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Abstract 
We propose an unbounded fully homomorphic encryption scheme, i.e. a 
scheme that allows one to compute on encrypted data for any desired func-
tions without needing to decrypt the data or knowing the decryption keys. 
This is a rational solution to an old problem proposed by Rivest, Adleman, 
and Dertouzos [1] in 1978, and to some new problems that appeared in Peikert 
[2] as open questions 10 and open questions 11 a few years ago. Our scheme is 
completely different from the breakthrough work [3] of Gentry in 2009. Gentry’s 
bootstrapping technique constructs a fully homomorphic encryption (FHE) 
scheme from a somewhat homomorphic one that is powerful enough to eva-
luate its own decryption function. To date, it remains the only known way of 
obtaining unbounded FHE. Our construction of an unbounded FHE scheme 
is straightforward and can handle unbounded homomorphic computation on 
any refreshed ciphertexts without bootstrapping transformation technique. 
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1. Introduction 

In 1978, Rivest, Adleman, and Dertouzos [1] proposed a concept which has come 
to be known as fully homomorphic encryption (FHE), at the time they called it a  

privacy homomorphism. In brief, we write a cryptosystem by 
1f f −

→ →   , where  
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  is the plaintexts space, and   is the ciphertexts space, f is the encryption 
function depends on public keys, and 1f −  is the decryption function depends on 
secret keys. Suppose that   and   are two commutative rings, and 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2, , , ,f c c f c f c f c c f c f c c c− − − − − −+ = + = ∀ ∈  

then f is called a fully homomorphic encryption, or FHE. Under a FHE f, for any 
polynomials ( ) [ ]p x x∈ , it is easy to see that 

( )( ) ( )( )1 * 1 , ,f p c p f c c− −= ∀ ∈  

where ( ) [ ]*p x x∈  is the corresponding polynomial over  . Since all elemen- 
tary functions can be approximated by polynomials, we can do any desired 
computation on ciphertexts without the decryption of data. 

1.1. Unbounded FHE Schemes 

Fully homomorphic encryption was known to have abundant applications in cryp-
tography, but for more than three decades no plausibly secure scheme was known. 
This changed in 2009 when Gentry [3] [4] proposed a candidate FHE scheme based 
on ideal lattices. The candidate FHE scheme means a somewhat homomorphic 
scheme that supports only a bounded amount of homomorphic computation on 
fresh ciphertexts, then, one applies the bootstrapping transformation to convert 
the scheme into one that can handle unbounded homomorphic computation. 
Gentry’s breakthrough seminal work generated tremendous excitement and was 
quickly followed by many works [5]-[16]. Despite significant advances, boot-
strapping is computationally quite expensive, because it involves homomorphi-
cally evaluating the entire decryption function. In addition, bootstrapping for 
unbounded FHE requires one to make a “circular security” assumption, i.e., it is 
secure to reveal an encryption of the secret key under itself. So far, such assump-
tions are poorly understood, and we have little theoretical evidence to support 
them, in particular, no worst-case hardness. Because of this, Peikert [2] put out 
two open problems relating to unbounded FHE as follows. 
• Open Question 10: Is there an unbounded FHE scheme that does not rely on 

bootstrapping? Is there a version of bootstrapping that uses a lighter-weight 
computation than full decryption? 

• Open Question 11: Is there an unbounded FHE scheme that can be proved 
secure solely under a worst-case complexity assumption? 

1.2. The FHE Schemes from LWE Distribution 

To date, all known full homomorphic encryption schemes follow the same basic 
template from Gentry’s initial work [3]. In a sequence of work, Brakerski and 
Vaikuntanathan [7] [8] gave a “second generation” of FHE constructions based on 
LWE distribution [17] [18]. In 2013, Gentry, Sahai, and Waters [19] proposed 
another interesting LWE-based FHE scheme that has some unique and advant- 
ageous properties. For example, the GSW Scheme can be used to bootstrap with 
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only a small polynomial-factor growth in the error rate. We describe these schemes 
in detail here. 
• BV FHE Scheme Let 1 t q< <  be two positive integers such that ( ), 1t q = . 

In the BV system, a secret key s is an LWE secret and encrypts a plaintext 

tu∈  using an LWE sample for modulus q. We use the most significant bit 
encoding to obtain a ciphertext c by 

( ), mod ,quc s q
tχ≡    

where χ  is a discrete Gauss distribution over q , and x   is the rounding 
of a real number x to the nearest integer. We use secret key s to decrypt the 
ciphertext c by 

( ) ( )1 , mod .tf c c s t
qχ

− ≡  ⋅   

Obviously, one has ( )1f c u− =  (see [20]). To explain this scheme is a somewhat 
FHE scheme, we may use the least significant bit encoding of the message (The 
equivalence of two encodings is referred to in Appendix A of [21]). In fact, the 
ciphertext c satisfies 

( ) { }, mod , and | , .
2 2
q qs c m q m nt u nχ

 ≡ ∈ + ∈ ∩ −  
  

To decrypt c, one just compute , qs c ∈ , lifts the result to its unique  

representative m in ,
2 2
q q ∩ −  

 , and the outputs ( )modu m t≡ . It is easily  

seen that the homomorphic computation on ciphertext c induces some noises, 
which, if too large, will destroy the plaintext. Therefore, the bootstrapping tech-
nique that re-encrypts a ciphertext and reduces the noise level remains the only 
known way of building the unbounded FHE schemes. 
• GSW FHE Scheme The GSW FHE scheme is presented most simply in terms 

of the gadget-based trapdoor described in [22] [23] [24] [25] [26]. The heart of 
the GSW scheme is the following additive and multiplicative homomor-
phisms for tags and trapdoors. Let n m

qA ×∈  be LWE samples with a secret 
key 1n

qs −∈ , and for 1,2i = , let 

,i i iA x G AR= −  

where i qx ∈ , G is the block-diagonal gadget matrix of dimension n nl× , 
m n

i qR ×∈  are random Gauss matrices over q , and m n nl= +  (see p.50 of [2]).  

Since i

n

R
I

 
 
 

 is a trapdoor with a tag i nx I  for matrix , iA A   , it is easy to verify 

that 

( ) ( )1 2 1 2 1 2A A x x G A R R+ = + − +  

and 

( ) ( )( )1 1
1 2 1 2 1 2 1 2 .

