
Journal of Information Security, 2023, 14, 437-453
https://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2023.144024 Oct. 25, 2023 437 Journal of Information Security

Design of a Cryptographic Algorithm in the
Form of an API in Order to Secure Monetary
Transactions in a Supermarket

Atsopmene Tango Vanette Eleonore1, Gamom Ngounou Ewo Roland Christian1,
Kom Charles Hubert1,2

1Computer and Automatic Engineering Laboratory, Higher Normal School of Technical Education of the University of Douala,
Douala, Cameroun
2Energy, Materials, Modeling and Methods Laboratory, National Polytechnic School of University of Douala, Douala, Cameroun

Abstract
Supermarkets and large-scale retail stores are usually subject to huge mone-
tary transactions for certain customers’ purchases. The computerization of
these systems is common in supermarkets but the security of these transac-
tions remains a mystery. This article presents an algorithm as an API based
on symmetric cryptography that can enable end-to-end encryption of a mon-
etary transaction in a supermarket. This algorithm is the first part of the
complete supermarket management system which will be presented in the
following article. The Python language and the Flask framework allow us to
develop the algorithm as an independent component. Tests have been per-
formed and our algorithm uses 98.49% less memory and 10.18% time saving
than the AES algorithm.

Keywords
Application Programming Interface (API), Symmetric Cryptography,
End-to-End Encryption

1. Introduction

Information security can be one of the main concerns of customers within an
institution involving financial transactions or critical data. Indeed, users of money
services face critical risks of intrusion into their accounts. Therefore, it is very
important to build a system capable of certifying the identity of the sender and
the recipient by a trusted third party who holds the identity certificates. In order
to mitigate possible security vulnerabilities, many vendors have developed vari-

How to cite this paper: Eleonore, A.T.V.,
Christian, G.N.E.R. and Hubert, K.C.
(2023) Design of a Cryptographic Algo-
rithm in the Form of an API in Order to
Secure Monetary Transactions in a Super-
market. Journal of Information Security,
14, 437-453.
https://doi.org/10.4236/jis.2023.144024

Received: August 24, 2023
Accepted: October 22, 2023
Published: October 25, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2023.144024
https://www.scirp.org/
https://doi.org/10.4236/jis.2023.144024
http://creativecommons.org/licenses/by/4.0/

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 438 Journal of Information Security

ous solutions in software systems [1] [2]. Security and privacy features of e-banking
must be improved quickly to continue its growth. The use of electronic banking
services has raised many concerns from different perspectives: government, busi-
nesses [3], banks [4], individuals and technology. It will therefore be interesting
to set up security for data protection. The most suitable way to secure your data
remains cryptography, as described in many books. F. J. Kherad, R. Naji, M. Ma-
lakooti and P. Haghighat in [5] develop an algorithm for securing electronic com-
merce transactions called FJ RC-4, the latter being derived from the RC4 symmetric
key algorithm. In cryptographic form, these same algorithms are implemented in
sm3 type financial smart cards for financial security [6]. These works as well as
[5] [7] [8] [9] have inspired us to be able to implement an algorithm developed
in the form of an API for securing data in electronic transactions in general and
in supermarkets in particular. This article has five parts: the first presents gener-
al information about APIs; the second part presents the choice of the crypto sys-
tem; the third presents the implementation of the algorithm; the fourth presents
the results of the discussion and the performance of the algorithm; and the last
part presents the technology and the API in question.

2. API General

Application Programming Interfaces (APIs) [10] [11] [12], a set of rules for how
applications connect and communicate, provide frameworks for developers to
create HTTP-based services accessible by software applications. The current de-
velopment of Web APIs tends towards the architectural style Representational
State Transfer (REST) [13] [14], which offers a high level of flexibility. The REST-
ful API is a software design pattern that specifies a uniform, predefined collec-
tion of stateless operations.

The REST API is a set of functions, rules, commands and protocols that con-
tain general standards on how to exchange information between client and serv-
er [15]. An API exposes a set of data and functions to facilitate interactions be-
tween computer programs and allow them to exchange information [16].

