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Abstract 
In this paper, we introduce a clustering method to approximate the solution 
to a general Backward Stochastic Differential Equation with Jumps (BSDEJ). 
We show the convergence of the sequence of approximate solutions to the 
true one. The method is implemented for an application in finance. Numeri-
cal results show that the method is efficient. 
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1. Introduction 

Solving BSDEs is of great importance in mathematical finance. The derivatives 
pricing problems, dynamic portfolio choice problems and even dynamic sto-
chastic general equilibrium problems can be related to various types of BSDEs. 
However, due to its recursive nature, a BSDE with jumps cannot be directly 
solved via Monte Carlo method. 

In this paper, we apply the methodology to evaluate conditional expectations, 
which is originally introduced in [1], to solve BSDEs with jumps. This novel 
method simplifies the structures of the approximate solution to the true one, by 
running a local approximation. Under the assumption that the solution is con-
tinuous, we can show that a linear regression approximation locally will be ac-
curate enough with very limited computation budget and convergence is shown. 
To be specific, we use Monte-Carlo simulation and machine learning clustering 
method to divide the state space into small clusters, in which we approximate 
the true solutions via linear regression. 

Recent literature of machine learning method to solve PDEs/BSDEs can be 

How to cite this paper: Zhang, L.L. (2020) 
A Clustering Method to Solve Backward 
Stochastic Differential Equations with Jumps. 
Journal of Mathematical Finance, 10, 1-9. 
https://doi.org/10.4236/jmf.2020.101001 
 
Received: October 8, 2019 
Accepted: December 10, 2019 
Published: December 13, 2019 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2020.101001
https://www.scirp.org/
https://doi.org/10.4236/jmf.2020.101001
http://creativecommons.org/licenses/by/4.0/


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.101001 2 Journal of Mathematical Finance 
 

found in, for example, [2] [3] [4] [5] and [6]. In those references, the authors 
perform a brute-force machine learning approximation to the true solutions and 
the methods are therefore time-consuming. Our method can serve as a generali-
zation of the above methods, in that, when the number of clusters is set to be 1, 
our method degenerates to the aforementioned ones. 

The organization of this paper is as follows. Section 2 describes the method 
and convergence proof. Section 3 discusses an application in finance and Section 
4 concludes. All the proofs can be found in Appendix. 

2. A Formal Description of Our Approach 
2.1. The BSDE 

Throughout the paper, we consider a filtered probability space ( )( )0
, , ,t t T≤ ≤

Ω F F , 
with T R+∈ . The space is supporting a d-dimensional Brownian motion  

( )1, , d
t t tW W W=   and a Poisson random measure N on [ ]( )0,T ⊗  , where 
[ ]( )0,T  is the Borel σ-algebra on [ ]0,T  and ( ),E   is a measurable space. 

Define : qE =   and   as the Borel σ-algebra on E.   is the probability meas-
ure on F . The filtration ( )0t t T≤ ≤

F  is completed with all  -null sets, right- 
continuous and ,W N

t t=F F  is generated by [ ]( )( ), , 0, ,tW N t⋅ ⋅  for [ ]0,t T∈ . 
Assume that ,W N

T=F F  and W and N are mutually independent under  . 
Suppose that the compensating measure of N is ( ) ( )d ,d : d dt e e tν ν= , where ν  
is a σ-finite measure on ( ),E   satisfying ( ) ( )21 d

E
e eν∧ < ∞∫ . The corres-

ponding compensated Poisson random measure is defined by  
( ) ( ) ( ),d ,d : ,d ,d d dN t e N t e e tω ω ν= − . 
The BSDEJ under consideration, whose solution is denoted by ( ), , ,X Y Z U , 

is  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0d , d , d , , d ,d

d , , , , d d d ,d

t t t t tE

t t t t t t t t T TE

X t X t t X W t X e N t e X x

Y f t X Y Z V t Z W U e N t e Y X

µ σ γ

φ

−

−

= + + − =

= − + + =

∫
∫





  (1) 

where ( ) ( ) ( )dt tE
V U e e eρ ν= ∫  for a given smooth and bounded function ρ . 

