
Journal of Mathematical Finance, 2020, 10, 255-266 
https://www.scirp.org/journal/jmf 

ISSN Online: 2162-2442 
ISSN Print: 2162-2434 

 

DOI: 10.4236/jmf.2020.102016  May 13, 2020 255 Journal of Mathematical Finance 
 

 
 
 

A General Framework of Derivatives Pricing 

Liangliang Zhang 

101 Washington Blvd, CT 06902, Stamford, USA 

 
 
 

Abstract 
In this paper, we outline a general framework of derivatives pricing. The 
framework consists of two modules. The first is a novel simulation and ma-
chine learning based calibration module and the second one is a pricing 
module, which originates from [1] and [2]. Numerical examples show good 
applicability of the proposed framework. The methodology of calibration uti-
lizes machine learning and simulation methods, combined, to deliver high 
quality parameter inference results and the pricing module is generic and can 
be applied to any financial derivatives. The machine learning based pricing 
methodologies can also generate prices on a future simulation grid, which fa-
cilitates XVA computations. Our methodologies can be applied to any pricing 
problem and the calibration routine is general and useful whenever a para-
metric model needs to be estimated. 
 

Keywords 
Clustering, Machine Learning, Calibration, Asset Pricing, Curve Fitting 

 

1. Introduction 

Despite recent advancement in model-free reinforcement learning based deriva-
tives pricing methods and market scenario generating schemes, parametric 
models remain an important aspect of financial modeling for OTC and exchange 
traded financial derivatives, because parametric models are well-understood and 
can be easily interpreted. Moreover, the sensitivity measures are easy to obtain. 
However, in today’s banking practice, the parametric calibration and asset pric-
ing are still ad-hoc, in that, different trading desks might use different models 
for the same set of risk factors. Moreover, models are of low dimensions in na-
ture, because a joint calibration is time consuming and numerical optimization 
routines are often unstable and return boundary solutions. In addition, products 
involving complex dynamics are often treated with approximations that are not 
accurate or convergent. 

How to cite this paper: Zhang, L.L. (2020) 
A General Framework of Derivatives Pric-
ing. Journal of Mathematical Finance, 10, 
255-266. 
https://doi.org/10.4236/jmf.2020.102016 
 
Received: March 27, 2020 
Accepted: May 10, 2020 
Published: May 13, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2020.102016
https://www.scirp.org/
https://doi.org/10.4236/jmf.2020.102016
http://creativecommons.org/licenses/by/4.0/


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 256 Journal of Mathematical Finance 
 

Recent literature on machine learning calibration includes [3], in which the 
author proposes a deep learning and simulation based approach to calibrate op-
tion pricing models. In addition, [4] proposes a similar approach. 

In this paper, we propose a novel framework to alleviate the mentioned diffi-
culties in derivatives calibration and pricing. First, we propose a simula-
tion-based calibration method, without the need to use numerical optimization 
routines to minimize the sum of squares, i.e., the L2 distance, between the model 
and the observed prices. The intermediate simulation results can be stored and 
re-used. Therefore, the proposed methodology is efficient: we only need initial 
simulation and calibration can be done in a fast manner in an on-going basis. 
Second, the calibration method does not need many evaluations of derivative 
prices, as opposed to a standard optimization routine, which might require 
thousands of iterations. Third, we leverage the methods proposed in [1] and [2] 
for the pricing of complex financial derivatives, potentially involving optimal 
stopping features or other exotic properties such as a breakable swap, where 
both parties can terminate the contract to the best of their interest (and therefore 
a stochastic Nash equilibrium has to be found in order for us to obtain the price 
of this product). Clustering method, as an unsupervised learning method, was 
first applied to yield nonlinear regression computations in [5] and [2]. In this 
paper, we apply this approach to calibration of financial derivatives. To the best 
of our knowledge, our paper is the first to propose such a method. The algo-
rithm is very easy to implement, fast and accurate. Numerical experiments show 
that it can give an accurate estimate to the speed of mean reversion parameter of 
a CIR process, which is thought to be very difficult to infer using either bond or 
bond option data. The calibration methodology has the potential to support 
joint inference using derivatives from different asset classes using data from both 
P and Q measures. 

The organization of this paper is as follows. Section 2 introduces the main 
methodologies. Section 3 contains numerical experiments and Section 4 con-
cludes. All the source code can be found in Appendix. 