A REST API will allow in our case to make our algorithm accessible to any
monetary transaction security system. The structure of our system is shown in
Figure 1:

Figure 1. Fonctionning and role of API.

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 439 Journal of Information Security

Figure 1 describes the operation and role of our API which provides end-to-
end encryption in a monetary transaction between two entities which can be two
computers, two telephones or even a server and a client. The algorithm will there-
fore have to retrieve parameters via the API URL and perform encryption and
decryption just before the end of the monetary transaction.

3. Context

In Cameroon and in the CEMAC zone in general, we observe that many buyers
in supermarkets use banknotes and coins to pay their expenses. This generates
some problems, namely: reimbursement problems for lack of change, queuing
problems in front of the few cash desks available for the payment of purchases.
Society being more and more evolving, it is quite obvious to observe a consider-
able evolution of the NTIC which articulate with the payments and payments of
invoices since a telephone or any terminal. Despite this growing evolution in
payment technology, we still see people paying their bills with notes and coins,
as is usually the case in supermarkets.

Faced with the problems mentioned above, we offer an automatic multipoint
order acquisition system on behalf of each user. The security of accounts and trans-
actions is therefore to be discussed in this article. A customer can therefore open
an account and leave his money in the account in case of lack of money.

4. Choice of the Type of Cryptosystem

From the start in this research work on securing monetary transactions in the
context of a supermarket, we first retained the cryptography method used. After
a detailed study of cryptography systems, we opted for symmetric key cryptogra-
phy [17] [18] because of its simplicity, speed and the existence of a unique key
allowing encryption and decryption thanks to this key.

This type of cryptography is based on simple mathematical functions such as
substitution and permutation [19]. There are therefore two types of symmetric
ciphers namely the stream cipher and the block decipher [20] [21].

In contrast, asymmetric encryption uses two separate keys: a public key for
encryption and a private key for decryption. The public key is known to every-
one and can be used by anyone to encrypt data. The private key, on the other
hand, is kept secret by its owner and is used to decrypt the data encrypted using
the corresponding public key. This approach solves the problem of secure key
distribution, because only public keys are shared.

Asymmetric encryption is generally slower than symmetric encryption due to
the mathematical complexity involved, hence its choice as it is easy to implement
and less cumbersome than asymmetric encryption.

Choice of Symmetric Encryption Type

For the implementation of our algorithm, we opted for block encryption which

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 440 Journal of Information Security

consists of cutting a message or a set of characters into blocks of fixed sizes then
encrypting each block using a public key and all the blocks assembled thus form-
ing a cryptogram. The cipher block is more explicit in Figure 2.

Figure 2. Principle of operation of block cipher.

After having presented our main choices, we can now present the architecture

of the system.

5. Algorithm Implementation

The first step was to implement the different equivalence tables or substitution
tables.

5.1. Block Substitution Table

Since we are implementing a block cipher, each entry of the amount of a trans-
action is an integer and is distributed in an array of 12 cells, ranging from index
0 to index 11. Each square in the array has the table has first of all a combination
of two characters in the end. The combination game was done as follows:
• We create a table containing 12 columns and 5 rows. The first line represents

the indices of the array.
• At the level of the second line of the table, we fill the boxes of this table with

the letters of the French alphabet in the interval {a…….l} we continue with
this filling at the level of the fourth line following the interval {m…….x}.

• At the level of the third line of the table we fill the boxes of this table with the
letters of the French alphabet in the interval {z…….x} we continue with this
filling at the level of the fifth line following the interval {n……c}.

By applying these equivalences we obtained Table 1 which summarizes the
substitutions that we have made.

Table 1 was reduced by a selection of two characters as shown in Table 2. The
process is explained below:

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 441 Journal of Information Security

Table 1. First table of equivalence of the indices of a block table.