The vector of state variables t tX ∈F  is r-dimensional and satisfies the For-
ward-SDE (FSDE) indicated. The standard Brownian motion W is d-dimensional, 

t tY ∈F  is 1-dimensional, t tZ ∈F  is d-dimensional, ( )t tU e ∈F  is q-dimen- 
sional, t tV ∈F  is 1-dimensional and N  is q-dimensional. ( ), , ,X Y Z U  is 
called the solution to the BSDEJ system (1). We assume that r d≤  throughout 
the paper without loss of generality. 

2.2. The Numerical Approximation Scheme 

This section describes the construction of the approximate solution to the BSDEJ 
(1). The intermediate solutions can be obtained by the following equations, ac-
cording to [7] 

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )

, , , , , d |

, ,
, , , ,

T
t t T v v v v tt

t x t t

t t t t

Y u t X X f v X Y Z V v

Z u t X t X
U e u t X t X e u t X

φ

σ
γ

 = = +  
= ∂

= + −

∫ F

        (2) 
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where ( ), ,t t tY Z U  are functions of ( ), tt X . It is therefore crucial to be able to 
evaluate the above conditional expectations for each t. 

Suppose that the domain of state variables X is r⊂  1. Partition   by a 
class of disjoint sets { }

1

Kk

k
U

=
. Denote the distance ,supU x y Ud x y∈= − , where 

⋅  is the canonical Euclidean distance. It is known that the evaluation of con-
ditional expectation problems are essentially regression ones, in the following 
sense  

( )
( )

( ) ( ) 2
arg min ,t T T tX X t X

φ
ψ ψ φ

∈Φ
 ≡ −     

             (3) 

where ( )Φ   is an appropriate function space with domain  2. First, we need 
the following result.  

Lemma 1. We have 

( )
( )

( ) ( ) 2
lim arg min ,

t i
i

t T T t Xi
X X t X

φ
ψ ψ φ ∈→∞ ∈Φ

 ≡ −     
  1        (4) 

in 2L  sense. 
With the above result in mind, we will always write i  as   and assume 

that   is bounded and closed. Many methods have been emerging to find 
global solutions to the above Equation (3). However, in this paper, we follow a 
divide-and-conquer approach, by trying to fit the regression locally in each of 
the subspace kU , for 1,2, ,k K=  . This means, we should try to evaluate 

( )
( )

( ) ( )
2

, : arg min ,k kk t tk
k t T tX U X UU

t X X t X
φ

φ ψ φ
∈ ∈∈Φ

 = −  
 1 1       (5) 

where ( )kUΦ  is an appropriate function space with domain kU , under the 

constraint ( )1 , k
K

kk x U
t xφ

= ∈
∈Φ∑ 1 . ([1], Theorem 23) concludes that, indeed, we 

have ( ) ( )1, , k
K

kk x U
t x t xφ φ

= ∈
≡ ∑ 1 . In ([1], Theorem 24), the condition  

( )1 , k
K

kk x U
t xφ

= ∈
∈Φ∑ 1  is relaxed under certain conditions. In this paper, we will 

use the two aforementioned theorems and show that polynomial regressions and 
Taylor expansions for kφ  and ψ , applying a Monte Carlo simulation to gen-
erate samples and use machine learning clustering to partition the simulated 
paths, will result in convergent numerical methods. In order to use Taylor ex-
pansion, we need ψ  to be lC -smooth, meaning it should have bounded deriva-
tives up to order l in  . This requires us to approximate it using lC -smooth 
functions. The following assumption applies throughout the paper.  

Assumption 1. (On ψ ). Assume that, in some sense, ψ  can be approximated 
by a sequence of lC -smooth functions { }iψ , with l finite or ∞ . Moreover, we 
have  

 

 

1Of course, set   can be time-dependent and unbounded. For brevity we ignore the time variable 
throughout the paper. But we will use a sequence of bounded and closed subsets of  , denoted by 

{ } 1i i

∞

=
  and assume that 1i i+⊂   and 

1 ii

∞

=
=



  . Then, we will choose a sufficiently large I 

and perform computations in i  instead of  . 
2For example, we can ask ( ) ( ) [ ]{ }2: | , is for all 0,tt X L t Tφ φΦ = ∈ . 
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( ) ( ) 2
lim 0t t i ti