2. The Methodology 

In what follows, we will assume that a pricing model (and equivalently, the 
model prices) is denoted by ( ), , ,M X Cϑ θ , where X is a set of state variables 
described by the model, ϑ  is the model parameters related to X and θ  is the 
parameters related to the financial product. C, defined as the set of control pa-
rameters, is related to a numerical method that solves the model. We denote 

mktMθ  the market observed prices for product θ . We use risk neutral deriva-
tives pricing as an example to illustrate ideas, with the understanding that the 
method is generic and applies to all the asset pricing problems. 

2.1. Calibration 

The calibration method first simulates N uniform samples of parameter ϑ . 

https://doi.org/10.4236/jmf.2020.102016


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 257 Journal of Mathematical Finance 
 

Usually, N increases with the dimension of ϑ . For each simulated parameter 

nϑ , we can evaluate the model price ( ), , ,nM X Cϑ ϑ  and define  
( )

2* arg min , , , mkt
n nM X C Mθϑ ϑ ϑ= − , i.e., the specific simulated parameter 

nϑ  that minimizes the distance between model produced prices and market 
observed prices. As we expect, when N →∞ , the estimated parameter 

*ϑ ϑ→ , the true parameter value. 
The above methodology works theoretically. However, it is difficult, or often 

time consuming to implement in practice. The reason is that, even for a Euro-
pean type product, with long time to maturity and no closed-form solution, it 
might take a long time for the pricer to produce even one sufficiently accurate 
price, let alone the American products. Often, ϑ  is in high dimension, given a 
portfolio of financial derivatives, and N is large. This often implies an unrea-
sonably large amount of time needed for the estimation. 

An improvement utilizes clustering method on the simulated parameter space 
{ } 1

N
n n

ϑ
=

Θ = . For example, we can divide the Θ  into K clusters { } 1

K
k k=

Θ , such 
that for each 1 k K≤ ≤ , we have kΘ ≤  , where ⋅  is the radius operator of 
a finite set and 0>  is a small positive number. In each of the cluster kΘ ,  
denote its centroid by kΘ , valuate the model at each kΘ : ( ), , ,kM X Cϑ Θ  and 

obtain K prices ( ){ }
1

, , ,
K

k
k

M X Cϑ
=

Θ . Find ( ){ }*

1
arg min , , ,

K

k k
k

k M X Cϑ
=

= Θ .  

Next, let us focus on cluster *k
Θ . As long as *k

KΘ ≥ , i.e., the number of ele-
ments in *k

Θ  is no less than K, we can repeat the above operations, until we 
find a k̂  such that 

k̂
KΘ < . Then, use the centroid 

k̂
Θ  as the estimator of 

ϑ . 
The complexity of the algorithm grows in a logarithm manner with respect to 

N. Assume that N
Klogα  =   , the integer part of N

Klog , then, the total number 
of evaluation times is K α× . The method ensures that we can find the optimal 
parameter values quickly without the need to evaluate the pricer at each simu-
lated value of the model parameter. 

The choice of the numerical method to implement the pricer is open to the 
preference of each user of our framework. It can be brute-force Monte Carlo si-
mulation, analytical expansion, asymptotic expansion or other approximation 
methodologies. 

2.2. Pricing 

We use the pricing of financial derivatives as an example to illustrate ideas. Un-
der no arbitrage framework and some sufficient condition, the present value of 
all marketed cash flows is martingales under a so-called risk-neutral measure, or 
Q measure. In general, derivatives pricing follows a reduce-form approach that 
assumes an underlying price distribution and compute the conditional expected 
value of the discounted payoff function. The underlying can be modeled by a 
discrete time-series or a system of stochastic differential equations. The simu-
lated-based numerical methods for the latter case are discussed in [1] and [2]. 

https://doi.org/10.4236/jmf.2020.102016


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 258 Journal of Mathematical Finance 
 

We refer the readers to those references for more details. 

2.3. XVA 

The proposed methodologies in [1] and [2] enable evaluation in a future simula-
tion grid and this is the foundation for XVA evaluations. 

3. Numerical Experiments 

In this paper, we will mainly test the calibration method, with the pricing com-
ponent already validated in the reference of [1] and [2]. Due to the constraint on 
the computational budget, we focus on simple products to illustrate ideas. The 
method we adopt for the pricer is Monte Carlo simulation, which is relatively 
more time consuming than semi closed-form solutions. 

