ − . IW represents the In-

verted-Wishart distribution. 
For the hyperparameters, we assume those in [24] and for the double expo-

nential distribution, parameters were set under convenience to obtain the con-
vergence of the chains. 

Further, we use conjugate posterior for all parameters except ρ  and σ  for 
which we consider the M-H algorithm. For the latent variables, the posteriors of 
the jump sizes 1Z  and 2Z  follow a double exponential distribution. The jump 
J has a Bernouilli distribution and the volatility V has a non stantard posterior; 
so we use the M-H algorithm to approximate it.  

3.2. Numerical Results and Analysis  

To estimate the above parameters under MCMC method, we consider a set of 
2000 daily data points from the Coinbase market. We use large sample of data to 
avoid bias. We run 5000N =  iterations with a burn-in of 500n =  iterations. 
We have chosen such burn-in period to remove the effects of initial values that 
affect only five hundred instead of one of the different chains. The value of each 
parameter x is obtained by averaging the sum of the posterior’s values over 
N n−  iterations:  

1

1 N

i
i n

x x
N n = +

=
− ∑                        (13) 

Hence, Table 1 contains the estimated value of the underlying model and two 
others models that are later used for comparison. 

We have the leverage effect with a negative value of ρ . It means that bad 
news about the market of BTC increase the price of such asset. Thus, we can ex-
plain the huge fluctuations of the price this last year by the attention about Bit-
coin. Although, some investors defend the importance of using Bitcoin, there are 
a lot of critics about it supported by governments and banks that do not trust the 
digital currency. The values 1η  and 2η  show the interest of incorporating the 
jumps in returns. In addition, the values of α  and β  exhibit an important 
value of spread κ  and mean φ  of revesion. So, the Stochastic Volatility is very 
useful for BTC price. 
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Table 1. MCMC parameter’s value of the three models using BTC daily return from Jan-
uary 29, 2015 to July 19, 2020. 

Parameters DEJD DEJDSVJ SV 

µ  0.1839 0.1542 0.1843 

1η  52.9287 49.2762 - 

2η  42.0980 33.0683 - 

1η′  - 43.9765 - 

2η′  - 39.6936 - 

λ  0.0011 0.0028 - 

α  12.1648 12.0071 12.1641 

β  −0.7824 −0.7736 −0.7825 

ρ  −0.0871 −0.1084 −0.0878 

σ  0.3532 0.4 0.353 

p 0.0009 0.0025 - 

q - 0.0024 - 

 
After estimation, we checked the sensitivity of the posterior regarding the 

prior distributions assumption. It concerns the convergence of each chain. For 
that purpose, we graph the trace plot of each chain with respect to the simulation 
index. 

Figure 4 contains the twelve trace plots that represent each chain for each pa-
rameter of the DEJDSVJ model. Each graph proves the convergence for one of 
the parameters.  

We obtain quick convergence for each parameter (after 500 iterations over 
5000). Thus, the prior distributions and the likelihood function of the data given 
the parameters are well chosen. The data too are well sampled.  

In the following section, the parameters values of the models are used to price 
European call options. 

4. Mechanism of European Call Option Pricing 
4.1. Monte Carlo Simulations of the DEJDSVJ Model  

An option pricing model involves a probabilistic approach to assign a fair value 
for an option. An option is a contract that gives the holder the right but not the 
obligation to buy (call option) or to sell (put option) an underlying security at a 
pre-determined price at (European option) or before (American option) a ma-
turity time. The variables considered to price options are the current market 
price, the strike price, the volatility, the interest rate and time to maturity. 

Let   be the probabilty measure under which options are priced. 
Let ( )S t  be the price a time t, r the interest rate, K the strike and T the ex-

piry time. 
The European Call Option price is defined as follow: 

( ) ( ) ( )( )( )e r T tC t S T K
+− −= −                   (14) 
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Figure 4. MCMC trace plots of the parameter samples for the DEJDSVJ model. (a) µ , (b) λ , (c) α , (d) β , (e) ρ , (f) 1η , (g) 

2η , (h) σ , (i) p, (j) 1η′ , (k) 2η′ , (l) q. 
 

where, ( )( ) ( )( )max ,0S T K S T K
+

− = −  represents the payoff ( )Tφ  of the 
option at T. For the call option to have a value, ( )S T  should be greater than K; 
otherwise, it is called a worthless Call Option. Many models are developed to 
value options such as the benchmark Black-Scholes Merton model [5], the Bi-
nomial option pricing, the Monte Carlo simulation etc. We are motivated by the 
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later due to its efficiency to simulate price paths for high dimensional stochastic 
processes that have sources of uncertainty. The M.C simulation is based on the 
Euler-Maruyama discretization of the dynamic model. Knowing the price at 

0t = , the Strike K, the interest rate r and T the maturity in term of years, we 
compute the steps below to get an approximation of the European Call Option 
using the parameters in Table 1 for the model: 
• We choose two large numbers M the number of M.C simulations for price 

and N the number of time steps. 