R

A G A x x G A R G A x R− −= − +

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In other words, 1 2

n

R R
I
+ 

 
 

 is a trapdoor with a tag ( )1 2 nx x I+  for matrix 

1 2,A A A +  , and 
n

R
I

 
 
 

 is a trapdoor with a tag 1 2 nx x I  for matrix  

( )1
1 2,A A G A−   . Even with all of the above techniques, homomorphic operations 

always increase the error rate of a ciphertext, by as much as a polynomial factor 
per operation. Therefore, the schemes described here can only homomorghically 
evaluate circuits of an a-priori bounded depth. 

1.3. The FHE Schemes from Ring-LWE 

Several constructions based on Ring-LWE are today among the most promising 
FHE candidates. There are three most popular FHE schemes from Ring-LWE: (1) 
TFHE [27] [28] particularly suitable for combinatorial operations on individual 
slots and tolerating large noise and thus, large multiplicative depth; (2) B/FV [5] 
[29] [30] allowing to perform large vectorial arithmetic operations as long as the 
multiplicative depth of the evaluated circuit remains small; (3) HEAAN [31] 
[32]—a mixed encryption scheme shown to be very efficient for floating-point 
computations. We introduce these schemes slightly in detail as follows. 
• TFHE Scheme TFHE consists of three major encryption/decryption schemes, 

each represented by a different plaintext space. First, the scheme TLWE encrypts 
messages over the entire torus   and produces ciphertexts in 1N+ . The other 
two schemes are: 
- TRGSW encrypts elements of the ring   (integer polynomials) with 

bounded l∞ -norms (of the corresponding vectors in N  under the natural 
identification N ). 

- TRLWE encrypts elements µ  of the  -module   that can also be 
viewed as elements of N  via the natural bijection N   . 

There is an external product α  depending on a noise parameter α  (see 
Corollary 3.14 [28]) which yields a FHE module structure on the schemes TRGSW 
and TRLWE. 

In TFHE, TLWE ciphertexts of a message µ∈  have the form  
( ) 1, , Na b s a eµ += + + ∈  where { }0,1 Ns∈  is the secret key, Na∈  is 
uniformly random and e∈  is sampled according to a noise distribution 
centered at zero. Similarly, for TRLWE, ciphertexts of µ∈  are of the form 
( ) 2,a b s a eµ= ⋅ + + ∈  where s∈ , a∈  is uniformly random and 
e∈ . 

The decryption in TLWE (resp. TRLWE) uses a secret κ -Lipschitz function 
(here, 0κ >  is small and we mean “with respect to the l∞ -norm on the torus”) 

: N
sϕ × →    (resp. :sϕ × →     ) called phase parametrized by a small 

(often binary) secret key { }0,1 Ns∈  (resp. s∈ ) and defined by  
( ), ,Na b b s a∈ × → −   (resp. ( ),a b b s a→ − ⋅ ). The fact that the phrase is a 
κ -Lipschitz function for small 1Nκ ≤ +  makes the decryption tolerant to 
errors and allows working with approximated numbers. 

https://doi.org/10.4236/jis.2023.144021


Z. Y. Zheng et al. 
 

 

DOI: 10.4236/jis.2023.144021 370 Journal of Information Security 
 

Ciphertexts are either fresh (i.e., generated by directly encrypting a plaintext) 
or they are produced by a sequence of homomorphic operations. In both cases, 
one views the ciphertext as a random variable depending on the random coins 
used to generate a and e as well as all random coins used in all these homomor-
phic operations. 

Since ( ),s a b b s a eϕ µ= − ⋅ = + , the decryption µ  and the noise parameter 
α  are the mean and the standard deviation of the phase function ( ),s a bϕ , 
respectively (here, the mean and standard deviation are computed over the random 
coins in the encryption algorithm). 
• B/FV Scheme In this scheme, the message space is the finite ring 

[ ] 1N
p p x x= +  for some integer p (typically a power of 2 or a prime 

number). A message pµ∈  is encrypted on a quotient ring q  (for a 
larger modulus q) as a ciphertext ( ) 2, qa b ∈  where qa∈  is chosen  
uniformly at random and b is sampled from 

, ,q
ps a
q

σ µ⋅ +
 . Here, , ,q σ µ  is  

the discrete Gaussian distribution over q  centered at µ  with standard 
deviation σ  (discrete means that the values are integers only). In addition, 
s∈  is the secret key. 

Homomorphic addition of two ciphertexts ( )1 1,a b  and ( )2 2,a b  is achieved 
by component-wise addition. The idea behind the homomorphic multiplication 
of two ciphertexts ( )1 1,a b  and ( )2 2,a b  is a technique referred to as relinearization: 
one first lifts ( ) 2,i i qa b ∈  to ( ) 2,i ia b ∈   where each coefficient is lifted to 

[ )2, 2q q−  and then views of iµ  as being expressed as a linear polynomial  

on s (i.e., ( )~i i i
p b s a
q

µ + ⋅ ). One then computes the quadratic polynomial 

corresponding to the product, namely ( ) ( )1 1 2 2
p pb s a b s a
q q

+ ⋅ ⋅ + ⋅ , and uses the 

relinearization described in [30] to write this product as ( )p b s a
q

+ ⋅  and  

determine the coefficients ( ), qa b ∈ . 
The noise amplitude grows by a small factor ( )O N  on average after each 

multiplication, so it is a common practice to perform a modulus-rescaling step, 
that divides and rounds each coefficient as well as the modulus q by the same 
scalar in order to bring the noise amplitude back to ( )1O  so that the subsequent 
operations continue on smaller ciphertexts. 
• HEAAN Scheme In this scheme, the message space is the subset of q  

containing all elements of norm B≤  for some bound B, where the norm of  
an element qx∈  is defined as x

∞
 . Here x∈   is the minimal lift of x,  

i.e., coefficients lifted to [ )2, 2q q− . The message is decrypted up to a 
constant number of the least significant bits which are considered as noise. 

A HEAAN ciphertext is also a Ring-LWE pair ( ) 2, qa b ∈  where qa∈  is 
uniformly random and b is equal to s a µ⋅ +  up to a Gaussian error of small 
standard deviation. This time, plaintexts and ciphertexts share the same space, 
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so no rescaling factor p/q is used. Multiplication of two messages uses the same 
formula as in B/FV including relinearization: if both input messages are bounded 
by B with ( )1O  noise, the product is a message bounded by B2 with noise ( )O B , 
so it is a common practice at this point to perform a modulusrescaling step that 
divides everything by B to bring the noise back to ( )1O  (see [32]). Unlike B/FV, 
this division in the modulus switching scales not only the ciphertext but also the 
plaintext by B. This can be fixed by adding a (public) tag to the ciphertext to 
track the number of divisions by B performed. 