3.1. Heston European Equity Option Pricing Model 

Assume that under the risk neutral measure, the stock price follows a Heston- type 
stochastic volatility model, with parameter values described in Table 1 below. 

In order to estimate the true values, we generate 75,000 uniform samples of  
( ), , ,κ θ σ ρ  in interval  
[ ] [ ] [ ] [ ]0.0000,1.5000 0.0000,0.0900 0.0000,0.5000 1.0000,1.0000× × × − . Using 
the methodology outlined in Section 2.1, we have the following estimates. Risk 
free rate is 1.00%, time to maturity is 0.50 years and the option prices are eva-
luated via Monte Carlo simulation method with 75,000 sample paths and 50 time 
discretization points. Figure 1 shows the price fit for case 1. Blue curve is the 
true price1 and the orange curve represents the calibrated prices at maturity date 
across different strikes. We choose 250 clusters for the estimation. Table 2 con-
tains the results. 

3.2. CIR Bond Pricing Model 

In this section, we study a zero-coupon bond pricing problem, where the short 
rate process follows a Cox-Ingersoll-Ross model. The parametrization of the 
problem is listed in Table 3 and inference result is in Table 4. We use a whole 
term structure of bond prices to calibrate the model. For more details, we refer 
the interested readers to the sample code in the Appendix. The pricing fit is in 
Figure 2. 

 
Table 1. Parameter Values. ( ), , ,κ θ σ ρ  are speed of mean reversion, long term mean, 

volatility of volatility and correlation parameters. 

Index κ θ σ ρ 

1 1.1000 0.0400 0.2500 −0.2500 

2 0.5000 0.0225 0.1500 −0.5000 

3 1.2500 0.0750 0.3000 −0.7500 

 

 

1The true prices are generated by Monte Carlo approach with the true parameter values. 

https://doi.org/10.4236/jmf.2020.102016


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 259 Journal of Mathematical Finance 
 

 
Figure 1. Price fitting curve. 

 
Table 2. Estimated parameter values. 

Index κ θ σ ρ 

1 1.0078 0.0400 0.2324 −0.1919 

2 0.1179 0.0234 0.1340 −0.4600 

3 1.2763 0.0695 0.3245 −0.6665 

 
Table 3. CIR short rate parameter table. 

Index κ θ σ 0r  

1 0.6000 0.0150 0.1500 0.0100 

2 0.4000 0.0225 0.1500 0.0100 

3 1.2500 0.0350 0.3000 0.0100 

 
Table 4. Inference table. 

Index κ θ σ 0r  

1 0.6514 0.0151 0.2172 0.0100 

2 0.3230 0.0264 0.2845 0.0100 

3 1.3929 0.0336 0.2845 0.0100 

3.3. Vasicek Bond Option Pricing Model 

The results are listed in the Table 5 and Table 6, and Figure 3. Details of this 
exercise can be found in the source code. 

4. Conclusion 

The main contribution of this paper is a general framework of financial asset 
pricing and calibration, where the calibration module consists of a novel simula-
tion and clustering-based methodology. The simulated numbers and intermediate  

https://doi.org/10.4236/jmf.2020.102016


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 260 Journal of Mathematical Finance 
 

 
Figure 2. Bond pricing fit for case 1. 

 
Table 5. True parameters. 

Index κ θ σ 0r  

1 0.6000 0.0150 0.1500 0.0100 

2 0.4000 0.0225 0.1500 0.0100 

3 1.2500 0.0350 0.3000 0.0100 

 
Table 6. Inference results. 

Index κ θ σ 0r  

1 0.5461 0.0133 0.1469 0.0100 

2 0.3490 0.0226 0.1450 0.0100 

3 1.0868 0.0385 0.2844 0.0100 

 

 
Figure 3. Price fit. 

https://doi.org/10.4236/jmf.2020.102016


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 261 Journal of Mathematical Finance 
 

pricing results can be re-used and are therefore very efficient. The methodology 
potentially applies to any problem that requires curve fitting, i.e., minimizing a 
parametric objective function and obtaining the optimal parameters. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Ye, T. and Zhang, L. (2019) Derivatives Pricing via Machine Learning. Journal of 

Mathematical Finance, 9, 561-589. https://doi.org/10.4236/jmf.2019.93029  

[2] Zhang, L. (2020) A Clustering Method to Solve Backward Stochastic Differential 
Equations with Jumps. Journal of Mathematical Finance, 10, 1-9.  
https://doi.org/10.4236/jmf.2020.101001 

[3] Itkin, A. (2019) Deep Learning Calibration of Option Pricing Models: Some Pitfalls 
and Solutions. 

