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Abstract 
Repeated convolution and truncation of a truncated fat-tailed distribution, in-
stead of Monte Carlo simulation, for pricing a discrete, simple barrier option 
is presented. The parameters for the truncated fat-tailed distribution are ob-
tained by fitting the sum of a Student’s t distribution plus a normal distribu-
tion to the one-day returns obtained from the adjusted closing values for the 
S&P 500. It is argued that truncation of the fat-tailed, one-day returns distri-
bution is a physically reasonable action and evidence to support this trunca-
tion is provided. The steps to price a discrete up-and-out barrier on an Euro-
pean call option through repeated convolution and truncation are given. 
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1. Introduction 

In this paper, the use of repeated convolution and truncation of a truncated one-
day probability density function (pdf) to price a discrete, simple barrier option is 
discussed. 

There are multiple methods to price barrier options, and Kabby [1] categorised 
methods to value barrier options into groups and provided references for early 
papers in the groups. The groups of Kabby are partial differential equation meth-
ods [2], binomial and trinomial tree methods [3] [4], Monte Carlo simulations 
methods [3]-[7], transform methods [3] [8] [9], and backward stochastic differ-
ential equations. The citations in the listing of groups are to some recent publica-
tions that fall into the groups. 

One potential shortcoming of many of the works is the use of Gaussian (nor-
mal) statistics given the fact that it is well known that market prices are not nor-
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mally distributed over short time frames [10]-[12]. Lee et al. [8] and Shevchenko 
and Moral [6] explicitly state that their approaches can be used with jump-diffu-
sion processes or other underlying statistical processes. 

Termens [4] used a basic Monte Carlo approach of simulating many paths and 
averaging to obtain the expected value to price the option, and used a path-inte-
gral approach from quantum mechanics to value barrier options, both using geo-
metric Brownian motion. 

Shevchenko and Moral [6] used a sequential Monte Carlo approach, wherein 
paths that hit the barrier are restarted with appropriate weighting, to improve the 
efficiency of the simulation and mentioned methods, such as Brownian bridge 
simulation, importance sampling, and control variates, to minimise the impacts 
of finite sampling errors. 

Nouri and Abbasi [5] developed a Monte Carlo method of using a uniform ran-
dom variable and an exit probability to improve efficiency and to mitigate sam-
pling error. 

Li and Yan [7] investigated the use of Monte Carlo simulation and machine 
learning to predict the value of an option. 

Blanda [3] evaluated the use of Monte Carlo simulation and techniques such as 
importance sampling and antithetic variables to increase simulation efficiency, bi-
nomial and trinomial trees, and finite difference method solutions to a partial dif-
ferential equation to price foreign exchange barrier options. 

Interestingly, there is no mention of numerical convolution to replace Monte 
Carlo techniques. Convolution is an approach that considers all paths to a given 
value. There are no statistical sampling errors with convolution, numerical con-
volution works with finite length sequences from any (reasonably well-behaved) 
function, and truncation of insignificant values in the tails can reduce considera-
bly the computation time for convolution. 

Basnarkov et al. [13] used convolution to price a European option. These au-
thors used the thn  power of the characteristic function for a Student’s t proba-
bility density function [14] with 3ν =  degrees of freedom to obtain the n-day 
characteristic function for the n-day return. A fast Fourier transform (FFT) algo-
rithm [15] was used to compute numerically the pdf for the n-day return. From 
this sequence of numbers representing the n-day pdf, the authors were able, after 
truncation of the sequence, to compute prices for European call options. 

In this manuscript, numerical convolution is suggested to obtain the develop-
ment in time of the distributions that are required to price an up-and-out Euro-
pean call option. The approach taken here is somewhat different than the ap-
proach of Basnarkov et al. [13]. 

First, Basnarkov et al. [13] considered a European call option. A European call 
option depends only on the beginning and end points; the path is not of interest. 
This allowed Basnarkov et al. [13] to compute the n-day pdf in one step as the thn  
power of a characteristic function. A barrier option is path dependent, so it is not 
possible to compute an end point in one step, although the characteristic function 
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approach could easily provide the required steps. 
Second, Basnarkov et al. [13] used the convolution theorem to work in the Fou-

rier domain [16] and used an inverse FFT algorithm to compute the required pdf. 
Basnarkov et al. [13] chose to truncate the n-day return and used a storage array 
of length 182 262144= . In this work, a brute-force calculation of the convolution 
along with truncation of the one-day return pdf and of n-fold convolutions (sep-
arate from the truncations required to implement the barrier) was used with three 
arrays of lengths 122 4096< = . Truncations of the n-fold convolutions reduce the 
sizes of the storage arrays and the time required to compute the convolutions. 

Third, in this work, it is argued that truncation of the one-day return distribu-
tion is more than just a convenience in computing the convolution but is required 
to match the time development of the n-day pdf by n-fold convolution of one-day 
return distributions. In contrast, Basnarkov et al. [13] argued that options prices 
were only weakly dependent on the support and thus truncation is not a major 
impediment to find a fair price and that the point of truncation can be chosen 
based on convenience, as information on tail events is sparse. 

1.1. Convolution 

The convolution of two functions ( )f x  and ( )g x  is given by  

 ( ) ( )( ) ( ) ( ) ( ) ( )dh x f g x f x g x f g xξ ξ ξ
∞

−∞

= ∗ = ∗ = −∫  (1) 

where ( ) ( )f x g x∗  is a common engineering/science notation for convolution. 
Convolution has some interesting properties [16]. Convolution is commutative, 

associative, and distributive over addition. The area under a convolution h f g= ∗ , 

defined as ( )dh ξ ξ∫ , equals the area under ( )f x  times the area under ( )g x . If 

the variances for ( )f x  and ( )g x  exist, then the variances add under convolu-

tion. Similarly, if the means for ( )f x  and ( )g x  exist, then the means add under 

convolution. The Fourier transform of a convolution ( ) ( )f x g x∗  is the product of 
the Fourier transforms of the two functions ( )f x  and ( )g x . 

If ( )1f x  is the probability density function (pdf) for a random variable (r.v.) 

1x  and ( )2f x  is the pdf for a r.v. 2x  that is independent of 1x , then the pdf 
for 1 2T = +x x x  is ( ) ( ) ( )1 2Tf x f x f x= ∗  [16] [17]. 

If, e.g., daily returns are independent, then the pdf for a two-day return is given 
by 1 2Tf f f= ∗  where 1f  is the pdf for the one-day return for the first of the two 
days and 2f  is the pdf for the one-day return of the second day. If the returns 
are assumed to be stationary (i.e., 1 2f f f= = , the one-day return is assumed to 
be same for each day), then the analysis simplifies and Tf f f= ∗  and the n-day 
return is the n-fold self convolution of the pdf for the one-day returns. 

Clearly, the time frame can be any interval provided that the time intervals are 
non-overlapping and that the returns over these time intervals are independent. 

Given the underlying pdf, the distribution of returns for n days (or n time in-
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tervals) can be estimated by convolution without the need for Monte Carlo simu-
lations. It is the replacement of Monte Carlo simulation with convolution that is 
investigated here. The convolution approach provides a uniformly-sampled esti-
mate of the n-day pdf. The steps to price an up-and-out European call option are 
outlined. 

The intent is to calculate the convolution numerically. Returns over “short” 
time frames are fat tailed and there is likely no analytic expression for the convo-
lution integral. The convolution of two Gaussian distributions is a Gaussian dis-
tribution, so the case of an underlying Gaussian pdf is trivial, but Gaussian pdf’s 
do not fit short time-frame returns, such as one-day returns, well [10]-[12] [18]-
[23]. Fits of Student’s t and Gaussian distributions to one-day returns obtained 
from adjusted closing values for the S&P 500 are given and are used to obtain best-
fit parameters for the one-day pdfs. One could use the normalised histogram of 
the returns (i.e., the raw data) as the pdf to convolve, but these histograms have 
random fluctuations (noise) so for now the smoother best-fit pdfs are used. 

