
Journal of Mathematical Finance, 2020, 10, 412-430 
https://www.scirp.org/journal/jmf 

ISSN Online: 2162-2442 
ISSN Print: 2162-2434 

 

DOI: 10.4236/jmf.2020.103025  Aug. 25, 2020 412 Journal of Mathematical Finance 
 

 
 
 

Evaluating Energy Forward Dynamics Modeled 
as a Subordinated Hilbert-Space Linear 
Functional 

Victor Alexander Okhuese1*, Jane Akinyi Aduda2, Joseph Mung’atu2 

1Department of Mathematics, Pan African University Institute for Basic Science Technology and Innovation, Nairobi, Kenya 
2College of Pure and Applied Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 

 
 
 

Abstract 
In this study, we evaluate energy forward dynamics modeled as time-change 
Hilbert-space of linear functional. The energy forward is represented as an 
element of Hilbert-space of function. Representing energy forward and fu-
tures contracts as a time-changing stochastic process in a Hilbert-space of 
functions shows clearly, that an arbitrage-free forward price can be derived 
from the buy-and hold strategy in the energy market thereby enabling inves-
tors in the market willing to be salvage from the market uncertainties as well 
as Arrow-Debreu situations to execute a spot or forward contracts depending 
on the time and place the market becomes favorable. With a clock measuring 
speed of evolution or data frequency for the energy stock market, the distri-
bution of the increments of the Lévy process with the subordinator is subor-
dinated to the distribution of increments of the Lévy process and the results 
are utilized to price forward contracts of a sample electricity commodity. 
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1. Introduction 

The forward pricing dynamics of an incomplete Arrow Debreu world reveals in-
teresting challenges to speculators and one such challenge is the stochastic na-
ture of the return process for every investment in an underlying commodity 
stock. In this study, we define such return process as ( )X t  and assume a fre-
quently changing property of time series data in discrete space. Also, the pricing 
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model of the return process is assumed to be impacted by the fluctuation in the 
price caused either by contago or normal backwardation. Hence, the evaluation 
of the forward dynamics of the underlying commodity while incorporating the 
time-change component as an incomplete energy market is very significant for 
this study. 

Interestingly, we adopt the completeness properties of a Banach space (a spe-
cial type of Hilbert space) such that the return process ( )X t  is defined in some 
normed space (i.e. complete, without hole) to enable us capture all discrete 
moving forward rates in the corresponding forward curves of the pricing dy-
namics, as such adopting similar approach by [1] and [2]. This approach is con-
sidered such that the distance between two nodes defined by the daily change 
price on the curve is defined in norm spaces with no gap in the sequence 

1 2, , , ,t t t t nX X X X+ + + , where 1,2,3,n =   with each representing a node in a 
forward curve of the energy forward contracts. 

Furthermore, for our time-change evaluation process and according to [3], the 
usual subordination procedure can be used to generate a Banach space valued 
Lévy processes and with the dynamics from other commodities markets like 
power and gas we pick a motivation for this study due to the presence of strong 
seasonality patterns, high degree of idiosyncratic risk over different market seg-
ments and leading to spikes in the forwards contract curve. Similarly, in other to 
capture all forward driven prices and capture the corresponding rates, the return 
process will be moved from general Lévy process to a subordinated Lévy process 
in discrete time. 

Meanwhile, the arbitrage-free forward price is derived from the buy-and-hold 
strategy in the underlying spot commodity and the forward price dynamics is 
thus implied from a given stochastic model of the spot commodity based upon 
similar method used by [4] and [5]. Therefore, the representation of the forward 
price as the conditional expected value of the spot at time of delivery is 
represented. As such the expectation is estimated with respect to an equivalent 
martingale measure Q which is only possible if the price of the spot commodity 
is specified by a semimartingale dynamics. 

In literature ([4] [6] [7] and [8]), it is clear that the fundamental relationship 
between the spot and forward is highly delicate in energy markets and it is only 
fair to model the forward price dynamics directly. 

2. Preliminaries 
2.1. Characteristics Function of a Subordinated Lévy Process  

Definition 1 A return process ( ){ } 0t
X t

≥
 used in this study as Lévy process, 

with non-decreasing paths almost surely, are called subordinators and such 
processes can be thought of as random models of the evolution.  

A wide class of return processes appearing in application is obtained by sub-
ordination of Lévy processes with drift. Also, a stochastic time-change to the 
Lévy process amounts to stochastically altering the clock on which the Lévy 
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process runs. 
Meanwhile, for the return process ( )X t , the subordinated process is such 

that  

( ) ( )( )X t L t= Θ                         (1) 

where the subordinator ( )tΘ  and ( )L t  are increasing Lévy processes with 
independent and stationary increments. 

According to [9] every semi-martingale ( )X t  can be written as a time-changed 
Brownian motion (Lévy process), where the random time ( )tΘ  is a positive 
and increasing semi-martingale. As a result, there exist an incremental and sta-
tionary Brownian motion ( )( ), 0B u u ≥  and a random time-change ( )tΘ  
which forms an increasing stochastic process  

( ) ( )( )X t B t= Θ                        (2) 

Hence, every semi-martingale can also be written as a time-changed Lévy 
process such as  

( ) ( )( )tX t X L t= = Θ                     (3) 

The distribution of increments ( )( )L t∆ Θ  is said to be subordinate to the 
distribution of increment ( )L t∆ ; where ( )t∆  is the data frequency or a clock 
measuring the speed of the evolution. 