Recently, Boura, Gama, Georgieva, and Jetchev [33] proposed a practical hybrid 
solution for combining and switching between the above three Ring-LWE-based 
FHE schemes. They achieved it by first mapping the different plaintext spaces to 
a common algebra structure and then by applying efficient switching algorithms. 
This approach has many practical applications, for example, it becomes an integral 
tool for the recent standardization initiatives of homomorphic schemes and com-
mon APIs. 

1.4. Other Related Works 

At Eurocrypt 2010, van Dijk, Gentry, Halevi, and Vaikuntanathan [34] described 
a fully homomorphic encryption scheme over the integers (see also [9] [10] [11]). 
As in Gentry’s scheme, the authors first describe a somewhat homomorphic scheme 
supporting a limited number of additions and multiplications over encrypted 
bits. Then they apply Gentry’s squash decryption technique to get a bootstrapp-
able scheme and then Gentry’s ciphertext refresh procedure to get a full homo-
morphic scheme. The main appeal of the scheme (compared to the original Gen-
try’s scheme) is its conceptual simplicity, namely, all operations are done over 
those integers instead of ideal lattices. However, the public key was too large for 
any practical system. In [10] and [11], the authors reduced the public key site 
from ( )10λ  to ( )7λ  by encrypting with a quadratic form in the public key 
elements, instead of a linear form. 

It is the latest scheme, without using noise reduction techniques (see [35]). In 
2015, Yagisawa proposed a non-associative octonion ring over a finite field fully 
homomorphic encryption scheme [36]. This scheme’s cryptographic robustness 
is based on the complexity of multivariate algebraic equations with high degree. 
In his next paper, he developed some improvements to the scheme [37]. Liu pre-
sented a symmetric fully homomorphic encryption scheme based on non-commu- 
tative rings [38]. Liu’s scheme provides an arbitrary number of additions and 
multiplications, and the correct decryption in contempt of the amount of noise 
reduction mechanisms and based on the approximating-GCD complexity. Noise- 
free symmetric fully homomorphic encryption scheme was proposed by Li and 
Wang [39] that used matrices over non-commutative rings. Needless to say, those 
noise-free schemes are not the solutions to problems of the FHE scheme, because 
of using non-associative and non-commutative rings for the plaintexts and ci-
phertexts. 
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1.5. Our Contribution 

Our contribution to the unbounded FHE scheme is straightforward, which is 
completely different from Gentry’s initial construction. More precisely, our FHE 
scheme can handle unbounded homomorphic computation on any refreshed 
ciphertexts without bootstrapping transformation. This is a rational solution to 
open problems on fully homomorphic encryption. 

Our solution comes in three steps. First, we provide a general noise-free 
construction based on ideal lattices and the Chinese Remainder Theorem, which 
includes three efficient algorithms for generating secret key, public key and 
decryption. The plaintext space is the direct sum of rings 

it
 , where it  is the 

one-dimensional modulus of each ideal lattice iI  (1 i m≤ ≤ ). The ciphertext 
space n  is a commutative ring with the addition and convolutional product ⊗  
of vectors, needless to say, the algebraic structures for homomorphic computation 
are simplest. The main ideal is to set up a multiplicative operation for n , such 
that n  becomes a commutative ring, therefore, one views nI ⊂   both as an 
ideal and as a lattice in n , in particular, n I  becomes a quotient ring. 
Working with the ring ( ), ,n + ⊗ , we can efficiently utilize the Chinese Remainder 
Theorem for generating of public key. Next, we provide a probabilistic algorithm 
for public keys, so that the encryption algorithms are secure against indistinguish- 
able under chosen-plaintext attacks, namely, our scheme is IND-CPA secure. 
Finally, we discuss the IND-CCA security of our scheme based on the general 
compact knapsacks problem for arbitrary rings, we show that the security is solely 
under the worst-case complexity assumption. This is also a solution to open 
question 11 of Peikert [2]. In the last section of this paper, we provide a practical 
system based on some basic results from cyclotomic fields [40]. The novelty of 
this practical system is to establish a connection between a cryptosystem and the 
ancient hard problem in mathematics: how to find a solution to an algebraic 
equation with a high degree. By the famous Galois theory, there is no general 
method to find a solution when the degree of an algebraic equation is bigger 
than 5. 

The generalization of compact knapsack problem for arbitrary ring may be 
described as follows: given m ring elements 1 2, , , ma a a R∈  and a target value 
b R∈ , find coefficients 1 2, , , mx x x X R∈ ⊂  such that 1

m
i ii a x b

=
=∑ . The 

computational complexity of this problem depends on the choice of ring R and 
the size of X. This problem is known to be solvable in quasi polynomial time 
when R is the ring of integers and X is the set of small integers { }10,1, ,2m−

  
(see [41] and [42]). Micciancio [42] studied the knapsack problem when R is an 
appropriately chosen ring of modulo polynomials and X is the subset of polynomials 
with small coefficients, he has shown that the complexity is as hard to solve on 
the average as the worst-case instance of approximating the covering radius of 
any cyclic lattice within a polynomial factor. 

We generalize this result to any ideal lattices, such that our FHE scheme is as 
hard to solve on the average as the worst case of approximating the covering 
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radius of any ideal lattices. 

2. The General Construction without Disturbance 

Let [ ]x  be the ring of integer coefficients polynomials with variable x, 
( ) [ ]x xφ ∈ , and ( ) 1

1 1 0
n n

nx x x xφ φ φ φ−
−= − − − −  with 0 0φ ≠  be a given 

polynomial, ( )xφ  be the principal ideal generated by ( )xφ  in [ ]x , 
[ ] ( )R x xφ=   be the quotient ring. Let n  be the n dimensional Euclidean 

space, and n n⊂   be all of integer vectors in n . We use column notation 
for vectors in n . 

There is a one to one correspondence between the quotient ring  
[ ] ( )x xφ  and all the integer vectors n : 

( ) [ ] ( )

0

11
0 1 1

1

= ,n n
n

n

a
a

a x a a x a x x x a

a

τ
φ−

−

−

 
 
 + + + ∈ → = ∈
 
 
 





       (2.1) 

we write ( )( )a x aτ = , or ( ) ( )1 a a xτ − = . Since  
( ) ( )( ) ( )( ) ( )( )a x b x a x b xτ τ τ+ = + , τ  is an isomorphism of additive groups in 

fact. To regard τ  as an isomorphism of rings, we need to define a multiplicative 
operator in n . To do this, let the rotation matrix H Hφ=  be given by 

0

1

1

1

0 0

=
n

n

H
I

φ
φ

φ
−

−

 
 
 
 
 
 





 

where 1nI −  is the unit matrix of 1n −  dimension. 
DEFINITION 2.1 For any nα ∈ , the ideal matrix generated by α  is 

defined by 

( )* 1, , , .n n nH H Hα α α α− × = ∈    

Some basic properties about ideal matrix may be described as the following 
lemma, its proof is referred to Lemma 2.5 of [43], or Lemma 5.2.4 of [44]. 