The one-day pdf for returns must be truncated to represent reality (returns of 
±∞  are not physically possible) and truncation of n-day pdf’s can be employed 
for fast calculation of the convolutions. Truncation of the one-day pdf is dis-
cussed, and evidence to support the truncation is given. n-fold convolutions of 
truncated, Student’s t distributions rapidly approach normal distributions as n in-
creases from unity [24]. The transformation of the distribution of n-day returns 
from fat-tailed distributions for small n to Gaussian (or normal) distributions for 
larger n, 16n >≈ , is a known feature or “stylized” fact of returns [12]. 

1.2. Outline 

In this paper, pricing of a simple barrier option using repeated convolution and 
truncation of a truncated fat-tailed distribution is considered. Parameters for the 
fat-tailed distribution are obtained by non-linear, minimum mean square error 
(mmse, or least squares [25] [26]) fits of Student’s t and normal distributions to 
frequency of occurrence data for adjusted closing values of the S&P 500. Appen-
dix A provides information on fits to the data. The quality of fit for a fit of a sum 
of a Student’s t distribution plus a normal distribution (a t+ distribution for short) 
to the one-day returns for the S&P 500 is remarkable. This sum fits better than a 
fit of just a Student’s t or a normal distribution. For n-day returns with 2 8n≤ ≤ , 
it was found that only a Student’s t distribution fit the data well; adding a Gaussian 
component did not improve the fit. 

Section 2 provides background information and definitions that are needed 
throughout. This section also presents an argument for truncation of the fat-tailed 
distribution for the one-day returns. Appendix A provides additional evidence 
for the need for truncation of the fat-tailed t+ distribution, based on the match of 
n-fold convolutions of the best-fit one-day distribution with n-day returns calcu-
lated from historical data. 

Section 3 presents pricing based on repeated convolution. 
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Appendix B gives information on run times for draws of random numbers, as 
would be used in Monte Carlo simulations, and on time to perform convolutions. 
Unlike Basnarkov et al. [13], discrete Fourier transforms (DFT’s or the FFT im-
plementation) were not used to calculate the convolutions and thereby possibly 
reduce the time taken to compute the convolution. With sufficient padding of the 
sequences, the circular convolution inherent to a DFT will give the desired linear 
convolution [15] [16]. However, neglect of small terms in the brute-force method 
to calculate the convolution reduces the run time and memory requirements for 
the brute-force method and the DFT approach might not be advantageous. 

A conclusion is given in Section 4. 

2. Background and Definitions 
Let the probability density function (pdf) for a random variable (r.v.) x  be 

( )f xx . The probability that a measurement of the r.v. x  takes a value between 

x  and x dx+ , { }P x x dx< ≤ +x , is given by ( )f x dxx . The cumulative den-

sity function (CDF) ( ) { } ( )da
F a P a f ξ ξ

−∞
= ≤ = ∫x xx  [17]. 

Let TS  be the adjusted close value of an asset for day (or time) T . Let the one-
day return for day (or time) T  be ( ),1 1lnT T TR S S −=  and the n-day return for 

day (or time) T  be ( ), lnT n T T nR S S −= . Note that  

 
( ) ( ), 1 1 2 1

,1 1,1 2,1 1,1

ln lnT n T T n T T T T T n T n

T T T T n

R S S S S S S S S
R R R R

− − − − − + −

− − − +

= = × ×

= + + ++

×





 (2) 

and, for simplicity in notation, let ,1T TR R= . 

To avoid uninteresting leading zeros, per mille returns are used (with sym-
bol ‰), wherein the return is multiplied by 1000 to obtain a per mille return. 

When returns over non-lapping time periods are independent, the pdf for an 
n-day return is the n-fold convolution of the pdf of the one-day return since the 
n-day return is, as shown in Equation (2), the sum of n one-day returns [16] [17]. 
It is known that, for the most part, daily returns are independent [12]. 

Variances add under convolution [16], and hence the variance of n-day returns 
is n times the variance that describes the distribution of the one-day returns. Since 
the normal distribution is stable under self-convolution, if the one-day return dis-
tribution is a normal distribution with a mean µ  and a variance 2σ , then the 
pdf for an n-day return is a normal distribution with a mean  nµ=  and with a 
variance 2 nσ= . 

A Student’s t distribution is not necessarily stable under self-convolution. The 
convolution of two Student’s t distributions retains the fat tails of the original dis-
tributions, but the distribution is not necessarily the same form as the original 
distributions, which makes pricing with Student’s t distributions difficult [13] [23] 
[27]-[29]. However, a Student’s t distribution describes well the returns of many 
stocks and indices, and thus Student’s t distributions cannot be ignored [18] [20]-
[23]. 

A Student’s t pdf, ( ): , ,tf x ν β µ , with ν  degrees of freedom, scale factor β , 
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and mean µ , is evaluated as  

 ( ) ( )
1

2 2

2
2

1Γ
2: , , d 1 d

Γ
2

t
x

f x x x

νν
µ

ν β µ
ν νβνβ

+
−+ 

   −   = +
    π 

 

 (3) 

whereas a Gaussian (or normal) pdf, ( ): ,Gf x σ µ , with scale factor σ  and 
mean µ , is evaluated as  

 ( ) ( )2

22

1: , d exp d .
22

G
x

f x x x
µ

σ µ
σσ

 −
 = −
 π  

 (4) 

Over the range x−∞ ≤ ≤ ∞  (i.e., support [ ],−∞ +∞ ) the variance of the nor-

mal distribution ( ): ,Gf x σ µ  is 2σ ; over the range x−∞ ≤ ≤ ∞ , the variance 

of the Student’s t distribution ( ): , ,tf x ν β µ  is ( )2 2νβ ν − , provided that 

2ν > . A Cauchy or Lorentz distribution is ( ): 1, ,tf x ν β µ= , and is stable under 

self-convolution. In the limit as ν →∞ , ( ) ( ): , , : ,t Gf x f xν β µ σ µ→ , which for 
many purposes holds for 30ν >  [30]. 

2.1. Distribution of Closing Values S Given a Distribution of Returns 

If one assumes that ( ) 0T n S− =S , then the pdf for ,T nR  can be transformed to a 

pdf for TS  [31] [32]. Under the assumption that 0S  is a constant (i.e., a sharp 

value), ( ) ( ), 0ln lnT n T S= −R S  and ( )0 ,expT T nS=S R  ([31], pp 187, 281). 

By substitution of variables in Equation (3), the pdf for TS , ( )
T tf SS , is found 

to be  

 ( ) ( )
( )( )

( )1 22
0
2

ln dd Λ , 1 ,
T

T T
T T

T

S S Sf S S
S

ν

µ
ν β

νβ

− +
 − = +
 
 

S  (5) 

and is a log Student’s t distribution with normalisation ( )Λ ,ν β  given by  

 ( ) ( )( )
( ) 2

Γ 1 2 1Λ , .
Γ 2 b ap p

ν
ν β

ν νβ

+
= ×

−π
 (6) 

In the normalisation for the Student’s t distribution, support over the interval 
( ],a bx x  has been assumed, i.e., the pdf is assumed to be truncated and is only 

non-zero in the range ( ],a bx x , where ax  solves ( )
Ta ap F x= S , bx  solves 

( )b bp F x=
TS , with b ap p> . 