[4] Li, S., Borovykh, A., Grzelak, L.A. and Oosterlee, C. (2019) A Neural Net-
work-Based Framework for Financial Model Calibration. 

[5] Zhang, L. (2019) Asset Return Prediction via Machine Learning. Journal of Mathe-
matical Finance, 9, 691-697. https://doi.org/10.4236/jmf.2019.94035  

 

  

https://doi.org/10.4236/jmf.2020.102016
https://doi.org/10.4236/jmf.2019.93029
https://doi.org/10.4236/jmf.2020.101001
https://doi.org/10.4236/jmf.2019.94035


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 262 Journal of Mathematical Finance 
 

Appendix: Sample Source Code 
A1. Heston Option Pricing 

# Python Code for Calibration 
import numpy             as     np 
import matplotlib.pyplot as     plt 
from   sklearn.cluster   import MiniBatchKMeans 
# Parameters 
r            = 0.01 
kappa       = 1.25 
theta        = 0.075 
sigma       = 0.30 
rho         = -0.75 
H          = 0.50 
N          = 50 
h           = H / N 
MUnif       = 75000 
MNorm      = 75000 
S0          = 1.00 
v0          = 0.15 ** 2 
TimeNode   = np.array([5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50]) 
Clusters     = 250 
StrikeLen    = 25 
 
# Rrandom Numbers 
dWt         = np.random.normal(0, np.sqrt(h), [N, MNorm]) 
dBt          = np.random.normal(0, np.sqrt(h), [N, MNorm]) 
KappaRnd    = np.random.uniform(0.000, 1.50, MUnif) 
ThetaRnd    = np.random.uniform(0.000, 0.30 ** 2, MUnif) 
SigmaRnd    = np.random.uniform(0.000, 0.50, MUnif) 
RhoRnd      = np.random.uniform(-1.00, 1.00, MUnif) 
Y            = np.transpose(np.array([KappaRnd, ThetaRnd, SigmaRnd, RhoRnd])) 
 
# Pricer Definition 
def StrikeFunc(x, y, z): 
    Upper     = S0 * (1 + 0.6 * x / y * z * np.sqrt(v0)) 
    Lower     = np.maximum(0, S0 * (1 - 0.6 * x / y * z * np.sqrt(v0))) 
    return(np.linspace(Lower, Upper, StrikeLen)) 
 
def HestonPrice(x, y, z, w): 
    S                   = S0 * np.ones([N+1, MNorm]) 
    V                   = v0 * np.ones([N+1, MNorm]) 
for i in range(N): 
        S[i + 1, :]     = S[i, :] * (1 + r * h + V[i, :] * dWt[i, :]) 
        V[i + 1, :]     = V[i, :] + x * (y - V[i, :]) * h + \ 
            z * np.sqrt(np.abs(V[i, :])) * (w * dWt[i, :] + np.sqrt(1 - w ** 2) * dBt[i, :]) 
    Price               = np.zeros([len(TimeNode), StrikeLen]) 

https://doi.org/10.4236/jmf.2020.102016


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 263 Journal of Mathematical Finance 
 

for j in range(len(TimeNode)): 
        Strike          = StrikeFunc(TimeNode[j] + 1, N, H) 
for k in range(len(Strike)): 
Price[j, k] = np.mean(np.maximum(0, S[TimeNode[j], :] - Strike[k])) 
    return(np.exp(-r * H) * Price) 
 