• Tt
N

∆ =  is the time steps. 

For 1, ,i M=  : 
• We generate the sources of uncertainty (randomness) 1

iB  and 2
iB  that are the 

standardized residuals of the discrete model. 1B  and 2B  are ρ -correlated. 
Then using the Cholesky decompositon, we construct two functions 1B  and 

2B  with two independent standard normal random variables 1ε  and 2ε  
such that: 

1 1

2 1 2 21
i i

i i i

B

B

ε

ρε ρ ε

 =


= + −
 

• We simulate the stochastic volatility iV , the log of the price iX  and the 
price iS   

( ) ( )1 2 2 2
1 1 1i i i i i i iV V t V t Z Jα β σ ρε ρ ε− −= + ∆ + + − ∆ +      (15) 

1 1
1i i i i i iX X t V t Z Jµ ε−= + ∆ + ∆ +                (16) 

( )expi iS X=                         (17) 

• We calculate the payoff ( )i iS Kφ += −  and we compute the expected payoff 
as follow:  

( )
1

M
i

i M
φ

φ
=

= ∑                         (18) 

• Finally, we obtain the Call Price by discounting the expected payoff:  

( ) ( )e rTC T φ−=                        (19) 

In what following, we consider the Monte Carlo Simulation described above 
to obtain the European Call Option Prices for the three models in order to com-
pare them.  

4.2. Calibration  

Calibration is very important because it shows the impact of the model over the 
prices. To calibrate the model’s call prices with the Bitcoin Options market, we 
consider the European call prices from the Deribit Options market on February 
22, 2021 for 18 days, 32 days and 65 days to maturity. In Table 2, we made a 
comparison between those market’s prices, the DEJDSVJ model European Call  
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Table 2. Call option prices comparison. 

Expiry 
Time 

Stock  
Prices 

Strikes 
Market 
Calls 

DEJD 
Calls 

DEJDSVJ 
Calls 

SV Calls 

18 days 56,901.94 54,000 6629.46 6903.9 6798.8 5835.5 

18 days 56,901.94 56,000 5605.1 5689.7 5633 4753.4 

18 days 56,907.94 58,000 4723.36 4651.1 4555.3 3826 

18 days 56,907.94 60,000 3955.47 3600.6 3664.1 3039.5 

18 days 56,907.94 62,000 3272.22 3023 2901.2 2386.1 

32 days 57,716.26 48,000 11,606.25 13,259 12,767 10,680 

32 days 57,716.26 52,000 9754.54 10,191 10,074 7671.1 

32 days 57,716.26 56,000 7676.18 7577.6 7485.9 5236.4 

32 days 57,738.26 60,000 6004.57 5410.6 5296 3410.8 

32 days 57,738.26 64,000 4676.25 3897.5 3746.2 2114.3 

65 days 55,934.21 52,000 11,327.08 12,994 12,487 10,459 

65 days 55,934.21 56,000 9593.51 10,596 10,746 8596.9 

65 days 55,955.65 60,000 8140.86 8871.5 8432.1 7037.7 

65 days 55,955.65 64,000 6910.42 6989.7 6829.5 5726 

 
Prices, the DEJD model European Call Prices, the SV model European Call Pric-
es. Such comparison is to check the impact of each model and its efficiency re-
garding how it approaches the real market’s prices. For each model, we run 

20000M =  simulations.  
The prices of the DEJDSVJ model approach well the market’s prices followed 

by the prices of the DEJD model for all three expiry times over different strikes. 
The results show that the SV model is not a good model for the BTC market op-
tions pricing. 

An error measure method is used to check the goodness of fit. For that pur-
pose, there are many methods as the Root Mean Square Error, the Average Ab-
solute Error, the Average Percentage Error (APE) used by [10]. We use the APE 
because of its ability to not skew error rate around or equal to zero ([10]). The 
formula is:  

1

1APE
N i i

i

C C

N ω=

−
= ⋅∑



                    (20) 

where,  

1

1 N

i
i

C
N

ω
=

= ∑  

N is the number of options used, iC , the market price and iC  the price for a 
given model. 

Table 3 contains the Average Percentage Error for each model at a given time 
of maturity.  

The APE for the DEJDSVJ model is smaller meaning that model outperforms 
the other models. Furthermore, the three graphs in Figure 5 show the prices of  
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Table 3. APE for each model at 18, 32, 65 days before maturity. 