Meanwhile, in developing a subordinated Lévy process with varying time, the 
characteristic function of a subordinated process ( )X t  is utilized which is ob-
tained by composition of the Laplace exponent of ( )tΘ  with the characteristics 
exponent of ( )L t . 

Suppose we let ( ) 0t t≥
Θ  be a subordinator that is a Lévy process whose tra-

jectories are increasing. Since ( )tΘ  is a positive random variable for all t it is 
described by its Laplace transform rather than the Fourier transform. Let the 
characteristic triplet of ( )tΘ  be ( ), ,ρ αΘ . Then the moment generating func-
tion of ( )tΘ  is given by;  

( )*
e e , 0t tL uuE uΘ  = ∀ ≤                       (4) 

where  

( ) ( ) ( )*
0

e 1 duxL u u xα ρ
∞

= + −∫  

and ( )*L u  is the Laplace exponent of ( )tΘ . Since the time-changed process 
( )

tt tX L LΘ= = Θ  is a stochastic process evaluated at a stochastic time, its cha-
racteristics function involves expectation over two sources of randomness  

( ) e t
t

iuL
X u E Θ Φ =    

( ) e |
t

iuL
X tu E E  Φ = Θ =  

   

where the inside expectation is taken on 
t

LΘ , conditional on a fixed value of 

tΘ =   and the outside expectation is on all possible value of tΘ . If the random 
time tΘ  is independent of tL , the randomness due to the Lévy process can be 
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integrated out using moment generating form of tL  given by  

( ) e t
t

iuL
L u E  Φ =    

( ) ( )e L
t

i u
L u − Ψ Φ =    

and a characteristics function of tX , that is  

( ) e t
t

iuL
X u E Θ Φ =    

( ) e |
t

iuL
X tu E E  Φ = Θ =  

   

( ) ( )e L
t

i u
X u E − ΨΦ =  

( ) ( )( )*
t tX Lu L uΘΦ = Ψ  

Under independence, the characteristics function of 
ttX LΘ=  is just the 

Laplace transform of tΘ  evaluated at the characteristics component of tL . 
Let ( ) 0t t

L
≥

 be a Lévy Process on   with characteristics exponent ( )uΨ  
and triplet ( ), ,vσ γ  and let ( ) 0t t≥

Θ  be a subordinator with Laplace exponent 
( )*L u  and triplet ( ), ,aρΘ . Then the subordinated process ( )X t  defined by;  

( ) ( )( ) ,X t L t= Θ                        (5) 

is also a subordinated Lévy process with characteristics function  
( )( )*

e e .t tL uiuXE Ψ  =                        (6) 

Therefore, in defining a parametric Lévy process is to obtain an Lévy process 
by subordinating a Brownian motion with an independent increasing Lévy 
process. However, for a continuous time change process, we it is necessary to 
evaluate the stochastic time integral of the subordinated Lévy process linear in 
each argument.  

2.2. Stochastic Integrals of a Subordinated Lévy Process in Hilbert  
Space  

Since the time-changed return processes tX  and tY  are independent subor-
dinated Lévy processes evaluated at a stochastic time, and using the approach in 
[10], we derive some general results on the stochastic integral represented as li-
near functional in a subordinated Hilbert space. Suppose we define a subordi-
nated stochastic integral Y in the form  

( ) ( ) ( )
0

d ,
t

Y t s L s= Ψ∫                      (7) 

for a Lévy process ( )L t  with values in a separable Hilbert space U and an 
integral stochastic process : U H+Ψ × → , and considering the stochastic par-
tial differential equation  

( ) ( ) ( )( ) ( ) ( )d d d ,X t AX t t t t L t tα σ= + + ∈             (8) 

on the interval [ ]0,T=  with H being a separable Hilbert spaces equipped 
with some boundary conditions where  

https://doi.org/10.4236/jmf.2020.103025


V. A. Okhuese et al. 
 

 

DOI: 10.4236/jmf.2020.103025 416 Journal of Mathematical Finance 
 

• :A H H→  is a first order differential operator  
• : Hα →  is a mapping with Brochner-integrable trajectories  
• :L H→  is a square-integrable, H-valued stochastic process with cova-

riance operator 1Q L+∈ .  
• ( )( )1 2: ,L Q H Hσ →  is an operator-valued process.  

Suppose for convenience, we are only interested in one-dimensional martin-
gales, i.e., we are interested in  

( ) ( )( ) ,Y t Y t= ϒ                        (9) 

where ϒ  is a continuous linear functional on the state space H of Y. Therefore, 
by replacing ( )Y t  with ( )X t  assuming the characteristic of the subordinated 
process we have;  

( ) ( )( ) ( )
0

d .
t

X t s L s= ϒ Ψ∫                    (10) 

Suppose we take U as finite dimensional, and some standard (real-valued) 
Brownian motion ( ){ } 0t

B t
≥

 and Itô integral stochastic process σ  such that  

( ) ( ) ( )
0

d
t

X t s B sσ= ∫                     (11) 

This leads us to Theorem 1 which shows that a similar representation holds if 
U is any separable Hilbert space. 