# True Solution 
PriceTrue         = HestonPrice(kappa, theta, sigma, rho) 
 
# Clustering 
Div               = MUnif / Clusters 
while(Div >= Clusters): 
kmeans        = MiniBatchKMeans(n_clusters    = Clusters, 
random_state      = 0, 
batch_size        = 256, 
max_iter          = 20000).fit(Y) 
YCenters  = kmeans.cluster_centers_ 
    LSE       = np.zeros(Clusters) 
    Prices    = np.zeros([Clusters, len(TimeNode), StrikeLen]) 
for j in range(Clusters): 
        Prices[j, :, :] = HestonPrice(YCenters[j][0], YCenters[j][1], YCenters[j][2], YCenters[j][3]) 
        LSE[j]          = np.sqrt(np.mean((Prices[j, :, :] - PriceTrue) ** 2 / 1 ** 2)) 
Idx       = np.argmin(LSE) 
KmIdx     = np.where(kmeans.labels_ == Idx)[0] 
PricesFit = Prices[Idx, :, :] 
    Y         = Y[KmIdx, :] 
Div       = Y.shape[0] 
Params        = YCenters[Idx] 
 
# Plots 
plt.plot(PricesFit[-1, :]) 
plt.plot(PriceTrue[-1, :]) 
print('Mean Squared Error: ', np.sqrt(np.mean((PricesFit - PriceTrue) ** 2))) 
print('Params Fitted: ', Params) 
print('Params True', [kappa, theta, sigma, rho]) 

A2. CIR Bond Pricing Model 

# Python Code for Calibration 
import numpy             as     np 
import matplotlib        as     plt 
from   sklearn.cluster   import MiniBatchKMeans 
from   matplotlib.pyplot import plot 
# Parameters 
r0           = 0.010 
kappa       = 0.600 
theta        = 0.015 
sigma        = 0.150 

https://doi.org/10.4236/jmf.2020.102016


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 264 Journal of Mathematical Finance 
 

H         = 7.50 
N          = 250 
h           = H / N 
MUnif      = 50000 
MNorm     = 100000 
Clusters     = 200 
 
# Rrandom Numbers 
dWt         = np.random.normal(0, np.sqrt(h), [N, MNorm]) 
KappaRnd    = np.random.uniform(0.000, 1.50, MUnif) 
ThetaRnd    = np.random.uniform(0.000, 0.03, MUnif) 
SigmaRnd    = np.random.uniform(0.000, 0.30, MUnif) 
Y           = np.transpose(np.array([KappaRnd, ThetaRnd, SigmaRnd])) 
 
# Pricer Definition 
def BondPrice(x, y, z): 
    V                   = r0 * np.ones([N+1, MNorm]) 
    C                   = r0 * np.ones([N+1, MNorm]) 
for i in range(N): 
        V[i + 1, :]  = V[i, :] + x * (y - V[i, :]) * h + z * np.sqrt(np.abs(V[i, :])) * dWt[i, :] 
        C[i + 1, :]   = C[i, :] + V[i + 1, :] 
    Price           = np.mean(np.exp(-C * h), 1) 
    return(Price) 
 
# True Solution 
PriceTrue     = BondPrice(kappa, theta, sigma) 
 
# Clustering 
Div         = MUnif 
while(Div >= Clusters): 
kmeans    = MiniBatchKMeans(n_clusters    = Clusters, 
random_state  = 0, 
batch_size    = 256, 
init_size     = 256, 
max_iter      = 20000).fit(Y) 
YCenters  = kmeans.cluster_centers_ 
    LSE       = np.zeros(Clusters) 
    Prices    = np.zeros([Clusters, N+1]) 
for j in range(Clusters): 
        Prices[j, :]  = BondPrice(YCenters[j][0], YCenters[j][1], YCenters[j][2]) 
        LSE[j]       = np.sqrt(np.mean((Prices[j, :] - PriceTrue) ** 2)) 
    Idx       = np.argmin(LSE) 
    KmIdx    = np.where(kmeans.labels_ == Idx)[0] 
    PricesFit   = Prices[Idx, :] 
    Y         = Y[KmIdx, :] 
    Div       = Y.shape[0] 
    print('Cluster Length: ', Div) 

https://doi.org/10.4236/jmf.2020.102016


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 265 Journal of Mathematical Finance 
 

Params        = YCenters[Idx] 
 
# Plots 
plt.pyplot.plot(PricesFit) 
plt.pyplot.plot(PriceTrue) 
print('Mean Squared Error: ', np.sqrt(np.mean((PricesFit - PriceTrue) ** 2))) 
print('Params Fitted: ', Params) 
print('Params True', [kappa, theta, sigma]) 