Lemma 2.1 Let 

0

1

1n

α
α

α

α −

 
 
 =
 
 
 



 and 

0

1

1n

β
β

β

β −

 
 
 =
 
 
 



 be any two vectors in n , then 

one has 
(i) ( )* 1

0 1 1
n

n nH I H Hα α α α −
−= + + + ; 

(ii) ( ) ( ) ( ) ( )* * * *H H H Hα β β α= ; 

(iii) ( ) ( ) ( )( )* * * *H H H Hα β α β= ; 

(iv) ( )( ) ( )*

1
det

n

i
i

H α α ω
=

=∏ ; 

where ( )( )*det H α  is the determinant of ( )*H α , ( ) ( )1xα τ α−= , and  

1 2, , , nω ω ω  are n roots of ( )xφ . 
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By (iv) of Lemma 2.1, ( )*H α  is an invertible matrix if and only if ( )xα  
and ( )xφ  have no common roots in complex numbers field. Now, we may define 
a multiplicative operator in n  in terms of the ideal matrix. 

DEFINITION 2.2 Let , nα β ∈  be two integer vectors, we define the 
convolutional product α β⊗  by 

( )* .Hα β α β⊗ =  

Obviously, under the convolutional product α β⊗ , n  becomes a com-

mutative ring with the unit element 

1
0

0

ne

 
 
 = ∈
 
 
 



 , since α β β α⊗ = ⊗  and 

, .ne eα α α α⊗ = ⊗ = ∀ ∈  

Sometimes, we write this ring by ( ), ,n n+ ⊗ =  . 
Lemma 2.2 The correspondence τ  given by (2.1) is a ring isomorphism 

between ( )n xφ  and n , namely, we have 

[ ] ( ) ( ), , .nx xφ ≅ + ⊗   

Proof. By Lemma 2.4 of [43] or Lemma 5.2.5 of [44], it is easy to see that 

( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

,

.

x x x x

x x x x

τ α β α β τ α τ β

τ α β α β τ α τ β

+ = + = +

= ⊗ = ⊗
 

The conclusion follows immediately. 
According to the definition of ideal lattices [2] [42] [45] [46] [47] [48], an 

ideal lattice nI ⊂  , just is an ideal of ( ), ,n + ⊗ , we view nI ⊂   both as an 
ideal of n  and as a lattice in n , in particular, n I  is a quotient ring. 

A lattice nI ⊂   is a discrete additive group of n  [46] [49] [50], we write 
( )I B=   as usual, where [ ]1 2, , , n n

nB β β β ×= ∈   is the generated matrix or 
a basis of I. All lattices we discuss here are the full rank lattice, it means that 

( )det 0B ≠ . If nI ⊂  , then I is called an integer lattice. The Hermite Normal 
Form base B [40] [51] for an integer lattice is an upper triangular matrix 

( ) n n
ij n n

B b ×

×
= ∈  satisfying 1iib ≥  (1 i n≤ ≤ ) and 

0, if 0 , and 0 , if 0 .ij ij iib j i n b b i j n= ≤ < ≤ ≤ < ≤ < ≤  

It is known that there is a unique HNF basis for an integer lattice and its 
Gram-Schmidt orthogonal basis is a diagonal matrix, more precisely, if 

[ ]1 2, , , nB β β β= 
 is the HNF basis of an integer lattice, * * * *

1 2, , , nB β β β =    
is the corresponding orthogonal basis obtained by Gram-Schmidt orthogonal 
method, then { }*

11 22diag , , , nnB b b b=   is a diagonal matrix (see Lemma 7.26 of 
[40]). 

DEFINITION 2.3 11b  is called the one dimensional modulus of an ideal 
lattice ( )1 2, , , nI β β β=  , and denoted by ( ) 11t I b= . 

Let ( ), ,nI ⊂ + ⊗  be an ideal lattice, to obtain a set of representative elements 
for the quotient ring n I , we use the notation of orthogonal parallelepiped due 
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to Micciancio [51]. The following lemma is referred to as Lemma 7.45 and (7.131) 
of [40], or §4.1 of [51], and a proof will be appeared in Lemma 2.6 below. 

Lemma 2.3 Suppose that ( )I B=   is a full rank ideal of n , B is the HNF 
basis of I, and { }*

11 22diag , , , nnB b b b=   is the corresponding orthogonal basis, 
then a set of representative elements of the quotient ring n I  is 

( )

1

2 | 0 ,1 ,n
i ii

n

x
x

I x x b i n

x

  
  
  = = ∈ ≤ < ≤ ≤       



  

and ( )I  is called the orthogonal parallelepiped of I. 
Next, we turn to discuss the ideal lattices and the ring ( ), ,n + ⊗ . Let nα ∈  

be a given vector, the principal ideal lattice α  is a principal ideal generated 
by α  in n . It is easily verified that 

{ } ( )( )*| .nx x Hα α α= ⊗ ∈ =   

Thus, the generated matrix of a principle ideal lattice α  just is the ideal 
matrix generated by α . 

The operations among the ideal lattices in ( ), ,n + ⊗  are defined as usual, in 
particular, the addition and multiplication for two ideals, I and J are defined by 

{ }| , ,I J I Jα β α β+ = + ∈ ∈  

| , ,i i i i
i

IJ I Jα β α β
<∞

 = ⊗ ∈ ∈ 
 
∑  

and 

{ }| , and .I J I Jγ γ γ∩ = ∈ ∈  

Since I J+ , IJ  and I J∩  are also the ideals of n , therefore, all of them 
are ideal lattices. 

DEFINITION 2.4 Let nI ⊂  , nJ ⊂   be two ideal lattices. If nI J+ =  , 
we call I and J to be relatively prime, and denoted by ( ), 1I J = . 

It is easy to see that two ideal lattices I and J are relatively prime, if and only if 
there are Iα ∈  and Jβ ∈  such that eα β+ = , where e is the unit element 
of ( ), ,n + ⊗ . 

To construct a FHE scheme, we utilize the Chinese Remainder Theorem in 
the ring ( ), ,n + ⊗ , which is a well-known theorem in Number Theory. 