Model APE for 18 days APE for 32 days APE for 65 days 

DEJDSVJ 4.2% 8.3% 7.4% 

DEJD 4.3% 8.9% 9.6% 

SV 17.9% 26.7% 11% 

 

 
Figure 5. Call option prices of the BTC Options markets, the DEJD model, the DEJDSVJ model and the SV model. 

 
the three models and the market prices against the strikes for each expiry. The 
curves of the DEJDSVJ’s prices and the DEJD’s prices are much closer to the 
market’s prices. It confirms that the DEJDSVJ and DEJD models are better than 
the SV model when pricing options in BTC market. 

We explain such performance of the DEJDSVJ model over other models by 
the incorporation of the jumps in both returns and volatility. That shows the re-
cent importance of jumps when modelling financial assets.  

5. Implied Volatility Surface  

Implied Volatility captures the future expectations of a security’s price. Fore-
casting the Implied Volatility is very important in trading and investments. It 
helps to buy cheap and to sell expensive in order to make a profit. 

We analyze such volatility in this paper by drawing the Implied Volatility sur-
face over Strikes and Maturity times. In Table 4, we have the European Call Op-
tions for different strikes and maturity times. We fix the current market price at 

9000S = , 20000M =  M.C simulations and we use the parameters of the 
DEJD model to obtain the premiums. In Figure 6, we have the volatility surface 
of the option’s premiums in Table 4. The surface shows two phenomenon:  
• The long-dated options have higher Implied Volatility than the short-dated 

options;  
• As the strike price increases, the Implied Volatility decreases.  

As a result, it is profitable for traders and investors to buy strategies such that 
calls, puts with short expiry date (low Implied Volatility) and to sell strategies 
that have long maturity time.  
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Table 4. Call option prices for the double exponential jump diffusion model with sto-
chastic volatility jump (DEJDSVJ) model. 

Strike K 
 

Maturity T 
1 7 30 60 90 180 

8000 1015.1 1160.5 1720.1 2304.9 2873.3 4703 

8100 910.3 1072.3 1635.3 2272.7 2846.5 4666.6 

8200 815.4 993.3 1576.6 2179.1 2734.1 4503.1 

8300 718.2 913.5 1502.3 2183 2725 4432.9 

8400 619.5 838.6 1448.4 2029.4 2649.4 4388.5 

8500 530.7 774.9 1378 2013 2613.6 4192.7 

8600 441.7 682 1321.7 1905.3 2583.2 4269.8 

8700 359.3 640.6 1235.7 1900.2 2485.2 4159.1 

8800 282.9 584.8 1193.7 1806.1 2435.8 4212.9 

8900 214.2 516.6 1140.1 1768.5 2340.1 4196 

9000 161.2 460.2 1071.7 1743.8 2268.2 4127.5 

9100 115.9 411.8 1038.1 1687.7 2272.2 3923.1 

9200 79.1 366.3 960.8 1645.9 2189.8 4013.6 

9300 53 311.2 954.7 1560.6 2117.5 3825.4 

9400 34.3 283.2 883.7 1489.4 2074.9 3783.3 

 

 
Figure 6. Implied volatility surface. 

6. Conclusions  

Recently, digital currencies gain a wide attention from economists, investors, 
traders and academicians, etc. Bitcoin, the first released cryptocurrency is the 
most popular because of its price’s fluctuations (USD price) and the high level of 
volatility. Such interest challenges people to think about the future of Bitcoin 
and to improve more studies about it that will be helpful for traders and miners 
to avoid losses. 

Following that wave, this paper extends the literature about jump-diffusion 
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models for Bitcoin market by introducing a Double Exponential Jump-Diffusion 
model combined with a Stochastic Volatility process that incorporates asymme-
tric jumps. Theoretically, the choice of such model is supported by the impor-
tant features captured by jumps in both returns and volatility as Bitcoin is too 
volatile. The importance of the double exponential distribution is its memoryless 
property and it allows to see easily the difference between the magnitudes (upward 
and downward) and intensities of jumps via the parameters 1 2 1 2, , , , ,p qη η η η′ ′ . 

As pricing options can help for portfolios management, the mechanism of call 
options pricing using the underlying DEJDSVJ model shows much better per-
formance than the DEJD model (no jumps in volatility) that outperforms the 
Stochastic Volatility where jumps are missing in both returns and volatility. 
Such outcomes also support the model.  

A final conclusion is our results that meet the expectations. 
The results presented in this paper concern only the Bitcoin data under 

Jump-Diffusion model in which the jumps are asymmetric Double exponentially 
distributed. However, for further works, one can consider the Pareto-Beta 
Jump-Diffusion that also allows for two approaches towards jumps’ magnitudes 
in order to explore the Bitcoin market. 
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