X Xψ ψ
→∞

 − =  
                   (6) 

for any [ ]0,t T∈ . 
Remark 2. For example, iψ  can converge to ψ  in a point-wise sense or 2L  

sense. Because of Assumption 1, we will always assume that ψ  is lC -smooth.  
Then, we have the following Theorems.  
Theorem 3. (On Polynomial Regression). Assume that3 

( )
( )

( ) ( )
2

,
ˆ , : arg min k kk t tJ J
k J t T J tX U X UU

t X X Xφ ψ
∈ ∈∈

 = −  



1 1

P
P       (7) 

where ( )k
J U  is the space of all polynomials of degree equal to or less than J 

with domain kU . Then, we have  

( ) ( )
1

,max 0 1

ˆ, lim , k
tkUk K

K

t k J t X Ud k
t X t Xφ φ

≤ ≤
∈→ + =

= ∑ 1               (8) 

in 2L  sense with 1J ≥  fixed.  
Theorem 4 (On Taylor Expansion). Assume that  

( ) ( ) ( ) ( )ˆ ,
!

k
tk k

J t tJ

x
x x x x x

αα

α

ψ
ψ ψ

α≤

∂
≅ = −∑  and 

( ) ( ),
ˆ ˆ, , k k

t

k k
k J t t J T t X U

t X X Xφ ψ
∈

 =
 

 1                (9) 

where k k
tX U∈ . Then, we have  

( ) ( )
1

,max 0 1

ˆ, lim , k
tkUk K

K

t k J t X Ud k
t X t Xφ φ

≤ ≤
∈→ + =

= ∑ 1              (10) 

in 2L  sense with 1J ≥  fixed.  
The following theorem establishes the convergence under Monte Carlo simu-

lation.  
Theorem 5 (On Monte Carlo Simulation). Assume that there is a time-dis- 

cretization { } 1

n
j j

t
=

 and we obtain M samples { } ,

, 1,1j

n M
m
t

j m
X

=
. Then, we have  

( ) ( )
1

,max 0 1 1

1 ˆ, lim lim , m k
tkUk K

M K
m

t k J t X UM d m k
t X t X

M
φ φ

≤ ≤
∈→∞ → + = =

= ∑∑ 1         (11) 

where ,k̂ Jφ  is obtained via OLS in the cases of polynomial regression and Taylor 
expansion, in 2L  sense with 1J ≥  fixed.  

Theorem 5 is ultimately the convergence result for the methodology we pro-
pose. We first generate M copies of the sample paths of X from 0 to T. Then, we 
use MiniBatchKMeans function in Python programming language to partition 
the M copies of simulated values of X, at each time [ ]0,t T∈ , into K clusters. 
With each cluster kU  for 1,2, ,k K=  , we perform the analysis as shown 
above and concatenate different pieces together to formulate the values for the 
conditional expectations at time t. The methodology works backwards in time. 

 

 

3The equation below means that we run a lead-lag polynomial regression within each kU , with Y 
variable ( )TXψ  and X variable tX . 

https://doi.org/10.4236/jmf.2020.101001


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2020.101001 5 Journal of Mathematical Finance 
 

Of course, there are many different choices of ,k̂ Jφ , depending on how we want 
to approximate the conditional expectations within kU . 

With the above discussions on the evaluation of conditional expectations, 
we can start to describe the main numerical method for a BSDEJ. First, de-
fine a set of time nodes { } 1

n
n i i

tπ
=

= , with 0 0t =  and nt T= . Suppose that  

1i i
Tt t h
n−− ≡ = . Second, we simulate M copies of the forward process X at the  

discretization nodes { } 1

n
i i

t
=

. Third, we iterate backwards in time using the me-
thodologies to evaluate conditional expectations outlined above. At time interval 

[ )1,n nt t− , use MiniBatchKMeans method to cluster { }1

,

1
n

n

Mm
t m

X π
− =

 into K disjoint 
subsets { }1 1n

Kk
t k

U
− =

. Within each cluster 
1n

k
tU
−

, apply polynomial regression or 
Taylor expansion method to evaluate ( )1

,
, , , 1

ˆ , n
n n

m
M k J n tt X π

πφ −− , where we add sub-
script nπ  to remind the readers that this intermediate function depends on 
time discretization now and M to denote Monte Carlo simulation dependence. 
After we obtain { }, , , 1