0 1 2 3 4 5 6 7 8 9 10 11

a b c d e f g h i j k l

z y x w v u t s r q p o

m n o p q r s t u v w x

n m l k j i h g f e d c

Table 2. Reduction of the first equivalence table.

0 1 2 3 4 5 6 7 8 9 10 11

a b c d e f g h i j k l

z y x w v u t s r q p o

m n o p q r s t u v w x

n m l k j i h g f e d c

The reduction of the elements of the initial array was done in the form of

stairs. And so we reduce this index equivalence table to much simpler. Table 3
presents the final equivalences.

Table 3. Final equivalence table.

0 1 2 3 4 5 6 7 8 9 10 11

a y o d v r g s u j p X

z n l w q i t t F q w c

Table 3 represents the equivalences according to the indices of the table which

must contain a number at each index. By inserting an element into the array, the
array will already have content. In our case, we can only insert one digit per box
in the table a digit will be considered as a block.

5.2. Digit Substitutions

Securing a transaction is equivalent to securing any number, so we will manipu-
late numbers in the range {0……9}. The following table represents the equiva-
lences between the different numbers.

According to the above, the number zero will be replaced by “aq”, the number
1 will be replaced by “zs”. A table cell can therefore contain 04 letters depending
on the number inserted and the cell that contains the number. A table cell must
therefore contain 32 bits in total because each letter is coded on 8 bits.

5.3. Logic Programming

We developed our algorithm in two functions namely the encryption function

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 442 Journal of Information Security

and the decryption function. We present the flowchart of the algorithm and its
implementation with the PYTHON language.

5.3.1. Organization Chart
Figure 3 shows the encryption and decryption flowchart. It all starts with re-
trieving the number as plain text, then making substitutions from an array based
on the values of the array elements shown in Table 4; then concatenate each cell
element with the equivalent cell by cell as shown in Table 3 then do the inverse
of this table. We have segmented the replaced text into blocks, i.e. one box in the
table equals one block. On each block, the secret key is applied using an XOR
operator and the table is converted into text; At this point we have the ciphertext
that marks the end of the cipher function. Once the ciphertext is obtained, we
move on to the decryption process, which begins with converting the ciphertext
into a table; The different blocks are associated with the key with an XOR oper-
ator then we do the inverse of this table. After the reverse, the values are com-
pared with those of Table 3 and Table 4 of equivalence. The table is transformed
into plain text and finally into a number thus marking the end of the decryption
function.

Figure 3. Organizational chart.

Table 4. Digit equivalence table.

0 1 2 3 4 5 6 7 8 9

a z e r t y u i o p

q s d f g h j k l m

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 443 Journal of Information Security

5.3.2. The Encryption Function
This function consists in encrypting the message according to the Key. It there-
fore takes two parameters, namely the key and the amount or number to en-
crypt. This function is written in several steps namely.

Recovery of the amount intended for encryption: In this operation, the data
inserted into a parameter of the function is recovered as shown in Figure 4. The
recovered data will then be transformed into a table as shown in Figure 5 (by the
instruction cast in PYTHON) where each digit is stored in a table cell. We
therefore recover this array in a variable and each time we test the length of the
array (using the PYTHON len() function) to restructure the values in our 12-entry
equivalence table. The assigned values undergo a CAST (by the (int) instruction
in front of the variable name) in order to receive only the integers as shown in
Figure 6. This entire process is represented by the figures below.

Figure 4. Start of the encryption function.

Figure 5. Transformation of the variable into an array of one
character per cell.

Figure 6. CAST and recovery of variables one by one in nb variables just before substitu-
tion.

Determine the equivalences according to the figures inserted: this part con-

sists in giving the equivalence of the table of substitution of the figures according
to the content of the variables x (x0… x11) we put this new content in the same
variables then make a concatenation with the cells of the array that already con-
tains substitution values. These steps are represented by the code snippets in
Figure 7.

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 444 Journal of Information Security

Figure 7. Digit substitution.

Once the substitution has been made, that is to say establishing the same process

from the variable x0 to the variable x11, we can therefore associate them with the
array already containing some substitution elements. These steps are represented
by the code snippets in Figure 8.