The probability that a value of the asset lies in the interval ( ],l uS S  is thus 
given by  

 ( ) ( ) ( )
( )

( )

( ) ( )
( )

0

0

1 22ln

2
ln

d Λ , 1 d .
uu

T T T
l l

S SS

u l
S S S

F S F S f
ν

ξ µ
ξ ξ ν β ξ

νβ

− +
 −
 − = = +
 
 

∫ ∫S S S  (7) 

A similar approach can be used to find the distribution of closing values given 
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normally distributed returns. The distributions for closing values of an asset are 
required to price barrier and European call options, as presented in Section 3. 

2.2. Truncation 

Truncation of the support of a pdf from [ ],−∞ +∞  to [ ],a b  where  

a b−∞ < < < ∞  and the pdf equals zero outside of the interval [ ],a b  can impart 
some useful properties to the pdf. Truncation is generally not needed for a Gauss-
ian (normal) pdf ( ): ,Gf x σ µ , as ( ): ,Gf x σ µ  exhibits a sharp roll off with in-
creasing x . 

The situation is different for Student’s t distributions ( ): , ,tf x ν β µ . If 

( ): , ,tf x ν β µ  is truncated, then the variance is finite (i.e., exists) for all ν  and 
one can think of, e.g., Student’s t random walks [33] and pricing options based on 
returns that are distributed as ( ): , ,tf x ν β µ  [13] [23] [34]. 

Effective truncation can be obtained by multiplication by a normal pdf with a 
large variance [35] [36]. This approach is not pursued here, although it is inter-
esting to note that an effectively truncated Student’s t distribution arises from 
truncation of the distribution of the variance in a mixing integral that yields a 
Student’s t distribution [37]. 

Truncation of ( ): , ,tf x ν β µ  leads to results that are physically realisable. For 
example, the amount of capital is limited, thus an infinite positive return makes 
no practical sense and the distribution that describes the returns should be trun-
cated or capped [23]. Similarly, the price of an asset is not likely to be negative. 
Thus returns should be greater than −1000‰ and +∞ . 

Probably the most apparent and useful property imparted by truncation of a 
Student’s t distribution is as a means to explain the development of the pdf for 
one-day returns to a normal distribution for n-day returns, where 16n >≈  [24]. 
Returns over short time periods of less than several days are known to be described 
well by fat-tailed distributions such as Student’s t distributions [18] [20]-[24]. Re-
turns for longer time-intervals are known to be described by normal distributions 
[12]. For one-day returns described by a Student’s t distribution, truncation and 
n-fold convolution of the one-day t distribution of returns to create n-day returns 
quickly becomes Gaussian-like (i.e., normally distributed), as was demonstrated 
[24]. Note that without truncation, n-fold convolutions of a Student’s t retain the 
fat tails of the underlying t-distribution, as mentioned earlier, and one is left trying 
to explain the observed transition from a fat-tailed distribution from short time 
frames to a normal distribution for longer time frames. 

The development of an n-day return from n-fold convolution of a truncated, 1-
day Student’s t distribution is salient and worth repeating here. 

Figure 1 shows 128-fold convolutions of the best fits of a t+ distribution, of a 
normal distribution, and of a t distribution to the one-day returns of the S&P 500 
closing values; see Appendix A for an overview of the data and fits. For compari-
son, the one-day best fit values are also plotted. The figure shows that the 128-fold 
convolutions of the fat-tailed distributions are Gaussian-like at the peak, in the 
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vicinity of “a”; that repeated convolution of a Student’s t distribution retains the 
fat tails (see curves in the vicinity of “b”); and, that truncation causes the n-fold 
convolution to appear Gaussian like (see curves in the vicinity of “c”) in the wings. 
For generation of this figure, the support for the one-day pdf was taken as 8× the 
width of the observed support for the S&P 500 one-day returns and the n-fold 
convolutions were truncated at 10−9.  

 

 
Figure 1. Plots of pdfs that represent one-day and 128-day returns. The 128-day pdfs were 
obtained by repeated convolution of the one-day pdf. Three features of interest are identi-
fied by “a”, “b”, and “c”. 
 

Appendix A describes the data and data handling, shows fits to the returns, and 
the development of the distribution of the n-day return by n-fold convolution. 
The development of the n-day return distribution from the one-day return distri-
bution and correspondence with observed n-day return distribution provides ev-
idence for the physical necessity for truncation of the one-day, fat-tailed distribu-
tion of returns. Truncation of the one-day pdf imparts predictive power to the n-
day distribution obtained by n-fold convolution. 

3. Pricing 

In this section, the use of convolution to price a European call option and an up-
and-out European call option is addressed. The pricing of a European call option 
is straight forward with the convolution approach, as convolution provides an es-
timate, whether based on historical performance or intuition, of the pdf in the 
future when the call option is to be settled. In addition, convolution provides the 
pdf as a sequence of numbers at equally spaced returns, which facilitates numeri-
cal evaluation of the integrals required to price an option. 

The price of a European call option is required for pricing an up-and-out Eu-
ropean call option, since the European option is the default option if the price 
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does not cross the barrier. The pricing of a European call option is considered 
next, in Section 3.1. 

3.1. European Option 

Following the Gosset papers [23] [34], which were motivated by Chapter 10 in 
Ross [38] and belief in the physical reality of truncation, the price of a European 

call option at time T  is ( ){ }T T TC E S K += −  subject to the constraint that 

{ } ( ) 0expTE S rT S= . In the expression for TC , ( ){ }T TE S K +−  is the expecta-

tion of the maximum value of 0 or the difference ( )T TS K−  of the value of the 
asset TS  and the strike price TK  at time T . At time 0T = , when the option 
is purchased, the value of the option is ( )0 exp TC rT C= −  as the sale of the op-
tion is a cash transaction and therefore the value of the option at time T , TC , is 
discounted by the time value of money, with r  the risk-free rate. 

The pdf ( )f x  required to evaluate the expectations ( ){ }T T TC E S K += −  

and { } ( ) 0expTE S rT S=  is known, from n-fold convolution of the truncated, 
one-day return pdf, as a sequence of finite length of uniformly spaced numbers. 
The expectations can be evaluated numerically over the finite sequence, which al-
lows TC  to be evaluated. 

Let ( ),expT T T nS A= R , and use the constraint on the expected value of TS  to 

find an expression for TA :  

 { } ( ){ }
( ) ( )

( )
( ), 0

exp d
exp exp

d

b

a

b

a

x
Tx

T T T n x

x

A f
E S E A S rT

f

ξ ξ ξ

ξ ξ
= = =

∫
∫

R  (8) 

with ax  and bx  the points of truncation of the pdf ( )f x . 

If the pdf ( )f x  is a Gaussian function, ( ): ,Gf x T Tσ α , then support over 

the interval [ ],−∞ ∞  can be taken with no harm incurred, the expectation for 

TC  can be expressed in terms of error functions, and the standard Black-Scholes 
formula for an European call option is obtained if one is careful with the drift rates 
[39]. 

One needs to set rα =  in ( ): ,G Tf x Tσ α  to obtain the standard Black-
Scholes formula for a European call option. Forcing rα =  changes the pdf and 

hence changes the value of ( ){ }T T TC E S K += − . This risk neutral approach 

“works” for the most part because the magnitude of the risk premium ( )r Tα −  

is typically Tσ . The drift owing to the risk premium is dwarfed by the ran-
dom fluctuations (i.e., the signal is buried in the noise) and hence the risk neutral 
approach makes only a small difference [39]. 

For a pdf equal to a Gaussian function, ( ): ,Gf x T Tσ α ,  

{ } ( )2exp 2T T TE S A Tσ α= + . { }TE S  contains the infamous “noise rectifica-

tion” term ( )2exp 2Tσ  plus drift at the rate of α . The integrals in Equation (8) 
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can be understood to give similar information for a non-Gaussian pdf. 