Theorem 1. Let n∈  and H, U be separable Hilbert spaces. Let L be a 
square integrable and mean zero U-valued Wiener process with coveriance 

1Q L+∈ . Assume that ( )Dimran Q n≥  and Q is positive definite. Let 2
LΨ∈ℵ ,

( ), nL Hϒ∈   and define  

( ) ( ) ( )( )0
d .

t
X t s L s= ϒ Ψ∫  

Then there is an n-dimensional standard Brownian motion B such that  

( ) ( ) ( )
0

= d ,
t

X t s B sσ∫  

where ( ) ( ) ( )( ) ( )* 1
2 *

2
*

Bs s Q sσ = ϒΨ Ψ ϒ ∈ℵ  . If ( )sσ  is invertible in n n×  

for Pλ ⊗ -almost any s∈ , then ( )1 2 n
Xσ − ∈ℵ   and  

( ) ( )( ) ( )1

0
d .

t
B t s X sσ

−
= ∫                    (12) 

Proof: Let Ψ  be an elementary random variable such that there exist n∈ , 
0 j ja b≤ ≤ < ∞ , and 

jaF -measurable square integrable random variables jY  
and ( ),j L U Hψ ∈  such that  

,
1

1 .
j j j

n

j a b
j

Y
ψ  =

Ψ = ∑  

By definition of L, we have ( ) ( )( )L t W t= Θ  for a U-valued Wiener process 
W with martingale covariance WQ  and a subordinator Θ . Let Γ  be the iso-
metric embedding given in Lemma (1). Note that ( )( )Γ ϒΨ = ϒΓ Ψ  because 
this holds if Ψ  is elementary. From Lemma (1) and Theorem (1) we have;  
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( ) ( )( ) ( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )

0 0

0

10

d d

d

d

t t

t

t

s L s s L s

s W s

s B sσ

Θ

Θ

ϒ Ψ = ϒΨ

= ϒΓ Ψ

=

∫ ∫

∫

∫

 

where B is a standard Brownian motion on n  and  

( ) ( )( )( )1 2* *
1 .Wt Q tσ = Γ ϒΨ Ψ ϒ  

Applying Lemma (1) again gives  

( ) ( )( ) ( ) ( )
0 0

d d
t t

s L s s N sσϒ Ψ =∫ ∫                 (13) 

where ( ) ( )( )N t B t= Θ , t +∈  and  

( ) ( ) ( )( )* * .Wt t Q tσ = ϒΨ Ψ ϒ  

here, N is an n-dimensional Lévy process with the desired properties and the 
martingale covariance LQ  of L and WQ  of W coincide based on the above 
theorem ([10]). 

Based on results in [3] we conclude the construction of the stochastic integral 
based on Equation (10);  

( ) ( ) ( )
0

d
t

X t s L s= Γ∫  

where ( )2L M U∈  and ( ) ( )s sΓ = ϒ Ψ  are operators from U to another 
Hilbert space H. 

However, in order to express the subordination in terms of standard Brow-
nian motion, we make the following definition:  

Definition 2. A subordinated Brownian moion L with values in some Hilbert 
space U is a Lévy process such that there is a U-valued Brownian motion B and a 
subordinator Θ  which is independent of B such that  

( ) ( )( ).L t B t= Θ  

Subordinated Brownian motion L, N are of same type if there are Brownian 
motions LB , NW  and subordinators LΘ , NΘ  such that NB , NΘ  are in-
dependent, LB , LΘ  are independent, LΘ , NΘ  have the same law and for 
any t +∈ . Subordinated Brownian motions have some similarities with Brow-
nian motion if the subordinator has finite first moment. In particular, the set of 
integrands can be compared easily. First, we recall the notion of time-changed 
filtrations:  

Definition 3. A time-change is a right-continuous increasing family 
( )( )t
t

+∈
Θ


 of stopping times with respect to some right-continuous filtration 

( )t t
F

+∈
. The time changed filtration is the filtration given by  

( ) ( ) .t t s
s t

F F F tΘ
+Θ Θ

>

= = ∈


  

Let X be an F-adapted stochastic process and assume that the time-change is 
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finite valued. The time-changed process by ( ) ( )( )=X t X tΘ Θ , t +∈ . There-
fore, adding the following results on stochastic integration with respect to sub-
ordinated Brownian motions.  

Lemma 1. Let B be a mean-zero Brownian motion with values in a separable 
Hilbert space U relative to some filtration ( )t t

F
+∈ , H be another separable Hil-

bert space, ( )2 ,L G Hψ ∈ℵ , Θ  be a non-zero subordinator with finite moment 
such that ( )tΘ  is a stopping time for each t +∈ . Let ( )t t

G
+∈

 be the 
time-changed filtration given by ( )t tG FΘ=  and ( ) ( )( )L t B t= Θ , t +∈ . 
Then L is a U-valued square integrable Lévy process and there is an isometric 
embedding ( ) ( )2 2: , ,L BG H F HΓ ℵ →ℵ  such that  

( ) ( ) ( ) ( )( ) ( )
0 0

d d , -almost surely
t t

s L s s B s Pψ ψ
Θ

= Γ∫ ∫         (14) 

where the left stochastic integral is with respect to the filtration ( )t t
G

+∈ , the 
right stochastic integral is with respect to the filtration ( )t t

F
+∈

.  
Proof: See proof in [7]. 
Therefore, we can see from the above construction that Equation (14) holds 

for elementary integrands, and thus for all integrands by a density argument in 
the Hilbert space. We can use results from Lemma (1) to derive a link between 
functionals of the infinite-dimensional stochastic integral and finite dimensional 
versions of it. 