Figure 8. Final substitution table.

Inverse of the table and combination with the key: This part allows you to in-

vert (with the function reverse ()) the table then to combine each cell with the-
key. The excerpt from Figure 9 shows an illustration of this.

Figure 9. Inverse of the final substitution table.

After the inverse we associate each cell of the inversed array to the key with an

XOR (^). The excerpt from Figure 10 illustrates this.

Figure 10. Association of array elements with key.

The xor_strings() function allowed us to associate the substitutions to the key

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 445 Journal of Information Security

with the XOR operator, its definition is presented in Figure 11.

Figure 11. Function for associating an element with the key.

Obtaining the cryptogram or ciphertext: After the association with the public

key, a table of encrypted data is brought out and then transformed into a string
(with the join() function). Finally we made a Cast to transform to have the hex-
adecimal value of the cryptogram. This is shown in Figure 12.

Figure 12. Final cryptogram.

We therefore obtain an encrypted text contained in a variable and which can

be saved in the database while being encrypted. So we moved on to the decryp-
tion function.

5.3.3. Decryption Function
This function allows you to decrypt cipher text with the same key used during
encryption. It therefore takes two parameters, namely the ciphertext and the key.
Here are the steps of this function.

Cast of the hexadecimal type into a character string: This step makes it possi-
ble to transform the type of the cryptogram into a character string by Figure 13.

Figure 13. Hex to string transformation.

Transformation of the cryptogram into an array: This operation was carried

out with the function string_to_list() written by us which allows the transforma-
tion of the cryptogram into an array of 4 elements per cell. Consider a table with
one row and 12 columns. This operation is illustrated by the code in Figure 14.

Figure 14. Transformation of the final cryptogram into a table.

The string_to_list() function which allows us to transform a string into an ar-

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 446 Journal of Information Security

ray with a specific number of elements is defined by Figure 15.

Figure 15. Function for transforming a string into an array of elements.

Combination with key and array inverse: This part is used to associate each
element contained in the previous array with the key with the XOR (^) operator.
Then we will do the reverse of this array. The code snippets in Figure 16 illu-
strate this.

Figure 16. Association of each element of the cryptogram with the key.

The final table after this operation is shown in Figure 17.

Figure 17. Decryption table.

Once this operation is complete, we apply the inverse function (reverse()) to
the table of Figure 16, then we look for the equivalences based on the different
tables of equivalences. Code snippets illustrate this in Figure 18.

Figure 18. Equivalences for decryption.

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 447 Journal of Information Security

Bring out the table the final table of the clear number: We just associate the
equivalence variables of Figure 18 in a table of character strings. Figure 19 illu-
strates this.

Figure 19. Plain text output table.

Thereafter we transform the array of Figure 18 into a character string and then

into an integer, illustrated in Figure 20.

Figure 20. Plain text output.

We have above the last step marking the end of the encryption and decryption

of a number via the algorithm presented above. And we will move on to the var-
ious results, discussions and performance test of our algorithm.

6. Results, Discussions and Performance
6.1. Results and Discussions

We will do a test with a random number and a random key, the plain text is:
123456, the key is: ab34. We run the algorithm and we have the result following
the steps stated above. This is shown in Figure 21.

Figure 21. Running the program.

The program executed following the steps listed earlier in this article, we will
look at the cryptogram presented in Figure 22.

Figure 22. Cryptogram.

This ciphertext consists of 96 fixed length characters since one character repre-

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 448 Journal of Information Security

sents 4 bits, the ciphertext represents 384 bits in general. We can therefore dis-
cuss and make the following hypotheses:
• The cryptogram present in Figure 21 is impossible to decipher by brute

force, Attack by collision, Attack by plaintext chosen but can be vulnerable to
Attack by dictionary because the key is held by the user and this key is gener-
ally a password that someone close to him can imagine.

• The cryptogram is not heavy and does not require database robustness. It can
be stored in an online or local database.