3.2. Barrier Option 

In this section, the value of a barrier option, an up-and-out European call option, is 
evaluated from the distribution for the closing price of the asset, Equation (5), which 
is derived from the distribution of the one-day returns, Equation (2). The values for 
other barrier options are obtained by analogy. Restriction of the discussion to an 
up-and-out European call option allows the language of this section to be specific. 

Let ip  be the probability that the closing price S  on the thi  day (or inter-
val) is B≤  where B  is the value of the barrier. Let 1i iq p= −  be the proba-
bility that the closing price of the asset is B> . Thus  

 ( ) ( )d and d
i i

B

i i
B

p f S S q f S S
∞

−∞

= =∫ ∫S S  (9) 

where ( )
i

f SS  is the pdf for the 1-day closing price S  on the thi  day and 

( ),1expi i iS A= R  is the one-day closing price on the thi  day. 

Let  

 ( ) ( ) ( )( )11̂ 1 ef S f S H S B= × − −S  (10) 

be a truncated replica of ( )
1

f SS  where ( ) ( )
11̂f S f S= S  for S B≤  and 

( )1̂ 0f S =  for S B> . In the definition of ( )1̂f S , ( )eH S B−  is the Heaviside 
step function [16]. 

The probability that an option has not crossed a given price, called the barrier, 
is a useful number. 

It is a property of convolution that the area of the convolution of two functions 
equals the product of the areas of the two functions ([16], p. 118). This property 
is of use in calculating probabilities. 

Assume q  is an absorbing state. That is, once the closing value of the asset is 
B> , there is no further interest in following this branch of the development of 

the closing price of the asset. At closing on the first day, the probability that the 
option has not crossed the barrier is 1p . At closing of the second day, the proba-
bility 2 , with a script P , that the closing value of the asset has not crossed the 
barrier on either the first or second days is  

 

( ) ( )( )( ) ( )

( ) ( )

( ) ( )( ) ( )( )

( )

1 2

2

2

2

1

1

1 1 2 1 2 1 2

1 d

d

1 d

ˆ

1

ˆ

.

B

e

B

e

f S H S B f S S

f S f S S

f S f S H S B S

p p q p q p p

−∞

−∞

+∞

−∞

= − − ∗

= ∗

= ∗ × − −

= − = − =

∫

∫

∫

S S

S

S



 (11) 

( ) ( )
21̂f S f S∗ S  is the convolution of the pdf’s ( )1̂f S  and ( )

2
f SS , and gives  
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the pdf for the closing price of the second day for which the closing price of the 
first day did not exceed the barrier B . The truncation of the pdf of the closing 
price for the previous day selects the “paths” for the time development of the clos-
ing price of the asset that do not cross the barrier. The approach presented here 
thus calculates the value of a path-dependent option without the need to simulate 
paths using a Monte Carlo approach. 

Note in Equation (11) that 2 1 2 p p=  as expected since 1p  and 2p  are in-
dependent one-day probabilities that the price remained B≤ . The fact that  

 

( ) ( )( ) ( )( )

( ) ( )( )

( ) ( )( )

2

2

2

1 2 1

1

1

d

d

ˆ

ˆ

ˆ d d

e

B
B

B

p q f S f S H S B S

f S f S S

f u f S u u S

+∞

−∞

+∞

+∞

−∞

= ∗ × −

= ∗

= −

∫

∫

∫ ∫

S

S

S

 (12) 

in Equations (11)-(12) is because ( )1 0,f̂ S S B= > , the integral over the convolu-

tion is for S B> , and the support for ( )
2

f SS  includes the support for ( )1̂f S  

since the width of a convolution is greater than the widths of the functions. 
One method to obtain the result is to use the serial product method described 

by Bracewell ([16], Ch. 3). Break the functions into small rectangles and follow 
one rectangle of ( )

2
f S ′S  as it is swept across ( )1̂f u  by the convolution. The 

rectangle of ( )
2

f S ′S  is essentially a constant and can be taken outside of the in-
tegration over the dummy variable of integration u . The integral over ( )1̂f u  
gives a contribution to 1p  and the integral over S  gives a contribution to 2q . 

Let  

 ( ) ( )2 2 j
j

f S u f S ′− = ∑S  (13) 

where ( )2 jf S ′  is composed of contiguous rectangles of small width such that 

( )2 jf S ′  is essentially constant with respect to S  and u  over the width of the 

rectangle. 
In the integral definition of the convolution, such as Equation (1), x  is a pa-

rameter chosen by the user; it is the point for which the user wishes to know the 
convolution. In the last line of Equation (12), the parameter for the convolution 
is S . Chose S  such that ( )

2
f S u−S  is constant over the integral ( )1̂  df u u∫ . 

If this choice is made, then  

 

( ) ( )( )

( ) ( )( )

21 2 1

1 2

1 2 1 2

ˆ d

d d

.

ˆ

B
B

j
j B

j
j

p q f S f S S

f u f S u S

p q p q

+∞

+∞

−∞

= ∗

′=

= =

∫

∑ ∫ ∫

∑

S

 (14) 

( )2̂f S  is defined in a similar manner to ( )1̂f S , with ( )2̂f S  the truncation 
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of a convolution  

 ( ) ( ) ( )( ) ( )( )22 1
ˆ ,ˆ 1 ef S f S f S H S B= ∗ × − −S  (15) 

which leads to general expressions for îf , ip , and 1 2i ip p p=  , where i , 
1i > , is the thi  day of an n-day option, and thus to the ability to price a barrier 

option. The required pdf’s are built by sequentially convolving and truncating:  

 ( ) ( ) ( )( ) ( )( )1
ˆ ˆ 1

ii i ef S f S f S H S B−= ∗ × − −S  (16) 

 ( ) ( ) ( )1 d d .ˆ ˆ
B B

i i if S f S S f S S−
−∞ −∞

= ∗ =∫ ∫iS  (17) 

If it is assumed that the one-day returns are stationary in that the distribution 
of returns is the same for each day that the option is alive, then the notation can 
be simplified as i=S S  for all i . In this case , 1, ,i

i p i n= =   where  

( )dB
p f S S

−∞
= ∫ S  is the probability of crossing the barrier on any single day. i  

gives the probability that the option has not crossed the barrier at the beginning 

of the ( )th1i +  interval. 

There is no need for Monte Carlo simulation of S  to find the price of a bar-
rier option; there is no need to analyse an ensemble of calculated paths to find 
probabilities. n-fold truncation and convolution of the one-day distribution gives 
the n-day return pdf as a sequence of uniformly sampled numbers. This pdf as a 
sequence of numbers can be integrated to find the probabilities and expectations 
required to price options. The pdf also does not contain random fluctuations and 
non-uniform coverage owing to draws from a random number generator. 

Drift is handled in a straightforward manner with the method of repeated con-
volution and truncation of the pdfs for the adjusted closing value. ( )1if S+  con-
tains the memory of all drift from the previous i  days. Note that iα , the rate of 
drift for each time interval, need not be same for each day. Similarly, different 
pdf’s could be used for each interval of time, which is a day in this work. 

Figure 2 is composed of semi- 10log  plots of the pdfs for the closing value of 
the asset S  based on best fits of a normal distribution (black) and the best-fit t+ 
distribution (i.e., the sum of a Student’s t distribution plus a Gaussian distribu-
tion) (red) to the one-day returns for the S&P 500. The convolution of a one-day 
barrier-truncated t+ distribution (shown in red to the left of the green line) with 
the one-day closing value (the full red curve) is shown in blue. The barrier trun-
cation was for values $53.00B> = . The truncation of the blue curve at the barrier 
level is shown in green. The area under the blue curve to the left of the green line 
gives the probability that the closing value after two days will be B≤ . 