2.3. Evaluating Energy Forward Dynamics as a Subordinated  
Hilbert Space  

In this section, we use the properties of Hilbert space to represent the forward 
and futures prices in energy markets as an element of Hilbert space of functions. 
Motivated by results in [10], it is observed that the various relevant forwards and 
futures contracts traded in energy markets, which deliver the underlying over a 
period rather than at a fixed time in the future, can be understood as a bounded 
operator on a suitable Hilbert space. 

We begin by stating the following relevant assumption from the Filipovic 
space [11] which supports the Hilbert space appropriate for our considerations. 

H1: The functions h H∈  are continuous and the pointwise evaluation 
( ) ( )h hτ τ=  is a continuous linear functional on H, for all Rτ +∈ . 

H2: The semigroup ( ){ }|S t t +∈  is strongly continuous in H with infinite-
simal generator denoted by A. 

Therefore, we use the previously defined class of Hilbert space which follows 
from the Filipovic space satisfying (H1)-(H2) and which are coherent with eco-
nomical reasoning about the forward curve ( )hτ τ↔ . 

Since in practice the forward curve is obtained by smoothing data points using 
smooth fitting methods it is reasonable to assume;  

( )2

0
dh τ τ

∞
′ < ∞∫                      (15) 

defined on wH  of absolutely continuous functions :h + →  . Moreover, the 
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curve flattens for large time to maturity τ . There is no reason to believe that the 
forward rate for an instantaneous loan that begins in 10 years differs much from 
one which one day later. We take this into account by penalizing irregularities of 
( )h τ  for large τ  by some increasing weighing function ( ) 1w τ ≥ , that 

( ) ( )2

0
dw hτ τ τ

∞
′∫  for a given continuous and increasing weight function 
[ ): 1,w + → ∞  with ( )0 1w = . The norm of wH  is 2 ,wg g g=  for the 

inner product  

( ) ( ) ( ) ( ) ( )
0

, 0 0 d .f h f h w h fτ τ τ τ
∞

′ ′= + ∫  

here , wf h H∈ . We assume that ( )1
0

dw τ τ
∞ − < ∞∫ . The typical choice of weight 

function is that of an exponential function ( ) ( )= e ww ττ   for a constant 0w > , 
in which case the integrability condition on the inverse of w is trivially satisfied. 
From [11], we know that wH  is a separable Hilbert space. As we shall see, one 
can realize energy forward prices as linear operators on wH  and in fact interp-
ret energy forward prices as stochastic processes with values in this space. 

A simple motivation for the appropriate choice of wH  is the classical model 
for the dynamics of energy spot prices in the so-called Schwartz dynamics [12]. 

Here, the spot price ( )S t  at time 0t ≥  is given by  

( ) ( )( )expS t X t=  

for a standardized subordinated return process ( )X t  defined in an 
Ornstein-Uhlenbeck (OU) process  

( ) ( )d d dX t t L tµ σ= +                      (16) 

with a corresponding risk-neutral process given by  

( ) ( )( ) ( )d d d ,X t X t t L tα µ σ= − +                  (17) 

driven by a Lévy process ( )L t . We assume that ( )1L  has exponential mo-
ments, 0ρ > , µ  are constants, and ( ) ( )ln 0 0S X τ= = ∈ . It is simple to 
see that ( ),f tτ τ  is continuously differentiable for every t, and  

( ) ( ) ( )( ) ( )( ), , e e .f t f t X tατ αττ τ α µ φ
τ

− −∂
= − +

∂
 

From [12], we get the forward price ( ),f t T  at time 0t ≥ , for a contract de-
livering at time T t≥ , is given;  

( ) ( ) ( ) ( )( ) ( )( )0
, exp e 1 e e d

T tT t T t sf t T X t sα α αµ φ
−− − − − −= + − + ∫  

with φ  being the logarithm of the moment generating function of ( )1L . Sup-
pose we model the spot price directly under the pricing measure Q. Letting 

0T tτ = − ≥ , we find (by slightly abusing the notation)  

( ) ( ) ( ) ( )( ) ( )( )0
, exp e 1 e e d .sf t X t s

τα τ α τ ατ µ φ− − −= + − + ∫  

Assuming that the weight function w is such that  

( ) ( )2 1e .w Lαττ −
+∈   
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Then it follows that ( )( )
0

exp dsφ ατ
∞

− < ∞∫  from the Cauchy-Schwartz in-

equality and the assumption ( )1
0

dw τ τ
∞ − < ∞∫ . Hence, f is uniformly bounded 

in τ  since  

( ) ( ) ( )( )0
, exp e d .wsf t X t sτ µ φ

∞ −≤ + + ∫  

But then  

( ) ( )( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( )