THEOREM 1 (Chinese Remainder Theorem) Let 1 2, , , mI I I  be pairwise 
relatively prime ideal lattices in n , and 1 2, , , n

mα α α ∈   be m target vectors 
in n , then there exists a common solution of the following congruences: 

( )mod ,1 ,i ix I i mα≡ ≤ ≤  

and the solution of nx∈  is a unique modulo-ideal lattice 1 2 mI I I∩ ∩ . 
For arbitrary pairwise relatively prime lattices 1 2, , , mI I I , it is known that 

1 2 1 2 .m mI I I I I I∩ ∩ =   
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By the above Chinese Remainder Theorem, one has the following consequence 
immediately. 

Corollary 2.1 Suppose that 1 2, , , mI I I  are pairwise relatively prime ideal 
lattices in n , then we have the following ring isomorphism 

1 2 1 2 .n n n n
m mI I I I I I≅ ⊕ ⊕ ⊕               (2.2) 

The right-hand side of (2.2) is the direct sum of m quotient ring n
iI   

(1 i m≤ ≤ ), and the addition and multiplication of 
1

m
n

i
i

I
=
⊕  are given by 

( ) ( ) ( )1 2 1 2 1 1 2 2, , , , , , , , ,m m m ma a a b b b a b a b a b+ = + + +  
 

and 

( ) ( ) ( )1 2 1 2 1 1 2 2, , , , , , , , , .m m m ma a a b b b a b a b a b⊗ = ⊗ ⊗ ⊗  
 

Proof. Since 1 2, , , mI I I  are pairwise prime, by Theorem 1, there are m vectors 

iA  (1 i m≤ ≤ ) in n  such that 

( ) ( )mod , and 0 mod , if .i i i jA e I A I j i≡ ≡ ≠  

For any ( )1 2 1 2, , , n n n
m mI I Iα α α α= ∈ ⊕ ⊕ ⊕    , by Theorem 1 again, 

there is a unique solution 1 2
n

mx I I I∈   such that 

( )

( )

1 1mod

modm m

x I

x I

α

α

 ≡


 ≡

  

We define ( )f xα = , which is the ring isomorphism from  

1 2
n n n

mI I I⊕ ⊕ ⊕    to 1 2
n

mI I I  as we desired. Using  

1 2, , , mA A A , one may clearly write down f by 

( ) ( )( )1 2 1 1, , , .m m mf f A Aα α α α α α= = ⊗ + + ⊗   

Let ( )1 2, , , mβ β β β= 
 be another element of 

1

m
n

i
i

I
=
⊕ , it is easy to see that 

( ) ( )( )

( ) ( )

1 1 2 2

1 1 1 1

, , ,

.

m m

m m m m

f f

A A A A
f f

α β α β α β α β

α α β β

α β

+ = + + +

= ⊗ + + ⊗ + ⊗ + + ⊗

= +



   

To verify ( ) ( ) ( )f f fα β α β⊗ = ⊗ , since 

( ) ( ) ( ) ( )mod , and mod ,1 .i i i if I f I i mα α β β≡ ≡ ≤ ≤  

It follows that 

( ) ( ) ( )mod ,1 .i i if f I i mα β α β⊗ ≡ ⊗ ≤ ≤  

By the definition of f, we have 

( ) ( )( ) ( ) ( )1 1 2 2, , , .m mf f f fα β α β α β α β α β⊗ = ⊗ ⊗ ⊗ = ⊗  

This proves that f is a ring isomorphism. 
We extend the inverse isomorphism 1f −  to the whole space n  by 
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*f f π=  : 
1

*
1 2

1
: ,

mf
n n n

m i
i

f I I I I
π −

=

→ →⊕    

where π  is the natural homomorphism from n  to its quotient ring 

1 2
n

mI I I . It is easy to see that *f  is a homomorphism from n  to  

1

m
n

i
i

I
=
⊕ , and 

( )( ) ( )( )* 1

1
, ,

m
n

i
i

f f u f f u u u I−

=

= = ∀ ∈⊕             (2.3) 

*f  will play the role of decryption in our scheme, and always write down 
*f  by 1f −  in the following discussion. 
Since   is a ring, we wish to embed this ring into ( ), ,n + ⊗ . To do this, we 

define an embedding mapping from   to n  by 

0
, .

0

n

a

a a a

 
 
 ∀ ∈ → = ∈
 
 
 



                       (2.4) 

Lemma 2.4 Under the embedding mapping a a→ ,   becomes a subring 
of ( ), ,n + ⊗ , namely, for any a∈ , b∈ , one has a b a b+ = +  and 
ab a b= ⊗ . 

Proof. By (2.4), we have 

0 0 0

0 0 0

a b a b

a b a b

+     
     
     + = = + = +
     
     
     

  

 

and 

0
,

0

ab

a b a b

 
 
 ⊗ = = ⋅
 
 
 



 

the lemma follows at once. 
Lemma 2.5 Let nI ⊂   be an ideal lattice, and ( )t t I=  be its one dimen- 

sional modulus given by DEFINATION 2.3. Then, for any ,a b∈ , we have 

( ) ( )mod mod .a b t a b I≡ ⇔ ≡  

Proof. By assumption, I is a full rank lattice and its HNF basis may be written 
by 

11

22 .
0

nn

b
b

B

b

∗ ∗ ∗ 
 ∗ ∗ =
 ∗
 
 


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If ( )moda b I≡ , then there is a vector 
1

n

n

x
x

x

 
 = ∈ 
 
 

   such that 

0
.

0

a b

a b Bx

− 
 
 − = =
 
 
 



 

Since 0nn nb x = , and 1nnb ≥ , we have 0nx = , similarly, since  

1, 1 1 1, 0n n n n n nb x b x− − − −+ = , it follows that 1 0nx − = . Therefore, we have  

1 2 0n nx x x−= = = = , and ( )1 11 1 moda b x b x t a b t− = = ⇒ ≡ . Conversely, if 
( )moda b t≡ , then a b qt− = , and 

( )
0

mod .

0

q

a b B I a b I

 
 
 

− = ∈ ⇒ ≡ 
 
 
 



 

The assertion is true. 
For arbitrary given pairwise relatively prime ideal lattices 1 2, , , mI I I , one 

uses the Chinese Remainder Theorem to generate the public key 1 2, , , mA A A , 
where ( )1n

iA i m∈ ≤ ≤  such that 

( ) ( )mod , and 0 mod , if ,i i i jA e I A I j i≡ ≡ ≠           (2.5) 

where 

1
0

0

ne

 
 
 = ∈
 
 
 



  is the unit element of ( ), ,n + ⊗ . 

Now, we describe a scheme for unbounded fully homomorphic encryption as 
follows. 