• The ciphertext above can be maintained during processing, ie encrypt at the
start and decrypt at the end. The use of the decryption function with the key
makes it possible to have the clear text, and that of encryption with the same
key leads us to this ciphertext, the use of end-to-end encryption is thus possi-
ble.

• The encryption function can be independent of the decryption function. the
only common point is the key which must be unique in both cases. For this
purpose, the customer may have the possibility to encrypt his amount or his
transaction and to decrypt it, he is therefore responsible for his own security.

• In terms of performance, the execution of the encryption and decryption
functions is estimated in microseconds by functions provided by the PYTHON
language documentation.

6.2. Performance

We were inspired by [18] [22] to present the performance of our algorithm, having
the concern to use a more recent AES library with a test on the same machine.

6.2.1. Performance of the Machine Used for the Test
The personal computer used in all programs and experiments was a 4th genera-
tion Intel Core i 4300M, 2.60 GHz processor with 8 GB of RAM and 1 TB of
hard disk capacity. The performance of this algorithm is evaluated on the basis
of parameters such as required memory and simulation time. We therefore used
the php library of [23] an interesting and fairly recent library to do our compar-
ative tests.

6.2.2. Comparison According to the Memory and Execution Time
Required to Use the Algorithms

We did a test of the library and our algorithm, the value to encrypt is 1234 and
the password is 1234 for both algorithms. The PYTHON functions that allowed
us to evaluate the memory needed and the execution time of our algorithm are the
sys.getsizeof () and time.perf_counter () functions respectively. Table 5 presents
the comparison in terms of performance. We can materialize these performances
in graphicform as shown in Figure 23.

We can have this graph showing the performance of these algorithms.
This curve presents a downward evolution from the DES algorithm, through

AES to our algorithm in terms of required memory and simulation time. Thus
by using our algorithm we gain in performance which is expressed by the re-

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 449 Journal of Information Security

quired memory (i.e. is 6.3 KB) and the simulation time (1.9*10−5 seconds).

Table 5. Performance comparison and overview.

Technical
Memory Required for
Implementation (KB)

Simulation
Temps (second)

AES(HEX) 9.816 2.2*10−4

Notre algorithm (HEX) 0.148 1.7*10−5

Figure 23. Performance overview graph.

After the performance graph of our algorithms compared to AES, let’s do the
comparison based on the cryptogram structure.

6.2.3. Comparison Based on Cryptogram Structure
The different cryptograms are shown in Table 6.

Table 6. Comparison of cryptograms.

Method Cryptogram example

AES (HEX) 52282ce90391156b787f47e4cdb2876a

Algorithm (HEX)
49514753414541525b5556504454494
74246524556465245435b5245474352

45554552455e5e5245485c524550485245

Table 6 shows us the comparison between our cryptogram with readable text

1234 and password 1234, and the AES cryptogram with readable text 1234 and
password 1234. We notice that our cryptogram is more robust and much heavier
than that of the AES. This conclusion presents our reason for implementing the
algorithm in question to gain performance while allowing a more robust crypto-
gram.

7. API
7.1. Overview of Routes

To highlight our algorithm we divided it into two functions namely the encryp-
tion function (encrypt) and the decryption function (decrypt) thereafter we used
the Flask framework to have links to each function which constitute the API.

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 450 Journal of Information Security

The flask framework allowed us to determine the API routes which are pre-
sented in Figure 24.

Figure 24. Route to the encrypt function.

Figure 24 shows the routes to the encrypt() function which encrypts the

number “x” indicated as a parameter using the key “key”. At the end of this
function we have a cryptogram. With the encrypt() function thus presented we
move on to the route of the decrypt function shown in Figure 25.

Figure 25. Route to the decrypt function.

This route presents the decrypt function taking as parameter the cryptogram
and the key to find the initial cipher.

7.2. Testing with Postman

We performed the Tests with Postman function by function. The encrypt func-
tion gave us the results shown in the following figure.