222 2
0

2 2 2
0 0

,. exp , e e d

e 1 e d e d ,

x
w

X t

f t X t w f t X t x

c w w

ατ α

ατ ατ

τ τ α µ φ

τ τ τ φ τ

∞ − −

∞ ∞− −

= + − +

≤ + +

∫

∫ ∫
 

which shows that ( ),. wf t H∈ . If L is a driftless Lévy process, the exponential 
moment condition on ( )1L  yields that ( )φ τ  has the representation  

( ) { } ( )2 21 e 1 d
2

z z zτφ τ σ τ τ υ= + − −∫                (18) 

for a constant 0σ ≥  and Lévy measure ( )dzυ . But by the monotone conver-
gence theorem and L’Hopital’s rule, we find that  

{ } ( ) ( )2
20

1 1lim e 1 d d ,
2

z z z z zτ

τ
τ υ υ

τ→
− − =∫ ∫ 

 

such that Equation (18) becomes  

( ) ( )( )
2

2 2 d
2

z zτφ τ σ υ= + ∫  

and therefore ( ) 2~φ τ τ  when τ  is small. Thus, a sufficient condition for 
( ),. wf t H∈  is ( ) ( ) ( )2 1e ,w Lαττ −

+∈   . 
Therefore, we now represent the realization in wH  of general energy for-

ward and futures contracts with a delivery period. Suppose that ( )1 2, ,F t T T  is 
the forward price at time t of a contract on energy delivering over the time in-
terval [ ]1 2,T T , where 1 20 t T T≤ ≤ <  [12]. Then we can express this price as  

( ) ( ) ( )2

1
1 2 1 2, , ; , , d ,

T

T
F t T T w T T T f t T T= ∫               (19) 

where ( ), ,f t T t T≤  is the forward price for a contract “delivering energy” at 
the fixed time T, and ( )1 2; ,w T T T  is a deterministic weight function defined by;  

( )1 2
2 1

1;, ,w T T T
T T

=
−

                     (20) 

for the forward-style contracts and  

( )
2

1

1 2
e; ,
e d

rT

T rs
T

w T T T
s

−

−
=
∫

                    (21) 

for the futures style. 
Here 0r >  is the risk-free interest rate which we suppose to be constant. In 

the energy market on NYMEX, say, WTI oil is delivered physically at a location 
over a given delivery period like month or quarter. We will therefore have the 
same expression (19) for the oil forward prices as in the case of energy forwards. 
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Meanwhile, futures on WTI oil index deliver the money-equivalent from the ag-
gregate index value over a specified period. Hence, the futures can be expressed 
as  

( ) ( )2

1
1 2, , , d ,

T

T
F t T T f t T T= ∫  

where ( ),f t T  is the futures price of a contract that delivers the corresponding 
index at the fixed delivery time T t≥ , i.e., the weight of the futures contracts 
can be expressed by (19) with  

( )1 2; , 1w T T T =                         (22) 

as the weight function. Aiming at a so-called Museila representation of 
( )1 2, ,F t T T  in (19). Define 1T tτ = −  as the time until start of delivery of the 

swap and 2 1 0T T= − >  as the length of delivery of the swap. With the nota-
tion ( ) ( ), ,g t y f t t y= + , we write  

( ) ( ) ( ), , , , , dwG F t t t w t y g t y y
τ

τ
τ τ τ

+
= + + + = ∫



 

          (23) 

for the weight function ( ), ,w t yτ


 defined by  

( ) ( ), , ; , ,w t y w t y t tτ τ τ= + + + +



                (24) 

where [ ],y τ τ∈ +  , 0τ ≥  and 0t ≥ . Referring to the different cases of the 
weight function w , we find that ( ), , 1w t yτ =



 for a forward contract and 
( ), , 1w t yτ =



  for the forward-style oil swap. Slightly more interesting are the 
future-style energy swaps, yielding  

( ) ( ), , e .
1 e

r y
r

rw t y ττ − −
−=

−



                  (25) 

here, we use the future-style contract as defined in Equation (21). Note that all 
these cases result in a weight function w



 which is independent of time. Fur-
thermore, the only case that depend on T tτ = −  and y is given in Equation 
(25), which becomes in fact stationary in the sense that w



 depends on y τ− . 
However, when the asset price is a spot commodity, the solution for forwards 

price ( ), ,F S t T  (under deterministic interest rates, futures prices equal for-
ward prices) is given by;  

( ) ( )( ), , e ,r X tF S t T S τ−=                      (26) 

where T tτ = −  is the time to expiration of the contract, and with 
( ) ( )lnL t S t=  and hence  

( ) ( )eL tS t =  

where ( )L t  is defined by the geometric Lévy process given by;  

( ) ( )0 eWL t L=  

and  

( ) ( )( ) ( ){ } ( )

( )( ) ( )

2
0

0

1 d ln 1 , , d d
2

ln 1 , d ,d

t

z R

t

W t B t s z s z v z s

s z N s z

α σ σ γ γ

γ

<

 = − + + + − 
 

+ +

∫ ∫

∫ ∫ 


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For a Poisson process, ( ), 1s zγ > −  measures the sensitivity of the process 
( )L t  and at R = ∞   