 
Algorithm 1: The General Unbounded FHE Scheme without Noises 

•   Secret Key:  One selects m pairwise relatively prime ideal lattices 1 2, , , mI I I  in 
n  as the decryption key. 

•   Public Key:  Let ( )i it t I=  be the one dimensional modulus of ( )1iI i m≤ ≤ . The 

plaintexts space is the direct sum of ring 
1

i

m

t
i=

=⊕ , the addition and 

multiplication in   are given by 

( ) ( ) ( )1 2 1 2 1 1 2 2, , , , , , , , , ,m m m ma a a b b b a b a b a b+ = + + +    

( ) ( ) ( )1 2 1 2 1 1 2 2, , , , , , , , , .m m m ma a a b b b a b a b a b⋅ =    

The public key for encryption is { }1 2, , , n
mA A A ⊂  , and each iA  

is given by (2.5). 
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Continued 

•   Encryption:  For any plaintext ( )1 2
1

, , ,
i

m

m t
i

u u u u
=

= ∈ =⊕  , the encryption 

function f is given by 

( ) 1 1 2 2 ,m mc f u u A u A u A= = ⊗ + ⊗ + + ⊗
      (2.6) 

where iu  is the embedding of iu . 

•   Decryption:  For any ciphertext nc∈ , we use the secret key 1 2, , , mI I I  to 

decrypt c. Since for every i, 1 i m≤ ≤ , we have ( )modi ic u I≡ , and c 

mod iI  is a unique vector in the orthogonal parallelepiped ( )iI  

of iI , thus one has c mod i iI u= , and by (2.3), we have 

             ( ) ( )1
1 2, , , .mf c u u u u− = =  

 
To verify the homomorphic addition and multiplication for the above scheme, 

by Lemma 2.4,   is a subring of ( ), ,n + ⊗ . By Lemma 2.5, we can embed the  

direct sum 
1

i

m

t
i=
⊕  into 

1

m
n

i
i

I
=
⊕ , so that 

1
i

m

t
i=
⊕  also is a subring of 

1

m
n

i
i

I
=
⊕ .  

Therefore, the property of fully homomorphism directly follows by *f  (or 
1f − ) a ring homomorphism: 

1
i

m

t
i=
⊕ ↪

*

1 2
1

.
m f f

n n n
i m

i
I I I I

=

→ ←⊕     

More precisely, let ( )1c f u= , and ( )2c f v=  be arbitrary two ciphertexts,  

where ( )1 2
1

, , ,
i

m

m t
i

u u u u
=

= ∈⊕  , and ( )1 2
1

, , ,
i

m

m t
i

v v v v
=

= ∈⊕  , we note that  

for all i, 1 i m≤ ≤ , 

( ) ( )1 2 1 2mod , and mod .i i i i i ic c u v I c c u v I+ ≡ + ⊗ ≡ ⊗  

By Lemma 2.4, it follows that 

( ) ( )1 2 1 2mod , and mod .i i i i i ic c u v I c c u v I+ ≡ + ⊗ ≡  

Therefore, by Lemma 2.5, we have 

( ) ( )
( ) ( )

( ) ( )

1
1 2 1 1 2 2

1 2 1 2

1 1
1 2

, , ,

, , , , , ,

,

m m

m m

f c c u v u v u v

u u u v v v

f c f c

−

− −

+ = + + +

= +

= +



 
 

and 
( ) ( )

( )( )
( ) ( )

1
1 2 1 1 2 2

1 2 1 2

1 1
1 2

, , ,

, , , , , ,

.

m m

m m

f c c u v u v u v

u u u v v v

f c f c

−

− −

⊗ =

=

= ⋅



 
 

This is an unbounded fully homomorphic encryption as we desired. 
How to decrypt the ciphertext nc∈  using the secret key 1 2, , , mI I I  in 

our algorithm for the general unbounded FHE scheme? Here we give a lemma to 
show that there is only one vector n

iu ∈  in the orthogonal parallelepiped 
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( )iI  of iI  such that ( )modi ic u I≡ , and give an algorithm to calculate iu  
in detail. 

Lemma 2.6 Given an ideal lattice I, for any vector nc∈ , there is only one 
vector ( )w I∈  such that ( )modc w I≡ . 

Proof. Assume [ ]1 2, , , nB β β β= 
 is the HNF basis of I, and  

* * * *
1 2, , , nB β β β =    is the corresponding orthogonal basis of B. Write c as the 

linear combination of * * *
1 2, , , nβ β β   , i.e. 

*
*

* *
1

,
, .

,

n i
i i i

i i i

c
c c c

β
β

β β=

= =∑  

Let *

1 1

n n

i i i i
i i

w c kβ β
= =

= −∑ ∑ , 1 2, , , nk k k ∈  , then 
1

n

i i
i

c w k Iβ
=

− = ∈∑ . Next, we  

prove that there is only one group of integers 1 2, , , nk k k  such that ( )w I∈ , 
i.e. 

[ )
*

* *

,
0,1 , 1 .

,
i

i
i i

w
w i n

β

β β
= ∈ ∀ ≤ ≤  

Firstly, we determine the value of nk . Since 
* *

* * * *

, ,
,

, ,
n n n

n n n n n
n n n n

w
w c k c k

β β β

β β β β
= = − = −  

therefore, when [ ]n nk c= , here [ ]x  means the largest integer no more than 
real number x, we have [ )0,1nw ∈ . Secondly, we determine 1nk − . Note that 

* *
1 1

1 1 1* * * *
1 1 1 1

, ,
,

, ,
n n n

n n n n
n n n n

w
w c k k

β β β

β β β β
− −

− − −
− − − −

= = − −  

so there is only one integer 

[ ]
*

1
1 1 * *

1 1

,

,
n n

n n n
n n

k c c
β β

β β
−

− −
− −

 
 = −
  

 

such that [ )1 0,1nw − ∈ . Similarly, we could determine any ik , 1 1i n∀ ≤ ≤ − , 

*
*

1

* * * *

,,
,

, ,

n

j j i
i j i

i i i
i i i i

kw
w c k

β β
β

β β β β
= += = − −
∑

 

hence, there is only one integer 

*

1

* *

,

,

n

j j i
j i

i i
i i

k
k c

β β

β β
= +

 
 
 = − 
 
  

∑
 

such that [ )0,1iw ∈ , 1 1i n∀ ≤ ≤ − . Above all, there is only one vector  

( )*

1 1

n n

i i i i
i i

w c k Iβ β
= =

= − ∈∑ ∑   such that ( )modc w I≡ . 
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Based on Lemma 2.6, we give an algorithm for the decryption of our general 
FHE scheme. 