Figure 26. API test, encrypt function.

Figure 26 presents the encrypt function with for x = 123456789123 and for
key = 1234 which has been encrypted and we have a cryptogram. The case of the
decrypt function is shown in Figure 27.

Figure 27. API test, decrypt function.

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 451 Journal of Information Security

Figure 27 shows the decryption in the decrypt function taking as parameter
the previous cryptogram and the key and we have in output a clear number or
amount.

We have therefore output well after a collection of the API thus bringing to-
gether the two functions in a JSON format in Figure 28.

Figure 28. API collection in JSON format.

8. Conclusion

In a framework defined as that of shopping malls, the security of transactions
represents a fundamental process to guarantee the confidentiality of transactions
and the retention of data which is generally of a financial nature. The imple-
mented algorithm presents security based on substitution and permutation
techniques. This rather interesting algorithm has the robustness to make the
system very effective in imperviousness to attacks while making the customer
sovereign of his own security of payments in general and payments in a super-
market in particular. Our algorithm uses different cryptographic techniques,
namely confidentiality, integrity, authentication and non-repudiation. Also, the
state of payment systems today, and fundamental security requirements for se-
cure payment have been our priority in this article while giving the constitution
of our algorithm and its advantages. The article presented the first part which is
the security algorithm transactions in a supermarket which will be useful when
implementing the system. And it will be the subject of the second article.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jis.2023.144024

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 452 Journal of Information Security

References
[1] Li, D. and Yang, Y. (2012) Enhance Value by Building Trustworthy Software-Reliant

System of Systems from Software Product Lines. 2012 Third International Work-
shop on Product LinE Approaches in Software Engineering (PLEASE), Zurich, 04-04
June 2012, 13‑16. https://doi.org/10.1109/PLEASE.2012.6229761

[2] Chess, B. and Arkin, B. (2011) Software Security in Practice. IEEE Security & Priva-
cy, 9, 89-92. https://doi.org/10.1109/MSP.2011.40

[3] Joukov, N., Shorokhov, V. and Tantsuyev, D. (2014) Security Audit of Data Flows
across Enterprise Systems and Networks. The 9th International Conference for In-
ternet Technology and Secured Transactions (ICITST-2014), London, 08-10 De-
cember 2014, 240‑247. https://doi.org/10.1109/ICITST.2014.7038813

[4] Khande, R. and Patil, Y. (2014) Online Banking in India: Attacks and Preventive
Measures to Minimize Risk. International Conference on Information Communica-
tion and Embedded Systems (ICICES2014), Chennai, 27-28 February 2014, 1‑5.
https://doi.org/10.1109/ICICES.2014.7033940

[5] Kherad, F.J., Naji, H.R., Malakooti, M.V. and Haghighat, P. (2010) A New Symme-
tric Cryptography Algorithm to Secure E-Commerce Transactions. 2010 Interna-
tional Conference on Financial Theory and Engineering, Dubai, United Arab Emi-
rates, 18-20 June 2010, 234‑237. https://doi.org/10.1109/ICFTE.2010.5499388

[6] Hu, Y., Wu, L., Wang, A. and Wang, B. (2014) Hardware Design and Implementa-
tion of SM3 Hash Algorithm for Financial IC Card. 2014 Tenth International Con-
ference on Computational Intelligence and Security, Kunming, China, 15-16 No-
vember 2014, 514‑518. https://doi.org/10.1109/CIS.2014.176

[7] Ofosu, A.E., Kester, Q.-A. and Anyanewah, A.J.A. (2019) A Cryptographic Algo-
rithm Based on Aes Cipher Andnondeterministic Algorithm Approach for Key
Generation. 2019 International Conference on Computing, Computational Model-
ling and Applications (ICCMA), Coast, 27-29 March 2019, 105‑1054.
https://doi.org/10.1109/ICCMA.2019.00024