( )
0

d ,d 1N t z
∞

=∫  

and we have  

( ) ( )( )

( ) ( )( )

2
0

2

1 ln 1 , d
2
1 ln 1 ,
2

t
W t B t s z t

t B t s z t

α σ σ γ

α σ σ γ

 = − + + + 
 
 = − + + + 
 

∫
 

Suppose ( )1 , 0s zγ+ >  then 1γ > −  which violates our sensitivity condition 
of the process, hence we select 0γ = , then Equation (26) becomes  

( ) ( ) ( )( ), , e ,L t r X tF S t T τ−=                      (27) 

Therefore, suppose that the rate of convenience yield follows the 
mean-reverting process then recall from Equation (17) that SDE;  

( ) ( )( )d d d ,X t X t t Lα µ σ= − +                   (28) 

where 0α >  is the speed of adjustment, µ  is the long-run mean yield, and 
( )dL t  is the increment to a standard Lévy process. However, from [13], the 
( )cov d ,d dL L tρ= , where ρ  denotes the correlation coefficient. The variance 

of the change in the net marginal rate of convenience yield (volatility) is 2σ  
representing the measure of jump sizes in the forward driven incomplete mar-
ket. 

Hence, we adopt [14] approach and construct a no-arbitrage portfolio that in-
cludes two futures contracts of different maturities and the spot commodity and 
this approach leads to the following differential equation for futures price;  

( ) ( ) ( )( )

( ) ( )( )( )
2

2 2 2 21 1
2 2

0

SS SSX tX t

X t

F S F F F S r X t

F X t Fτ

σ σ ρσ

α µ λσ

+ + + −

+ − − − =
        (29) 

with boundary condition  

( )( ), ,0 .F S X t S=                      (30) 

Since convenience yield is non-traded, the differential Equation in (29) de-
pends on investor risk preferences embedded in the market price of risk for 
convenience yield, λ . To obtain a solution, a version of the Feynman-Kac 
Theorem is involved and, for tractability, the market price of risk is assumed to 
be constant. This is equivalent to assuming in a general equilibrium framework 
that the representative investor has a logarithmic utility function. In this special 
case, the marginal utility of wealth is independent of wealth; and the market 
price of risk, which is given by the covariance of the change in the convenience 
yield with the rate of change in the marginal utility wealth, is constant. 

Therefore, the Feynman-Kac solution for futures (forwards) price ( ),F t T  is 
given by;  

https://doi.org/10.4236/jmf.2020.103025


V. A. Okhuese et al. 
 

 

DOI: 10.4236/jmf.2020.103025 423 Journal of Mathematical Finance 
 

( )  ( ), ,t TF t T E S=                      (31) 

where the expectation is taken with respect to the risk-neutral processes from 
Equation (17);  

( )( )d̂ d d ,S S r X t t S Lσ= − +                  (32) 

and  

( ) ( )( )( )d̂ d d .X t X t t Lα µ λσ σ= − − +               (33) 

Then, we define the two-factor theoretical futures and forward prices depend 
on the current level of the spot price ( )S t , the current level of the convenience 
yield, ( )X t , time to maturity, the parameters of the joint process, and the price 
of a zero-coupon bond with maturity at time T, ( ),P t T  based on similar ap-
proach by [13] such that suppose;  

( ) ( )ln d .
T

t
Y t S r v v= − ∫                     (34) 

The standard Jump-diffusion for ( )Y t  follows the transformation (34), Ito’s 
lemma, and the risk-neutral diffusion for spot prices, and  

( ) ( ) ( )( )21d̂ d d d d .
2

T

t
Y t r X t t L r v vσ σ = − − + − 

  ∫          (35) 

Integrating (35) on both sides with respect to T t≥ ;  

( ) ( ) ( ) ( )* 21d d d
2

T T T

t t t
Y t Y t X v v v L vσ σ= − − +∫ ∫ ∫  

however, from Equation (34) we take ( )* lnY t S= , then;  

( ) ( ) ( ) ( ) ( )21ln d d
2

T T

t t
Y t S t T t X v v L vσ σ= − − − +∫ ∫          (36) 

since the effect of the interest rate in the drift of the spot process cancels out the 
effect of the interest rate discount factor. The forward solution is therefore given 
by  

( )


( ) ( ) ( ) ( )

( )

21ln d d
2e

, .
,

T T
t tS t T t X v v L v

tE
F t T

P t T

σ σ− − − +∫ ∫ 
 
 =               (37) 

The solution for the forward price in Equation (37) is independent of the as-
sumption of stochastic interest rates as long as σ  is independent of the spot 
interest rate, and ( ),P t T  matches the market price of the zero-coupon bond 
with maturity at T in a no-arbitrage interest model. 