 
Algorithm 2: Decryption Algorithm for FHE Scheme 

• For any ciphertext nc∈ , given a full rank ideal lattice iI  with HNF basis

[ ]1 2, , , nB β β β=   and the corresponding orthogonal basis * * * *
1 2, , , nB β β β =   , 

we can find only one vector ( )
1

n

i i i
i

u c k Iβ
=

= − ∈∑   such that ( )modi ic u I≡ , where 

*
* *

1

* * * * * *

,, ,
, , 1, 2, ,1.

, , ,

n

j j i
j in i

n i
n n i i i i

kc c
k k i n n

β β
β β

β β β β β β
= +

 
     = = − = − −     
  

∑


 

 
To create an efficient algorithm for generating the secret key of the above 

unbounded FHE scheme, we assume that ( )xφ  is an irreducible polynomial, so 
that the principal ideal ( )xφ  is a prime ideal in [ ]x , and the quotient ring 
[ ] ( )x xφ  is a domain, equivalently, ( ), ,n + ⊗  becomes a domain. Under 

this assumption, we see that arbitrary many pairwise relatively prime ideals in 
n  almost come in automatically, we describe the process as follows. 
 

Algorithm 3: Generating Algorithm for Secret Key 

•   First Step. Randomly select an non-zero vector nα ∈  as input, and the output is 
the following relatively prime two ideal 1I  and 2I , where 

1 2, and .I I eα α= = −  

•   Second Step. Randomly select two non-zero vectors 1 1Iα ∈  and 2 2Iα ∈  as 
input, and the output is the following ideal 3I , where 

3 1 2 .I e α α= − ⊗  

It is easy to see that 1 2 3, ,I I I  are pairwise relatively prime ideals. 

•   Last Step. Suppose that 1m −  pairwise relatively prime ideals 1 2 1, , , mI I I −  are 
selected, then one randomly finds 1 1Iα ∈ , 2 2Iα ∈ ,  , 1 1m mIα − −∈ , 

0iα ≠ , and the output ideal mI  given by 

1 2 1 .m mI e α α α −= − ⊗ ⊗ ⊗  

Obviously, 1 2, , , mI I I  are pairwise relatively prime ideals in n . 

 
To construct an efficient algorithm for finding public key, we first show that 
Lemma 2.7 Suppose that 1 2, , , mI I I  are pairwise relatively ideals in n , 

and each iI  is a principal ideal generated by iα , namely, i iI α= . Let 

1,
,1 .

m

i j
j j i

d i mα
= ≠

= ≤ ≤⊗  
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Then for every id , there is a vector n
i ∈  such that 

( )mod ,1 .i i id e I i m⊗ ≡ ≤ ≤  

Proof. Since 1 2, , , mI I I  are pairwise relatively prime by assumption, we 
have 

( )1 2 1 1, 1,1 .i i i mI I I I I I i m− + = ≤ ≤ 
 

In other words, we have ( ), 1i iI d = , or 

.n
i idα + =   

Therefore, there is a vector n
i ∈  such that ( )modi i id e I⊗ ≡ , and we 

have Lemma 2.7 immediately. 
How to find the vector i  defined by Lemma 2.7? We introduce a polynomial 

algorithm to obtain i  ( 1 i m≤ ≤ ), and generate the public key 
{ }1 2, , , mA A A

 by taking i i iA d= ⊗  (1 i m≤ ≤ ). 
 

Algorithm 4: Generating Algorithm for Public Key without Noises 

• Let i iI α=  (1 i m≤ ≤ ) be pairwise relatively prime, and 

( ) ( )1

1,
,1 ,

m

i i
j j i

d x i mτ α−

= ≠

= ≤ ≤∏
 

where the secret key i iI α=  (1 i m≤ ≤ ), and 1τ −  is the inverse mapping of τ  

given by (2.1). 
Since ( )id x  and ( )1

iτ α−  are relatively prime polynomial in quotient ring 

[ ] ( )x xφ , it follows that 

( ) ( ) [ ] ( )1 .i id x x xτ α φ−+ = 
 

Therefore, there is a polynomial ( )i x  such that 

( ) ( ) ( )( )11 mod .i i id x x τ α−≡
 

We put ( )( )i i xτ=  , and i i iA d= ⊗ , 1 i m≤ ≤ . 

3. A Probabilistic Algorithm for Encryption 

In our general construction for unbounded FHE, the encryption formula (2.6) is 
deterministic, so it is not IND-CPA secure, i.e. it is not secure against indistin- 
guishable under chosen-plaintexts attack. To improve the encryption algorithm, 
we require to add some noises to the generating algorithm for public keys. 

Let ( )1 2, , , mχ χ χ χ= 
 be an arbitrary multiple discrete probability distri- 

butions over 
1 2 mt t t× × ×   , where iχ  be any discrete distribution over 

( )1
it

i m≤ ≤ . Let i ia χ←  and ( )1
ii ta i m∈ ≤ ≤ , so that  

( )
1 21 2, , ,

mm t t ta a a a= ∈ × × ×      are the samples drawn from the distribu- 
tion χ . By Theorem 1, we have m vectors ( )1iE i m≤ ≤  in n  such that 

( ) ( )mod , and mod , if ,i i i j jE e I E a I j i≡ ≡ ≠            (3.1) 
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where e is the unit element of n  and ja  is the embedding of ja  given by 
(2.4). According to the probabilistic distribution χ , we generate the public 
keys { }1 2, , , mA A A Aχ ′ ′ ′= 

 with noises by 

,1 ,i i iA A E i m′ = ⊗ ≤ ≤                     (3.2) 

where iA  given by (2.5), and iE  given by (3.1). Therefore, the encryption algori- 
thm (2.6) in our general construction (see algorithm 1) becomes the following 
formula for any ( )

11 2, , ,
mm t tu u u u= ∈ ⊕ ⊕    , 

( ) 1 1 2 2 .m mf u u A u A u Aχ ′ ′ ′= ⊗ + ⊗ + + ⊗              (3.3) 

Lemma 3.1 For arbitrary samples ( )1 2, , , ma a a a= 
 drawn from the 

distribution χ , we have (1 i m≤ ≤ ) 

( ) ( )mod , and 0 mod , if .i i i jA e I A I j i′ ′≡ ≡ ≠  

Proof. By (2.5), for every ( )1i i m≤ ≤  we have ( )modi iA e I≡ , and 
( )0 modi jA I≡  when j i≠ , it follows that 

( ) ( )mod , and 0 mod , if .i i i i i jA A E e I A I j i′ ′≡ ⊗ ≡ ≡ ≠  

The dramatic effect of the above lemma is that the probabilistic encryption 
function fχ  shares the same decryption formula (see Algorithm 2) with the 
deterministic encryption algorithm f given by (2.6). In other words, there are no 
noises occurred in the decryption procedure, although the encryption algorithms 
with disturbance. It explains why we may obtain an unbounded FHE scheme 
without Gentry’s bootstrapping transformation technique. 