[8] Upadhyay, D., Zaman, M., Joshi, R. and Sampalli, S. (2022) An Efficient Key Man-
agement and Multi-Layered Security Framework for SCADA Systems. IEEE Trans-
actions on Network and Service Management, 19, 642-660.
https://doi.org/10.1109/TNSM.2021.3104531

[9] Chiba, Z., Abghour, N., Moussaid, K., Omri, A.E. and Rida, M. (2018) A Hybrid
Optimization Framework Based on Genetic Algorithm and Simulated Annealing
Algorithm to Enhance Performance of Anomaly Network Intrusion Detection Sys-
tem Based on BP Neural Network. 2018 International Symposium on Advanced
Electrical and Communication Technologies (ISAECT), Rabat, 21-23 November
2018, 1‑6. https://doi.org/10.1109/ISAECT.2018.8618804

[10] Jones, G., et al. (2022) API Development Increases Access to Shared Computing
Resources at Boston University. Journal of Software Engineering and Applications,
15, 197-207. https://doi.org/10.4236/jsea.2022.156011

[11] Hassan, B., Namir, K., Rachiq, A., Elhoussin, L. and Fouzia, B. (2018) MapReduce
Programs Simplification Using a Query Criteria API. International Journal of Ad-
vanced Computer Science and Applications, 9.
https://doi.org/10.14569/IJACSA.2018.090607

[12] Almotiri, S., Alosaimi, N. and Abdullah, B. (2021) Using API with Logistic Regres-
sion Model to Predict Hotel Reservation Cancellation by Detecting the Cancellation
Factors. International Journal of Advanced Computer Science and Applications, 12.
https://doi.org/10.14569/IJACSA.2021.0120688

https://doi.org/10.4236/jis.2023.144024
https://doi.org/10.1109/PLEASE.2012.6229761
https://doi.org/10.1109/MSP.2011.40
https://doi.org/10.1109/ICITST.2014.7038813
https://doi.org/10.1109/ICICES.2014.7033940
https://doi.org/10.1109/ICFTE.2010.5499388
https://doi.org/10.1109/CIS.2014.176
https://doi.org/10.1109/ICCMA.2019.00024
https://doi.org/10.1109/TNSM.2021.3104531
https://doi.org/10.1109/ISAECT.2018.8618804
https://doi.org/10.4236/jsea.2022.156011
https://doi.org/10.14569/IJACSA.2018.090607
https://doi.org/10.14569/IJACSA.2021.0120688

A. T. V. Eleonore et al.

DOI: 10.4236/jis.2023.144024 453 Journal of Information Security

[13] Vinoski, S. (2007) REST Eye for the SOA Guy. IEEE Internet Computing, 11, 82‑84.
https://doi.org/10.1109/MIC.2007.22

[14] Khare, R. and Taylor, R.N. (2004) Extending the Representational State Transfer
(REST) Architectural Style for Decentralized Systems. Proceedings. 26th Interna-
tional Conference on Software Engineering, Edinburgh, UK, 28 May 2004, 428-437.
https://doi.org/10.1109/ICSE.2004.1317465

[15] Ignatius Moses Setiadi, D.R., Faishal Najib, A., Rachmawanto, E.H., Atika Sari, C.,
Sarker, K. and Rijati, N. (2019) A Comparative Study MD5 and SHA1 Algorithms
to Encrypt REST API Authentication on Mobile-based Application. 2019 Interna-
tional Conference on Information and Communications Technology (ICOIACT),
Yogyakarta, Indonesia, 24-25 July 2019, 206‑211.
https://doi.org/10.1109/ICOIACT46704.2019.8938570

[16] Masséand, M.H. and Massé, M. (2012) REST API Design Rulebook: Designing
Consistent Restful Web Service Interfaces.
https://www.oreilly.com/library/view/rest-api-design/9781449317904/

[17] Chandra, S., Paira, S., Alam, S.S. and Sanyal, G. (2014) A comparative survey of
Symmetric and Asymmetric Key Cryptography. 2014 International Conference on
Electronics, Communication and Computational Engineering (ICECCE), Hosur,
Tamilnadu, India, 17-18 November 2014, 83‑93.
https://doi.org/10.1109/ICECCE.2014.7086640