The convolutions were calculated numerically. In the calculation of the convo-
lution, any final results that were <10−7 were set to zero. This reduces the amount 
of storage and the time that are required to calculate the convolutions while keep-
ing the uncertainty ≈10−5 for calculation of the closing value after 100 days. The 
steep roll-off in the wings of the blue curve (which is visible on the right-hand 
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side) shows that there is negligible area in the truncation for values of S  that 
occur with the pdf having a value < 10−7. Nevertheless, the pdf after the thi  con-
volution and before truncation at the barrier value was renormalised to the value 
of 1i−  to avoid accumulation of the loss of probability through truncation of 
final results that were <10−7. 

The pdfs for the one-day (red) and two-day (blue) closing values of the asset 
are truncated (as discussed in the preceding paragraph), although not as harshly 
as the barrier truncation shown in Figure 2. The truncations for the red and blue 
curves are shown only on the left-hand side as vertical lines. The other truncations 
are not shown to avoid visual distraction. Nevertheless, repeated convolution of 
the truncated one-day pdf leads rapidly to a normal-like distribution [24]. This 
truncation of the pdf is physical and necessary to price options with fat tails [23] 
[34]. This is argued in Section 2.2 and also shown in Appendix A. 

The best-fit t+ distribution to the one-day returns was truncated to the interval 

[ ]0 014.13, 7.05S S− +  such that the minimum return of −229‰ and the maxi-
mum return of 109.6‰ were included. The interval [ ]0 014.13, 7.05S S− +  corre-
sponds to per mille returns of [ ]332.1,13.19− . Option prices for assets with re-
turns that follow a Student’s t distribution or other fat-tailed distribution can be 
obtained if the distributions are truncated or the return is capped [23] [28] [29] 
[34]. Truncation of the pdf was chosen. 

 

 
Figure 2. Plots of probability density functions (pdf’s) for values of S  as a function of 
distance from 0 50S = . Best-fit pdfs to one-day returns, ( )

1
f SS , for normal (black) and 

for t+ (red) distributions to the S&P 500. The curves in grey (normal distribution) and 
blue (t+ distribution) display the predicted pdf’s for two-day returns, ( )

2
f SS , based on 

convolutions ( ) ( )
21̂f S f S∗ S . Areas to the left of the green line and under the pdf’s give 

the probability for the value of S  to remain below the barrier of 53. ( )1̂f S  is the red curve 

to the left of the vertical, green line. ( )2̂f S  is the blue curve to the left of the vertical, green 

line. 
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Table 1 lists the probabilities 1 2T Tp p p= …  that the closing prices of the as-
set are all below a barrier B  for T  closing days for three values of the barrier. 
The initial price of the asset was assumed to be 0 $50.00S =  with an average drift 

of 30.5 10α −= ×  per day (i.e., 0.5‰ per day). Also listed are the values for an up-
and-out European call option with strike price $53.00TK = . TC  was calculated 

as ( ){ }T T TC E S K += − . The T-fold convolution and truncation was used to de-

termine numerically the pdf for the T-day return, and this pdf was used to calcu-
late the expectation of the maximum value of T TS K−  and zero. Calculations 
assuming a t+ distribution and a normal distribution are presented in the table. 
Each column for T  and TC  has two entries. The value on the left of a column  

is the value obtained using a T-fold convolution and truncation of a best-fit t+ 
distribution for the one-day returns. The value on the right of a column is the 
value obtained using T-fold convolution and truncation of a best-fit normal dis-
tribution for the one-day returns. The data and fits are discussed in Appendix A. 

The calculated probabilities of unity for B = ∞  demonstrate the accuracy of 
the calculations and approach of neglecting the results of the convolutions that 
are <10−7. The value of a 1-day call is zero to a good approximation as there is a 
small probability of <7 × 10−4 that the closing value of the asset will increase from 
$50.00 to >$53.00 in one day, as shown by the red curve in Figure 2. The B = ∞  
results show the difference in prices of a European call option based on repeated 
self-convolution of a t+ (red curve, Figure 2) or based on repeated convolution of 
a normal distribution (black curve, Figure 2). The fat tails of the log Student’s t 
distribution are responsible for the larger price of the option as compared to the 
predictions based on a normal pdf. 

It is somewhat surprising that the probabilities T  calculated for the two dis-
tributions are not more different given the large differences between the two dis-
tributions, which can be observed in Figure 2. 

The options prices for TB K=  are zero since the up-and-out nature of the bar-

rier sets the pdf zero for TS K>  and thus ( ){ } 0T T TC E S K += − =  for 

TB K≤ . 
 

Table 1. Table of probabilities T  and price TC  for $52.00TK = , 0 $50.00S = , and α =  0.5‰.  

 barrier = ∞  barrier = 0 $3.00S +  barrier = 0 $2.00TK S= +  

T  days T  TC  T  TC  T  TC  

 1.000 1.000 0.003 0.000 0.999 1.000 0.001 0.000 0.997 1.000 0.000 0.000 

30 1.000 1.000 0.552 0.338 0.722 0.802 0.030 0.036 0.539 0.600 0.000 0.000 

 1.000 1.000 1.276 0.919 0.495 0.561 0.015 0.022 0.344 0.378 0.000 0.000 

 1.000 1.000 1.989 1.538 0.371 0.413 0.009 0.014 0.251 0.267 0.000 0.000 

 
For comparison, Table 2 has 0α = . In general, for 0α =  as compared to 

30.5 10α −= × , the probability of survival until time T , T , is increased (as the 
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barrier is further from the value of the asset) and the price of the call option is 
decreased (as there is a smaller probability that T TS K>  since S  is not drifting 
towards TK ).  
 

Table 2. Table of probabilities T  and price TC  for $52.00TK = , 0 $50.00S = , and 0.0α = .  

 barrier = ∞  barrier = 0 $3.00S +  barrier = 0 $2.00TK S= +  

T  days T  TC  T  TC  T  TC  

 1.000 1.000 0.003 0.000 0.999 1.000 0.001 0.000 0.997 1.000 0.000 0.000 

30 1.000 1.000 0.353 0.177 0.802 0.884 0.022 0.024 0.641 0.721 0.000 0.000 

 1.000 1.000 0.720 0.417 0.637 0.734 0.012 0.016 0.481 0.558 0.000 0.000 

 1.000 1.000 1.028 0.630 0.541 0.637 0.008 0.011 0.400 0.470 0.000 0.000 

 
The time required to calculate the pdf every $0.01 for 100T =  days, which is 

99 convolutions, was <≈1.8 s for the best fit t+ distribution and required 3 arrays 
with <4096 8-byte storage elements. The time required to calculate the pdf every 
0.01 for 100T =  days for the best-fit normal distribution was <≈0.2 s. The nor-
mal distribution is fast to work with as the severe roll-off in the tails means fewer 
points to keep in the convolutions. Note that the convolution approach gives the 
pdf sampled on a regular basis. Integrals required in the work were obtained by 
summing over all data points. The sampling pitch was set arbitrarily at $0.01. 

4. Conclusions 

The pricing of a discrete, simple barrier option by repeated numerical convolution 
and truncation of a truncated one-day return distribution is presented. n-fold 
convolution of a truncated one-day return distribution gives the distribution of 
prices at the end of day (or time interval) 1n +  as a sequence of uniformly-
spaced numbers. Functions of these numbers can be integrated numerically to 
price the discrete barrier option. 