For the diffusion assumed for spot price, σ  is independent of S and r, the 
distribution of ( )Y t  is normal, and  ( )eY t

tE  
   is the moment-generating 

function of a normal distribution. In this case, the solution for the forward 
price is  

( )
 ( ) ( )

( )

1 var
2e, .
,

tE Y t Y t

F t T
P t T

+      

=                     (38) 
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The expected value of ( )Y t  is  

 ( ) ( ) ( )  ( )21ln d
2

T
t tt

E Y t S t T t E X v vσ= − − −      ∫          (39) 

To solve the integral in (39), the solution for the risk-neutralized stochastic 
differential equation for convenience yield is used which is given by  

( ) ( ) ( ) ( )e e e d .
vv t v s
t

X v X t L sα α αλσ λσµ µ σ
α α

− − − = − + − + + 
  ∫     (40) 

Substituting the expected value of Equation (40) into Equation (39) and inte-
grating with respect to T tτ = −  gives  

 ( ) ( ) ( ) ( )21ln .
2tE Y T S t X t Hλσ λσσ τ µ τ µ τ

α α
   = − − − − − +          

  (41) 

where  

( )( )e e d 0
vv s

t t
E L sα ασ − =∫  

and  

( ) ( )
( )1 eH T t H

α τ

τ
α

−−
− = =  

The variance of ( )Y t , Equation (36), is  

( ) ( ) ( ) ( )2var var d 2cov d , d .
T T T

t t t
Y T X v v X v v L zσ τ σ   = + −         ∫ ∫ ∫   (42) 

The variance and the covariance terms in Equation (42) are obtained by re-
placing ( )X v  with the random part of the process (40), giving  

( ) ( )

( )

2var var e e d d

2cov e e d , d .

T vv s
t t

T v Tv s
t t t

Y T L s v

v L z

α α

α α

σ σ τ

σ σ

−

−

 = +     
 −   

∫ ∫

∫ ∫ ∫
        (43) 

Solving for the variance and covariance in Equation (43) gives  

( ) ( ) ( )
2 2 2 2

2
2

2var .
2
HY T H Hσ σ ρστ σ τ τ
α αα

 
= − − − + − −    
 

    (44) 

The final result for ( ),F t T  is obtained by using  ( )eY T
tE  
  , Equation (41), 

and ( )var Y t   , Equation (44) in Equation (38) the forward solution is given 
by;  

( ) ( )( ) ( ) ( ) ( ) ( )

( )
e

, , , ,
,

H X tS t A
F S t X t t T

P t T

ττ −

=              (45) 

where  

( )
( ) 2 2

2 2

2
2exp ,

4

H
HA

στ α µ αλσ ρσ α
στ

αα

  − − − +    = −
 
  

 

1 eH
ατ

α

−−
=  
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which gives the pricing framework for estimation of the energy forward dynam-
ics modeled as a subordinated Hilbert space of linear functional.  

3. Main Results  
3.1. Exploring the Forward Curve of Energy Commodity  

In this section, we select the West Texas Intermediate (WTI) Oil data for analy-
sis and to evaluate the variation in forward rates in a given time interval. The 
data contains the daily prices of front month WTI oil price traded by NYMEX 
(New York Mercantile Exchange). 

The front month WTI oil price is a futures contract with the shortest duration 
that could be purchased in the NYMEX market.  

The WTI daily oil price is normalized in Figure 1 in other to refine the time 
series properties of the WTI oil data and the weight functions of the for-
ward-style and the futures-style contract to enhance better pricing model for es-
timation of the forward prices. Between the first 50 monthly price observation, it 
is clear that noise exist in the data. 

However, the spikes level is benchmarked using the properties Hilbert space 
linear functional of jump-reduction to reduce the price movement because the 
stochastic price return contains high volatility with massive jumps. 

This is obvious in the daily change prices for the underlying asset as seen in 
Figure 2 and risk averse investors tend to drive the market with demand, the 
daily price change seems to favour the market share capitalization for a long pe-
riod as seen in the forward curve. 

 

 
Figure 1. WTI crude oil price return with no-jump model. 

 

 
Figure 2. Forward rates forward curve of WTI crude oil 
price return with jump-diffusion. 
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Furthermore, it follows from Equation (23) and as seen in Figure 2 that the 
dynamics of forward price curves can be represent as Hilbert space functional 

wH  as a result of this assertion we accept that if ( )h t  is an wH -valued sto-
chastic process, then ( )wt G t



  will be a stochastic process with values in wH  
as well.  

As the subordinated process, the time change stochastic process ( )X t  as 
shown in the forward curve in Figure 2 defines how the incomplete market 
trading options of WTI oil futures and forwards displays the highs and lows of 
the market situation. 

Investors in the energy market are either willing to be risk neutral and trade 
for high profits or not but the energy forward pricing framework clearly favors 
the idea that with changing µ  and σ  the forward rates ( ),f t T  is bound to 
increase marginal yield over time T tτ = − . 

3.2. Estimation of Forward Prices with and without Lévy Jump  

In order to avoid false detection of jumps in the forward curves pricing frame-
work, we employed the following model for simulation;  

( ) ( ) ( )d log d ,S t t B tσ=                     (46) 

where ( )tσ  is volatility, the drift component 0µ =  and ( )B t  is a Wiener 
proces that follows a Poisson distribution ( ) ( ) ( )( )2

0 ~ , ~ ,0 , ,0tB B t tµ σ− . In 
other to estimate the simulation model for a case of constant volatility verses 
stochastic volatility without Lévy jumps, we integrate both sides of Equation 
(46);  

( ) ( ) ( )0 e BS S σ ττ =                       (47) 

With a constant volatility 0.5σ =  and the standard Brownian motion fol-
lowing a Poisson distribution such that ( )0,1B∈ , then the simulated stock 
prices of the stochastic model is presented in Figure 3 with 1000 observations.  