[18] Shao, F., Chang, Z. and Zhang, Y. (2010) AES Encryption Algorithm Based on the
High Performance Computing of GPU. 2010 Second International Conference on
Communication Software and Networks, Singapore, 26-28 February 2010, 588‑590.
https://doi.org/10.1109/ICCSN.2010.124

[19] Radwan, A.G., AbdElHaleem, S.H. and Abd-El-Hafiz, S.K. (2016) Image Encryption
Algorithms Using Non-Chaotic Substitutions and Permutations. 2016 13th Interna-
tional Conference on Electrical Engineering/Electronics, Computer, Telecommuni-
cations and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28
June-01 July 2016, 1‑6. https://doi.org/10.1109/ECTICon.2016.7561281

[20] Chunguang, H., Hai, C., Yu, S. and Qun, D. (2015) Permutation of Image Encryp-
tion System Based on Block Cipher and Stream Cipher Encryption Algorithm. 2015
Third International Conference on Robot, Vision and Signal Processing (RVSP),
Kaohsiung, Taiwan, 18-20 November 2015, 163‑166.
https://doi.org/10.1109/RVSP.2015.46

[21] Ismoyo, D.D. and Wardhani, R.W. (2016) Block Cipher and Stream Cipher Algo-
rithm Performance Comparison in a Personal VPN Gateway. 2016 International
Seminar on Application for Technology of Information and Communication (ISe-
mantic), Semarang, Indonesia, 05-06 August 2016, 207‑210.
https://doi.org/10.1109/ISEMANTIC.2016.7873839

[22] Mandal, A.K., Parakash, C. and Tiwari, A. (2012) Performance Evaluation of Cryp-
tographic Algorithms: DES and AES. 2012 IEEE Students’ Conference on Electrical,
Electronics and Computer Science, Bhopal, India, 01-02 March 2012, 1‑5.
https://doi.org/10.1109/SCEECS.2012.6184991

[23] Eigelsreiter, R. (2022) CryptoJs 3.x AES Encryption/Decryption on Client Side with
Javascript and on Server Side with PHP.
https://packagist.org/packages/brainfoolong/cryptojs-aes-php

https://doi.org/10.4236/jis.2023.144024
https://doi.org/10.1109/MIC.2007.22
https://doi.org/10.1109/ICSE.2004.1317465
https://doi.org/10.1109/ICOIACT46704.2019.8938570
https://www.oreilly.com/library/view/rest-api-design/9781449317904/
https://doi.org/10.1109/ICECCE.2014.7086640
https://doi.org/10.1109/ICCSN.2010.124
https://doi.org/10.1109/ECTICon.2016.7561281
https://doi.org/10.1109/RVSP.2015.46
https://doi.org/10.1109/ISEMANTIC.2016.7873839
https://doi.org/10.1109/SCEECS.2012.6184991
https://packagist.org/packages/brainfoolong/cryptojs-aes-php

	Design of a Cryptographic Algorithm in the Form of an API in Order to Secure Monetary Transactions in a Supermarket
	Abstract
	Keywords
	1. Introduction
	2. API General
	3. Context
	4. Choice of the Type of Cryptosystem
	Choice of Symmetric Encryption Type

	5. Algorithm Implementation
	5.1. Block Substitution Table
	5.2. Digit Substitutions
	5.3. Logic Programming
	5.3.1. Organization Chart
	5.3.2. The Encryption Function
	5.3.3. Decryption Function

	6. Results, Discussions and Performance
	6.1. Results and Discussions
	6.2. Performance
	6.2.1. Performance of the Machine Used for the Test
	6.2.2. Comparison According to the Memory and Execution Time Required to Use the Algorithms
	6.2.3. Comparison Based on Cryptogram Structure

	7. API
	7.1. Overview of Routes
	7.2. Testing with Postman

	8. Conclusion
	Conflicts of Interest
	References