Pricing of a discrete, up-and-out European option based on fits to the one-day 
returns of the S&P 500 is used as an example to demonstrate the process. It is 
reported that a superposition of a Student’s t distribution and a Gaussian (normal) 
distribution fit the S&P 500 one-day returns remarkably well. Data handling, fits, 
and results of n-fold convolutions are described in Appendix A. 

Truncation of the one-day return distribution and of the convolutions reduces 
significantly the storage and time requirements. The truncation of the distribu-
tions is in addition to the truncation of the distribution that is required by the up-
and-out nature of the barrier option. 

It is argued that truncation of the one-day return distribution is not a conven-
ience but is required to impart realistic properties to the n-fold convolution. The 
Student’s t component of the best-fit distribution to the one-day return data is fat-
tailed with degrees of freedom 2.52 0.2ν = ±  (see Table A1). It is known that in 
the longer term, say 16n >≈  for the S&P data used here, the n-day return is 
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Gaussian-like. Convolution of a truncated version of the best-fit distribution to 
the one-day returns to have a similar region of support as the S&P 500 returns 
data takes the fat tails of the one-day return data to a normal-like distribution for 
the n-day return as n increases. Data, in the form of n-fold convolutions of the 
truncated one-day returns, are given to support the argument. 

Convolution of probability density functions gives the probability of all paths 
possible. Thus, convolution can replace Monte Carlo simulations of the possible 
paths. With truncation of the convolutions for small values (values < 10−7) of the 
pdf’s, calculation of the convolution is fast and storage efficient. In addition, the 
results of the convolution do not suffer from sampling noise and are sequences of 
uniformly spaced numbers ready for numerical quadrature. 
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Appendices 
A. S&P 500 Data to 2 February 2025 

Adjusted daily close prices were obtained from the web for the S&P 500 index for 
the dates of 1950-01-03 to 2025-02-02. Natural logarithm returns were calculated 
from the data for ( )12 n− , 1, ,8n =  -day returns, using Equation (2). The data 
were binned, using an adaptive binning procedure, to ensure at least five returns 
in each bin [40]. A non-linear minimum mean square error (or least squares) 
fitting routine, based on the Levenberg-Marquardt method [25] [26], was im-
plemented in Maple to fit Student’s t distributions, Gaussian distributions, and 
a sum of these two distributions to the histogram of returns. The derivatives 
required to construct the matrices in the fitting routine were calculated symbol-
ically. 

The best-fit parameters for the distributions, 1 fitNa a , were obtained by min-
imising the value of reduced chi-square, 2

dfχ , through an iterative Newton root-
finding procedure. 

A.1. Define dfχ 2  

Reduced chi-square is defined here as  

 
( )( )2

12

1
2

: d
fit

N i fit i i

i

N

df
i

y Nf x a a x

df
χ

σ=

−
=∑



 (A-1) 

where iy  is the number of data points (i.e., returns) in the thi  bin; N  is the 
total number of data points distributed across the bins; 1d i i ix x x+= −  is the width 
of the thi  bin; df  is the number of degrees of freedom, which equals fitN N−  

with fitN  the number of parameters derived from the data;  

( )
( ) ( )1

1 1 1 1

1

: 4 : :
2:
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fit fit fit

fit

i i
i N N i N

fit i N

x xf x a a f a a f x a a
f x a a

+
+

+ + + 
 =

  

  

where ( )1:
fitNf x a a  is a pdf that approximates the distribution of the returns 

amongst the bins; ix  is the independent variable; and, 1 fitNa a  are parame-

ters, such as scale and location parameters, that define the pdf. 

fitf  uses Simpson’s 1 4 1 rule to approximate an integral of the pdf 

( )1:
fitNf x a a  over the width of a bin. 

Poisson or counting statistics are assumed for the number of counts in each bin. 

This means that i iyσ =  [25] [30] [41]. 

A measure of the uncertainty in each calculation of 2
dfχ  was required to de-

cide if the changes were meaningful or not. The uncertainty in reduced chi-
square for the fit, 2

dfχ , was taken as the uncertainty as the 95% confidence in-
terval for a zero-mean chi square variable with df  degrees of freedom. The 
contribution to 2

dfχ  from the quality of the fit was ignored in assessing if the 
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changes in calculations of chi-square were likely to be statistically significant or 
not. 

A.2. Fits to One-Day Returns 
Figure A1 plots, on a semi 10log  scale, the number of returns per bin, the best fit Stu-
dent’s t distribution, ( ) ( )( ): 3.16 0.1, 117.6 7 , 0.548 0.075tf x ν β µ= ± = ± = ±‰ ‰ , 
(blue line), and the best fit Gaussian distribution (black line) for one-day returns 
for the S&P 500. The solid dots are plotted at the mid point of each bin and show 
the number of points in that bin. The grey line outlines the bins. The fit of a Stu-
dent’s t distribution to the one-day returns is remarkable good, and significantly 
better than the best-fit Gaussian distribution. 

 

 
Figure A1. Best fit Student’s t distribution to the one-day returns. The residues squared for 
the fit are shown in Figure A2. The bins for the counts are shown in grey with the number 
of counts in each bin displayed with a solid circle in the middle of each bin. 
 

Figure A2 plots the residues squared for the fit of the Student’s t distribution 
that is shown in Figure A1, where the residue is defined as 

( )( )1: d
fiti fit i N i iy Nf x a a x σ−  . The residue squared, summed over all data 

points, and divided by df  equals 2
dfχ , Equation (A-3). This plot of the residue  

squared has little intrinsic value on its own. The value of this plot is in comparison 
to results obtained for fits to a sum of Student’s t plus normal distributions (i.e., 
to a t+ distribution), and to a normal distribution. 

Figure A3 plots, using a base ten logarithmic scale, the best fit pdf t+ distribu-
tion (red line) composed of a sum of a Student’s t distribution plus a Gaussian 
distribution, and for comparison, a best fit Gaussian distribution (black line). As 
before, the solid dots show the number of returns in the bin and at the midpoint 
of the bin. The grey line outlines the bins. The sum of a Student’s t distribution 
plus a Gaussian distribution fits the data better than just a Student’s t distribution. 
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For this fit of a superposition of pdfs, 2.52 0.2ν = ±  for the Student’s-t compo-
nent, which is less than the value found for fitting just a Student’s t distribution. 
Adding a Gaussian component to the fit has improved the quality of the fit and 
given the best-fit pdf fatter tails. 

The improvement in the fit can be observed from a plot of the residue squared 
for this fit.  

 

 
Figure A2. Residue squared for a best fit of a Student’s t distribution to 18890 natural 
logarithm one-day returns based on the adjusted close values for the S&P 500 from 1950-
01-03 to 2025-01-31, inclusive. The returns were separated into 163 bins, with the bin 
widths in the tails adjusted for a minimum of five returns in a bin. The residues, summed 
over all 163 values and divided by the number of degrees of freedom give reduced chi-
square 2 1.43dfχ = . The parameters of the best-fit distribution are those parameters that 

minimise the sum of the residues squared over all 163 bins. The bins are outlined with a thin, 
grey line. 

 

 
Figure A3. Best fit of the one-day returns to a Student’s t distribution plus a normal distri-
bution (i.e., to a t+ distribution). The residues squared for the fit are shown in Figure A4. 
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Figure A4 plots the residue squared for the fit shown in Figure A3. The residues 
for a fit of a superposition of a Student’s t plus a Gaussian distribution are smaller 
than for a fit of only a Student’s t distribution. 
 

 
Figure A4. Residue squared for a best fit of a Student’s t distribution plus a normal distri-
bution to the same histogram of returns as for Figure A2. The linear superposition of the 
pdf’s yields 2 1.02νχ = , which is significantly smaller than for a fit of just a Student’s t dis-
tribution or just a normal distribution. Figure A2 and Figure A4 are plotted on the same 
scale; the residue of Figure A2 extends to <≈14.  
 