Figure 3 clearly indicates that the fluctuation in the stock prices without the 
presence of Lévy jumps is benchmarked by the volatility value of 0.5σ =  up-
wards. However, we notice one spike in price of the stock which is absolute with 
a 0.05 level of significance and assigned to the variation in price dynamics of the 
model.  

 

 
Figure 3. Model based stock prices without Lévy jumps. 
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With a stochastic volatility 1,2,3σ =  and the standard Brownian motion 
following a Poisson distribution such that ( )0,1B∈ , then the simulated stock 
prices of the stochastic model is presented in Figure 4 with 1000 observations. 

With the big-jump and small-jump rules, Figure 5 clearly shows the detection 
and arrival of jumps from the small-jumps to big-jumps as the frequency of the 
observation increases with an initial volatility 0.3σ = , given a sensitivity level 

0.0000 1γ = > − . Although there exist a drift part 0.05α = , the number of 
jumps with constant volatility in all 300 observations is seen to be evenly distri-
buted by both rules as can be seen in Table 1.  

The Log prices as described by Figure 5 and Figure 6 respectively shows that 
although there appears to be a varying changes in forward rates, with a slight 
change in volatility, the magnitude of price fluctuation in a stochastic volatility 
situation is the same with that of a constant volatility which further reinforces 
the impact of the presence of closed-gap normed spaces in the sequence of for-
ward rates as introduce by the properties of the Banach space (special type of 
Hilbert space) (Table 2). 

The forward curve without Lévy jumps as described in Figure 7 is estimated 
with the initial Lévy process ( )0 0.525442L = , the average stock price for WTI 
( )0 0.1163745S = , and 0.8857084α =  is the drift component for which the 

price fluctuate with sensitivity and constant volatility of 0.8340501γ = − , and 
0.3σ =  respectively where the jumps , 1: 3L Bθ = , , 0.3L Sθ =  are evaluated by 

the small-jump and big-jump rules accordingly with a convenient yield and cor-
relation coefficient of the forward rates as 0.2814486λ =  and 0.9591411ρ =  
respectively.  

4. Conclusion and Suggestions 

Representing energy forward and futures contracts as a time-changing stochastic 
process in a Hilbert-space of functions shows clearly, that an arbitrage-free for-
ward price can be derived from the buy-and hold strategy in the energy market 
thereby enabling investors in the market willing to be salvage from the market 
uncertainties as well as Arrow-Debreu situations to execute a spot or forward 
contracts depending on the time and place the market becomes favorable. 

 

 
Figure 4. Model based stock prices without Lévy jumps. 
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Figure 5. Simulated constant price volatility without jumps. 

 

 
Figure 6. Simulated stochastic price volatility without Jumps. 

 

 
Figure 7. Estimated Forward curve for stock prices without Lévy jumps. 

 
Table 1. Parameters of estimation for jump sizes with constant volatility. 

Time Drift Sensitivity Volatility Jump sizes 

t α  γ  σ  ( )L t  (S = Small, B = Big) 

1 0.9644 0.3762 0.9581 0.3534 (B) 

2 0.7346 0.4773 0.9581 0.1575 (B) 

3 0.7688 0.1321 0.9581 0.0484 (B) 

4 0.5167 0.0968 0.9581 0.0206 (B) 

5 0.0647 0.7966 0.9581 0.0082 (B) 

6 0.6197 0.8012 0.9581 0.0041 (S) 

7 0.2019 0.3994 0.9581 0.0023 (S) 

8 0.5458 0.6292 0.9581 0.0008 (S) 

9 0.4288 0.4571 0.9581 0.0003 (S) 

10 0.2091 0.3334 0.9581 0.0001 (S) 
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Table 2. Parameters of estimation for jump sizes with stochastic volatility. 

Time Drift Sensitivity Volatility Jump sizes 

t α  γ  σ  ( )L t  

1 0.1569 0.1841 0.8959 0.3534 

2 0.7358 0.5716 0.2133 0.1575 

3 0.0542 0.6932 0.6018 0.0484 

4 0.9968 0.9028 0.7665 0.0206 

5 0.2605 0.4630 0.5737 0.0082 

6 0.1733 0.7254 0.7108 0.0041 

7 0.7742 0.2712 0.5577 0.0023 

8 0.7081 0.2887 0.3422 0.0008 

9 0.2679 0.0459 0.6776 0.0003 

10 0.7230 0.7954 0.8161 0.0001 

 
However, subsequent evaluation can take into consideration the impact of re-

gime-shifts present in the time-changes as well as measure the sizes of such shifts 
and their corresponding impact to the price volatility. 

5. Primary Contribution 

• The multivariate subordinated processes are deduced as a moment generat-
ing function in order to bench mark the time-change process. 

• The subordinated process in a continuous time is represented as a stochastic 
integral as Hilbert space linear functional. 

• The energy forward is represented while incorporating the completeness 
properties of Banach space (a special type of Hilbert space) for an incomplete 
energy market. 

• The pricing framework for energy forward contracts is used to evaluate the 
daily change price of an underlying energy contracts. 
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