ˆ
n

K

M k J kπφ =
, we can treat it as the intermediate solution to the 

BSDEJ at time 1nt − . In order to evaluate Z and V, taking Z as an example,  

we use the relation [ ]1
t t t tZ Y W

h
≅ ∆ ∆ . The equations for Z and V are stated in 

([7], Equation 2.10). When we obtain intermediate approximate solution  

( )1 1 1

, , , , , , , , ,, ,n n n
n n n

M k J M k J M k J
t t tY Z Vπ π π
− − −

, we plug the tuple into the driver f of the BSDEJ 

and ( )1 1 1 1 1

, , , , , , , , , , , ,
1, , , ,n n n n n

n n n n n

M k J M k J M k J M k J
nt t t t tY hf t X Y Z Vπ π π π π

− − − − −−+  is the terminal con-

dition for the evaluations in time interval [ )2 1,n nt t− − . Iterate until we reach 0t . 

2.3. Convergence Results 

First, we introduce necessary spaces to facilitate the discussions of convergence 
results. For an r -valued function [ ]: 0, rx T →  , let the sup-norm be  

[ ] [ ]{ }, : sup , , .ta bx x t a b= ∈                   (12) 

We shall use the following spaces for stochastic processes with 2p ≥  
 [ ],p

r s t  is the set of r -valued adapted càdlàg processes X such that  

[ ]
( ) ( ) [ ]

1

, ,
: e .p

r

p pt s
s t s t

X Xθ ω− = < ∞                 (13) 

Here 0θ ≥  is a nonnegative constant. We sometimes write [ ],p
r s t  as p  

if doing so causes no ambiguity. The same is true for the spaces to be defined 
below.  
 [ ],p s t  is the set of progressively measurable d -valued processes Z such 

that  

[ ]
( )( )

1

2 2
, : e d .p

p p
t v s

vs t s
Z Z vθ −

 
 = < ∞
  
∫              (14) 

 [ ],p s t  is the set of q-dimensional processes { },1i i qψ ψ= ≤ ≤ ,  

[ ]: 0,i T Eψ Ω× × →   which is [ ]( ) ( )0,T E× ×   -measurable and satisfy  
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[ ]
( ) ( ) ( )

1

22

,
1

: e , , d d .p

p p
q t v s i i

s t s E
j

v e e vθψ ψ ω ν−

=

 
  = < ∞     
∑∫ ∫      (15) 

 [ ],p s tK  is the set of processes ( ), ,Y Z ψ  in the space  

[ ] [ ] [ ], , ,p p ps t s t s t× ×    with the norm  

( ) [ ] [ ] [ ]( )
1

, [ , ] ,,
, , : .p p pp

p p p p
s t s t s ts t

Y Z Y Zψ ψ= + +  K
        (16) 

Let ( )g
bC D  be the space of bounded functions that have continuous and 

bounded derivatives up to order g in the domain rD ⊂   and ( )gC D  the space 
of functions that have continuous derivatives up to order g. In what follows, we 
will only consider the norms with 0θ >  and 2p = . In order to provide the 
final convergence result, we need the following assumption.  

Assumption 6 (On BSDEJ). Assume that the BSDEJ (1) admits a unique so-
lution ( ), ,t t t tY Z V=S  in [ ]0,p TK  and the time discretized solution  

( ): , ,n n n n
t t t tY Z Vπ π π π=S  converges to ( ), ,t t t tY Z V=S  in [ ]0,p TK  sense.  
Then, the following convergence result is valid to justify the methodology we 

introduce above.  
Theorem 7 (Main Convergence Result). Under Assumptions 1 and 6, we 

have  

[ ]
1

, , ,

0,0 max 0
lim lim lim 0n

p
kUk K

M K J

Th M d

π

≤ ≤
→ + →∞ → +

− =
K

S S             (17) 

where , , , , , ,
1

n n
k

t t

KM K J M k J
t tk X U
π π

= ∈
= ∑ 1S S  and  

( ), , , , , , , , , , , ,, ,n n n nM k J M k J M k J M k J
t t t tY Z Vπ π π π=S . 

3. Applications in Finance 

The BSDE associated with American option prices can be found in [8]. We 
numerically solve ([8], Equation 2.10) using the methodology introduced in 
Section 2. Performance is documented below. Here M is the number of sample 
paths and H is the number of time discretization nodes. The time to maturity 
of the American call option is 0.50T = . 0S  is the initial price of the under-
lying asset and the strike price is 100. Table 1 and Table 2 contain efficiency 
results. 