For comparison, a plot of the residue squared for fit to only a normal distribu-
tion is provided as Figure A5. 
 

 
Figure A5. Residues for a best fit of a normal distribution to the same 1-day returns as used 
for Figure A2 and Figure A4. The fit to a normal gives reduced chi-square of 2 8.43νχ =  
and is not a good fit to the data. Note that the ordinate scale is ≈3× greater for this figure 
than for Figure A2 and Figure A4. 
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Figure A5 shows the residue squared for fits to a normal distribution only. A 
normal distribution does not fit the data well, particularly in the wings. Note that 
the ordinate scale has been changed relative to the other two residue squared plots, 
Figure A2 and Figure A4.  

Table A1 displays fit parameters for a fit of the superposition  
( ) ( ) ( ) ( ): , , 1 : ,t Gf x af x a f xν β µ σ µ= + −  to the n-day returns, where  
( ): , ,tf x ν β µ  is the pdf for a Student’s t distribution and ( ): ,Gf x σ µ  is the pdf 

for a Gaussian (or normal) distribution. Uncertainties are shown for two one-day 
fits. These uncertainties were calculated as 2× the value of the corresponding di-
agonal element of the error matrix and should be satisfactory estimates of the 95% 
confidence intervals [16] [26]. 

It is interesting to note that addition of a Gaussian to a Student’s t fitting func-
tion improved the fit by reducing 2

dfχ  from 1.4 to 1.02 and reduced ν  from 3.2 
to 2.5, making the tails fatter for a fit of the sum of the two functions. 

For a one-day return, 1 0.25a− ≈ , and for two-day return, the expected contri-
bution from ( )Gf x  alone is ( )21 1 16a− = , since  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2 1

1 .
t t t G

G G

f x f x a f x f x a a f x f x

a f x f x

∗ = ∗ + − ∗

+ − ∗
 (A-2) 

For an n-day return, the contribution from an n-fold convolution of ( )Gf x  is 

( )1 na− . Table A1 shows 1a →  as n increases, which is consistent with the ex-

pected ( )1 na−  behaviour and indicates that it is likely worthwhile to fit to only 

( ) ( ): , ,tf x f x ν β µ=  for 1n > . This conclusion is borne out by comparison of 

the reduced chi-squared values, 2
dfχ , in Table A1. 

 
Table A1. Results for fits of n-day returns to ( ) ( ) ( ) ( )1t Gf x af x a f x= + −  where ( )tf x  is a Student’s t pdf and ( )Gf x  is a 

Gaussian pdf. 

n-day ν  β  µ  a  Gσ  Gµ  2
dfχ  

1-day 2.52 ± 0.2 5.04 ± 0.5 0.77 ± 0.1 0.753 ± 0.05 10.44 ± 0.5 −0.69 ± 0.5 1.020 ± 0.02 

2-day 4.0324 9.6004 1.1029 1.0430 10.2148 1.8547 1.700 

4-day 4.7674 14.2612 2.0422 1.0051 12.9264 −0.8312 1.918 

8-day 5.1405 20.4503 3.7034 0.9547 14.8197 7.1134 2.607 

1-day 3.16 ± 0.1 6.10 ± 0.2 0.548 ± 0.075 1   1.433 ± 0.02 

2-day 4.0723 9.6494 1.0745 1   1.684 

4-day 4.8116 14.2800 2.0408 1   1.869 

8-day 5.2033 20.2040 3.8361 1   2.625 

1-day    0 7.451 ± 0.08 0.5423 8.42 ± 0.02 

2-day    0 11.27 0.9463 5.82 

4-day    0 16.36 1.865 4.82 

8-day    0 23.03 3.463 5.02 
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Only the one-day 2
dfχ  shows a statistically significant difference between the 

fits for 1a =  and 0.75a ≈ . To draw this conclusion, write 2
dfχ  as  

 
( )2

1

2
2

2

Δ 2Δ
‍ i i

i

N i i
df

i

y y

df
χ

σ=

− +
=∑

δ δ
 (A-3) 

where: Δ iy  is the difference, for the thi  data point, between the true value and 
the best fit value obtained (in a thought experiment) by excluding the zero-mean 
random fluctuations iδ ; N  is the number of data points; 2

iσ  is the variance 
of the zero mean random fluctuations; and, the number of degrees of freedom, 
df , equals fitN N− , where fitN  is the number of parameters determined from 
the fit. 

To put Equation (A-3) into a form to estimate the uncertainty in 2
dfχ , make 

some simplifying assumptions such as uncorrelated terms and the contribution to 
2
dfχ  from the quality of the fit, i.e., the contribution to 2

dfχ  from { }2Δ iE y , is 

independent of the random variable (r.v) iδ . Take the expectation of 2
dfχ , where 

{}E ⋅  is the expectation operator, and simplify  

 

{ } { } { } { }( )
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 (A-4) 

to see that, on average, 2
dfχ  is comprised of a contribution from the quality of 

the fit, ( )2 Δ 1df iyχ + , and a contribution from random fluctuations, ( )2 1df iχ −δ . 

Equation (A-4) shows that the confidence interval for reduced chi-squared 
can, under certain assumptions, be used as a metric to decide if changes in the 
fit are statistically significant or not. Provided that ( )2 Δdf iyχ  does not change 
greatly (i.e., is independent of random fluctuations iδ  inherent in an ensemble 
of trials) with different iδ  in repeated trials, then changes in 2

dfχ  can be as-
cribed to random fluctuations caused by sampling from the parent distribution 
for iδ . 

The 95% symmetric confidence interval for 2
dfχ  is 20.980 1.023dfχ≤ ≤  for 

18887df = . 
Given the confidence interval for 2

dfχ  and allowing for the assumptions listed 
above, it is clear that the differences in the six-term and three-term fits are only 
significant for the one-day data; the difference 1.433 1.020 0.413− =  is signifi-
cantly greater than 0.023, whereas, e.g., the difference between the 2-day 2

dfχ ’s 
for three- and six-term fits, 1.700 1.684 0.016 0.023− = < , is not likely to be sta-
tistically significant. 

Knowledge of the confidence interval for reduced chi-square 2
dfχ  provides a 

metric to make a quick judgement on whether two estimates of 2
dfχ  are statisti-

cally different or not. 
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Given the quality of the fit, the superposition  
( ) ( ) ( ) ( ): , , 1 : ,t Gf x af x a f xν β µ σ µ= + −  with parameters as given in the first 

row of Table A1 are used as the best-fit function to the one-day returns. For brev-
ity, the distribution of ( )f x  is called a t+ distribution rather than a sum or su-
perposition of a Student’s t distribution plus a Gaussian distribution. 