A3. Vasicek Bond Option Pricing Model 

# Python Code for Calibration 
import numpy                as     np 
import matplotlib           as     plt 
from   sklearn.cluster      import MiniBatchKMeans 
from   matplotlib.pyplot    import plot 
from   sklearn.linear_model import LinearRegression 
# Parameters 
r0           = 0.0100 
kappa       = 0.4000 
theta        = 0.0225 
sigma       = 0.1500 
HBond     = 1.0000 
HOption    = 0.5000 
N           = 50 
h           = HBond / N 
LookBack    = int((HBond - HOption) / h) 
K          = [0.90, 0.925, 0.95, 0.975, 1.00, 1.025, 1.05, 1.075, 1.10] 
MUnif       = 75000 
MNorm     = 75000 
Clusters     = 250 
 
# Rrandom Numbers 
dWt        = np.random.normal(0, np.sqrt(h), [N, MNorm]) 
KappaRnd    = np.random.uniform(0.000, 1.50, MUnif) 
ThetaRnd    = np.random.uniform(0.000, 0.05, MUnif) 
SigmaRnd    = np.random.uniform(0.000, 0.30, MUnif) 
Y           = np.transpose(np.array([KappaRnd, ThetaRnd, SigmaRnd])) 
 
# Pricer Definition 
def FutureBondPrice(x, y, z): 
    V                   = r0 * np.ones([N+1, MNorm]) 
    C                   = r0 * np.ones([N+1, MNorm]) 
    for i in range(N): 
        V[i + 1, :]     = V[i, :] + x * (y - V[i, :]) * h + z * dWt[i, :] 
    Regression          = LinearRegression().fit(np.array(V[N-LookBack, :]).reshape(-1, 1), 
                                                 -np.array(np.sum(V[(N-LookBack):(N+1), :], 0) * 
h).reshape(-1, 1)) 

https://doi.org/10.4236/jmf.2020.102016


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.102016 266 Journal of Mathematical Finance 
 

    Price               = np.exp(-Regression.predict(np.array(V[N-LookBack, :]).reshape(-1, 1))) 
    return(Price) 
 
def BondOptionPrice(x, y, z): 
    FutureBond         = FutureBondPrice(x, y, z) 
    PriceTemp         = np.zeros(len(K)) 
for i in range(len(K)): 
        PriceTemp[i]    = np.mean(np.maximum(FutureBond - K[i], 0)) 
    return(PriceTemp) 
 
# True Solution 
PriceTrue              = BondOptionPrice(kappa, theta, sigma) 
 
# Clustering 
Div           = MUnif 
while(Div >= Clusters): 
kmeans    = MiniBatchKMeans(n_clusters    = Clusters, 
random_state  = 0, 
batch_size   = 256, 
init_size    = 256, 
max_iter    = 20000).fit(Y) 
YCenters  = kmeans.cluster_centers_ 
    LSE      = np.zeros(Clusters) 
    Prices    = np.zeros([Clusters, len(K)]) 
for j in range(Clusters): 
Prices[j, :]   = BondOptionPrice(YCenters[j][0], YCenters[j][1], YCenters[j][2]) 
        LSE[j]          = np.sqrt(np.mean((Prices[j, :] - PriceTrue) ** 2)) 
    Idx       = np.argmin(LSE) 
    KmIdx     = np.where(kmeans.labels_ == Idx)[0] 
    PricesFit = Prices[Idx, :] 
    Y         = Y[KmIdx, :] 
    Div       = Y.shape[0] 
    print('Cluster Length: ', Div) 
Params        = YCenters[Idx] 
 
# Plots 
plt.pyplot.plot(PricesFit) 
plt.pyplot.plot(PriceTrue) 
print('Mean Squared Error: ', np.sqrt(np.mean((PricesFit - PriceTrue) ** 2))) 
print('Params Fitted: ', Params) 
print('Params True', [kappa, theta, sigma]) 
 

https://doi.org/10.4236/jmf.2020.102016

	A General Framework of Derivatives Pricing
	Abstract
	Keywords
	1. Introduction
	2. The Methodology
	2.1. Calibration
	2.2. Pricing
	2.3. XVA

	3. Numerical Experiments
	3.1. Heston European Equity Option Pricing Model
	3.2. CIR Bond Pricing Model
	3.3. Vasicek Bond Option Pricing Model

	4. Conclusion
	Conflicts of Interest
	References
	Appendix: Sample Source Code
	A1. Heston Option Pricing
	A2. CIR Bond Pricing Model
	A3. Vasicek Bond Option Pricing Model