4. Conclusion 

In this paper, we propose a new machine learning method, based on cluster-
ing, to run [9] type regression to solve BSDEs with jumps. Convergence proof 
is given and numerical results show good performance. The generalization of 
the proposed methodologies to more complicated BSDEs with jumps, for ex-
ample, the Mckean-Vlasov type BSDEs, is of interest. We leave it for future re-
search. 
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Table 1. Numerical results when M = 50000. 

50000M =  50N =  0S  Benchmark Clustering Ave. Time (s) Rel. Error 

0.2σ =  

80 0.219 0.222 12.56 1.37% 

90 1.386 1.412 12.56 1.88% 

100 4.783 4.790 12.56 0.15% 

110 11.098 11.131 12.56 0.30% 

120 20.000 19.984 12.56 −0.08% 

0.4σ =  

80 2.689 2.736 12.56 1.75% 

90 5.722 5.778 12.56 0.98% 

100 10.239 10.274 12.56 0.34% 

110 16.181 16.204 12.56 0.14% 

120 23.360 23.413 12.56 0.23% 

 
Table 2. Numerical results when M = 75000. 

75000M =  100N =  0S  Benchmark Clustering Ave. Time (s) Rel. Error 

0.2σ =  

80 0.219 0.223 42.716 1.83% 

90 1.386 1.397 42.716 0.79% 

100 4.783 4.814 42.716 0.65% 

110 11.098 11.114 42.716 0.14% 

120 20.000 19.979 42.716 −0.11% 

0.4σ =  

80 2.689 2.699 42.716 0.37% 

90 5.722 5.749 42.716 0.47% 

100 10.239 10.299 42.716 0.59% 

110 16.181 16.247 42.716 0.41% 

120 23.360 23.403 42.716 0.18% 
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Appendix: Proofs 

Proof of Lemma 1. Denote ( ) ( ) ( ) 2
min ,

t iii T t XX t Xφλ ψ φ ∈∈Φ
 = −    1 . Be-

cause we have 1i i+⊂  , it is obvious that ( ) ( )1i i+Φ ⊂ Φ  . Therefore, we 

have *
1i iλ λ λ+< ≤ , where 

( )
( ) ( ) 2* min , .T tX t X

φ
λ ψ φ

∈Φ
 = −  

                  (18) 

We immediately have *ˆlimi iλ λ λ→∞ = ≤ . In addition, we have  

( )
( ) ( ) 2* min ,T tX t X

φ
λ ψ φ

∈Φ
 = −  

                  (19) 

( )
( ) ( )

1

2
1min ,

t i
i

T t XX t X
φ

ψ φ ∈∈Φ
 ≤ −  

 1                (20) 

( ) ( )
2* , .

t iT t XX t Xψ φ ∈ −
 + −    1                 (21) 

Here ( ) ( ) ( ) 2* arg min ,T tX t Xφφ ψ φ∈Φ
 = −    . The term  

( ) ( )
2* ,

t iT t XX t Xψ φ ∈ −
 −    1                   (22) 

( ).t iC X≤ ∈ −                          (23) 

Here C is independent of i and we have ( )lim 0i t iX→∞ ∈ − =   . Combine 
this result with *

1i iλ λ λ+< ≤  and we will obtain the claim of this lemma.  
Lemma 2 (On Lead-Lag Regression). Suppose that ⊂ ΦH , then we have  

( ) ( ) ( ) ( )
22 *arg min , arg min , ,T t t tX t X t X t X

φ φ
ψ φ φ φ

∈ ∈

  − = −      
 

H H
   (24) 

where ( ) ( ) ( ) 2* , arg min ,t T tt X X t Xφφ ψ φ∈Φ
 = −  

 .  
Proof of Lemma 2. The proof of this lemma follows directly from the Re-

peated Projection Theorem (see, e.g., [1], Theorem 8). 
Proof of Theorem 3. Apply Lemma 2 and ([1], Theorem 23) and the proof is 

obvious.  
Proof of Theorem 4. The proof of the theorem follows from the error term of 

the Taylor expansion, Lemma 2 and ([1], Theorem 24). 
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