A.3. Predictions and Comparisons of n-Day Returns 
Figure A6 shows, on semi- 10log  plots, the development of the distribution of the 
returns for 2n -day returns, 1, ,7n =  . Panel 1, which is located at the upper left 
of the figure, shows in red a histogram of the 10log  of the number of counts 
observed in each bin of the histogram. The left-most vertical edge of the histogram 
in panel 1 is located at 229x = −  and the right-most vertical edge of the histo-
gram is located at 110x = , where x  is 1000× the one-day return (i.e., ‰ re-
turns, see Equation (2) and nearby text), based on the adjusted closing values 

 

 
Figure A6. Panel 1 shows semi- 10log  plots of the frequency of occurrence of 1-day returns 
as a histogram (red) and best fit curves (blue, green, and black) to the histogram. Panels 
2 , 1, ,7n n =   show 2n -fold convolutions of the one-day best fit pdfs (blue, green, black) 
and frequency of occurrence data for 2n -day returns in red. The colour coding is: blue, 
Student’s t distribution; green, superposition of a Student’s t distribution plus a normal 
distribution, i.e., a t+ distribution; and, black, normal distribution. 
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of the S&P 500. In addition the observed return distribution, the best fit Stu-
dent’s t distribution is shown in blue, the best fit superposition of a Student’s t 
plus a Gaussian distribution is shown in green, and the best fit normal (Gauss-
ian) distribution is shown in black. The Student’s t distribution and the super-
position fit the data well over a wide range but the normal distribution does not. 
Note that the distributions shown in panel 1 are truncated at 249x = −  and at 

130x = . 
The remaining panels show the observed 2n -day returns, 1, ,7n =  , as his-

tograms in red, similar to panel 1. The distributions shown in green, blue, and 
black were obtained by 2n -fold convolution of the best-fit distributions shown in 
panel 1. The distributions shown in green, blue, and black in panels 2,4,8, ,128  
are the predicted (by convolution) distributions of the returns given the best-fit 
distributions of the same colour shown in panel 1. Note that the panels do not 
share the same scaling on the abscissa. 

Features similar to “a”, “b”, and “c” of Figure 1 can be identified in Figure A6. 
The right-hand side of panel 2 is interesting in this regard. Note the sharp down-
turn of the blue and green curves near the abscissa. This downturn matches the 
data and arises because of the truncation of the one-day green and blue pdfs. The 
truncation can be seen in panel one as the blue and green curves ending in “free 
space”. The effect of the truncation on the left-hand side is not noticeable until 
panel 4, where a change in the slope of the green curve at the bottom left is just 
noticeable. On the left-hand side, the effect of the truncation and convolution is 
more noticeable in panels 8 and 16. 

It is the combined effect of the truncation of the one-day return pdf and re-
peated convolution [24] that takes the fat-tailed distributions shown in panel 1 to 
Gaussian-like curves shows in panels 64 and 128. In panels 64 and 128, note that 
the green, blue, and black curves have similar shapes. The black curves in Figure 
A6 are all Gaussian (or normal) distributions. 

The conclusion from analysis of the trends shown in Figure A6 is the transition 
from fat-tailed distributions to normal distributions provides evidence that trun-
cation of the one-day pdf for returns is not an academic exercise, but is required 
to provide predictive value and to match the observed development of returns 
over time. The data in Figure A6 extends the results of Ref. [24] by 14 years and 
corroborates what was reported 14 years earlier in Ref. [24]. 

Panels 2 , 1, ,7n n =   of Figure A7 plot the development of returns for n-
fold convolution of reconfigured returns data in panel 1. In panel 1, the returns 
as a histogram are shown in red on a semi- 10log  plot and the reconfigured data 
are shown in blue. The blue curve in panel 1 was reconfigured to have equal bin 
widths, which is required for the convolutions that are depicted in panels 
2 , 1, ,7n n =  . The white space between the vertical blue lines in panel 1 indicate 
regions where there are no returns. 

The one-day distribution of returns is truncated in that there are no observed 
returns outside of the [ ]229,110−  interval. With repeated self-convolutions, the 

https://doi.org/10.4236/jmf.2025.153023


D. T. Cassidy 
 

 

DOI: 10.4236/jmf.2025.153023 576 Journal of Mathematical Finance 
 

returns appear to approach a normal distribution as a comparison of panels 128 
in Figure A7 and Figure A6 shows. 

Figure A7 shows similar data as Figure A6. The n-fold convolutions of the in-
terpolated one-day returns match the data well for 32n ≤≈ . It should be possible 
to use numerical integration over the histograms to price options. 

 

 

Figure A7. 2n -fold convolutions of interpolated 1-day frequency of occurrence data 
(blue) and 2n -day returns (red). 

B. Run Times 

100,000 random draws from a uniform PRNG (uniform deviates in the range 
[ )0,1 ) takes  1 ms (using a gfortran GNU complier on an M3 Mac computer). 

To create 100,000 normally distributed random numbers(normal deviates) us-
ing the Box-Muller method [25] [26] takes  3 ms. 
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To create 100000 random numbers distributed as a Student’s t distribution 
(Student’s t deviates) takes 30 ms. The inverse transformation method ([17], Ch. 
5) ([41], p. 490) was used to create Student’s t deviates from uniform deviates. To 
implement the method, a look-up table for the underlying cumulative density 
function for the desired Student’s t distribution, Simpson’s 1 4 1 numerical inte-
gration, and several iterations of a Newton-Raphson style root-finding technique 
were used. The execution time to create the look-up table was not included in the 
30 ms time that was quoted. 

Given a uniform deviate u  from the interval [ )0,1  and a pdf ( )f x , then the 
solution x   

 ( ) { }d
x

u f P uξ ξ
−∞

= = ≤∫ x  (B-1) 

is distributed as ( )f x . A look-up table was used to provide an initial estimate for 
the solution x  to the equation, Simpson’s 1 4 1 quadrature was used to approx-
imate the integral between the look-up point and u , and a Newton-Raphson 
style root-finding method was used to find a suitably-precise estimate of the solu-
tion x :  

 
{ }( )

( )1 .n
n n

n

P x u
x x

f x+

≤ −
= −

x
 (B-2) 

The time taken to find 100,000 solutions x  for 100,000 uniform deviates u  
took twice as long without the denominator in Equation (B-2) as with inclusion 
of the denominator. 

Equation (B-2) is obtained as follows. Let nx  be the thn  approximation to the 
solution to Equation (B-1) and xδ  be the difference between nx  and the true 
solution x . For small xδ ,  

( )d
nx x

u f
δ

ξ ξ
+

−∞

= ∫  

( ) ( )d d
n n

n

x x x

x

f f
δ

ξ ξ ξ ξ
+

−∞

= +∫ ∫  

 { } ( ) ,n nP x f x xδ≈ ≤ +x  (B-3) 

which can be solved for xδ  and used to form the 1n +  approximation to the 
solution. Simpson’s 1 4 1 rule was used to evaluate { }nP x≤x  over the interval 
from the nearest look-up point to the value nx . 

The execution time to produce the data for Figure A6 was <≈60 ms. Figure A6 
required 21 convolutions to produce the returns distribution for 2n , 1, ,7n = 

-day returns. The code to calculate the convolutions was not optimised, so it is 
likely that the execution time could be reduced. The one-day return distribution 
was truncated (set to zero) for 20‰ points beyond the location of the minimum 
and maximum points, i.e., the one-day distribution was taken as non-zero in the 
range (249‰, 130‰). The convolution was calculated for returns spaced every 
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0.5‰ points and calculation of the convolution in the wings was halted if the 
contribution   was <10−6. This 610−=  was used for generation of the figure 
and could be reduced to decrease execution time. It should be noted that the 
convolution approach provides estimates of the return distribution that are 
evenly spaced (0.5‰ points for Figure A6) and does not include random spacing 
of returns and Poisson ‘noise’ as would be obtained with Monte Carlo simulation. 

https://doi.org/10.4236/jmf.2025.153023

	Convolution Rather Than Monte Carlo Simulation to Price a Barrier Option
	Abstract
	Keywords
	1. Introduction
	1.1. Convolution
	1.2. Outline

	2. Background and Definitions
	2.1. Distribution of Closing Values S Given a Distribution of Returns
	2.2. Truncation

	3. Pricing
	3.1. European Option
	3.2. Barrier Option

	4. Conclusions
	Conflicts of Interest
	References
	Appendices
	A. S&P 500 Data to 2 February 2025
	A.1. Define 
	A.2. Fits to One-Day Returns
	A.3. Predictions and Comparisons of n-Day Returns

	B. Run Times