Next, we discuss how to randomly find the public keys { }1 2, , , mA A A Aχ ′ ′ ′= 
 

according to the probabilistic distribution χ , the following lemma tells us how 
to obtain the error term iE . 

Lemma 3.2 Let ( )1 2, , , ma a a a χ= ←
, and { }1 2, , , mA A A A= 

 be given by 
Algorithm 4, then we have 

1 1 1 1 1 1 ,
1 ,

i i i i i i m mE a A a A A a A a A
i m

− − + += ⊗ + + ⊗ + + ⊗ + + ⊗

≤ ≤

     (3.4) 

where ja  is the embedding of ja . 
Proof. Since ( )modi iA e I≡ , and ( )0 modi jA I≡  for j i≠ , it follows that 

( ) ( )mod , and mod , if .i i i j jE e I E a I j i≡ ≡ ≠  

We have the lemma immediately. 
Now, we give the final algorithm for the unbounded FHE scheme as follows. 
 

Algorithm 5: The General Unbounded FHE Scheme 

•   Secret Key:  One randomly selects m pairwise relatively prime principal ideal lat-
tices 1 2, , , mI I I  in n  as the decryption key according to Algo-
rithm 3. 
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Continued 

•   Public Key:  Let ( )i it t I=  be the one dimensional modulus of ( )1iI i m≤ ≤ . The 

plaintexts space is the direct sum of ring 
1

i

m

t
i=

=⊕ , the addition and 

multiplication in   are given by 

( ) ( ) ( )1 2 1 2 1 1 2 2, , , , , , , , , ,m m m ma a a b b b a b a b a b+ = + + +    

( ) ( ) ( )1 2 1 2 1 1 2 2, , , , , , , , , .m m m ma a a b b b a b a b a b⋅ =    

Let ( )1 2, , , mχ χ χ χ=   be a probabilistic distribution over  

1 2 mt t t× × ×   . The public key for encryption is  

{ }1 2, , , n
mA A A Aχ ′ ′ ′= ⊂  , and each i i iA A E′ = ⊗ , where iA  given 

by Algorithm 4 and iE  given by (3.4). 

•   Encryption:  For any plaintext ( )1 2
1

, , ,
i

m

m t
i

u u u u
=

= ∈ =⊕  , the encryption 

function fχ  is given by 

( ) 1 1 2 2 ,m mc f u u A u A u Aχ ′ ′ ′= = ⊗ + ⊗ + + ⊗
         (3.5) 

where iu  is the embedding of iu . 

•   Decryption:  For any ciphertext nc∈ , we use the secret key 1 2, , , mI I I  to 

decrypt c. Since for every i, 1 i m≤ ≤ , we have ( )modi ic u I≡ , and c 

mod iI  is a unique vector in the orthogonal parallelepiped ( )iI  

of iI , thus one has c mod i iI u= , and by Lemma 3.1 and (2.3), we 
have  

( ) ( ) ( )1 1
1 2, , , .mf c f c u u u uχ

− −= = =  

 
Because of the decryption procedure without noises, and the homomorphic 

computation on ciphertexts, we claim that the above Algorithm 5 is the unbounded 
FHE scheme as we desired. 

Remark Since the probabilistic distribution χ  is arbitrary, an alternative 
method to add noises to public key { }1 2, , , mA A A A= 

 may be described as 
follows: Randomly find m vectors 1 2, , , mγ γ γ  in n , and put 

1 1 1 1 1 1 ,1 ,i i i i i i m mA A A A A i mγ γ γ γ− − + +Γ = ⊗ + + ⊗ + + ⊗ + + ⊗ ≤ ≤    (3.6) 

and then let i i iA A′′= ⊗Γ . Thus, we obtain the public key  
{ }1 2, , ,

kp mA A A A′′ ′′ ′′=   with noises, which guarantees the encryption formula (2.6) 
is not deterministic. 

To discuss the security of this scheme, we observe that all risks come from the 
encryption algorithm (3.5). This algorithm contains some noises for public keys 
and guarantees the scheme could resist CPA attack. We describe the other risk as 
a generalized compact knapsack problem over the ring ( ), ,n + ⊗  as follows: 

1
, ,

m

i i i
i

a x u x β
=

⊗ = ≤∑                     (3.7) 

where 1 2, , , ma a a  are given m vectors in n , nu∈  is a target vector, and  
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1
max ii m

tβ
≤ ≤

= . Next section, we will show that the security of our scheme is solely  

under a worst-case complexity assumption, this is also a solution to open 
question 11 of [2]. 

4. The Generalized Compact Knapsack Problem over n  

In this section, we discuss the security of our scheme based on the general compact 
knapsack problem over the ring ( ), ,n + ⊗ . In [42], Micciancio has proved that 
if we can solve the knapsack problem over n

q  for some sufficiently large positive 
integer number q, then there is a probabilistic polynomial algorithm solving the 
covering radius problem for any n dimensional full rank cyclic lattice. First we 
generalize Micciancio’s result to arbitrary ideal lattices based on our precious 
work [48], and then solving the knapsack problem from n

q  to ( ), ,n + ⊗ . We 
give an entire proof for the reason of completeness, although the method we 
present here is quite similar to Micciancio’s original proof. 

DEFINITION 4.1 Let L be a full rank lattice, ( )nγ  is a parameter of n, 
( ) 1nγ ≥ , CDPγ  problem is to find an r such that 

( ) ( ) ( ) ,L r n Lρ γ ρ≤ ≤  

where ( ) ( )max dist ,
nx

L x Lρ
∈

=


 and ( )dist , min
L

x L x
α

α
∈

= − . 

DEFINITION 4.2 Let L be a full rank lattice, { }1 2, , , nS s s s L= ⊂
 be n 

linearly independent lattice vectors. { }* * * *
1 2, , , nS s s s=   is the orthogonal basis 

corresponding to S by the Gram-Schmidt method. We define 

( )
1
22*

1
.

n

i
i

S sσ
=

 =  
 
∑  

Here we give our main result to show that the generalized knapsack problem 
over n  is at least as hard as the covering radius problem for any n dimensional 
full rank ideal lattice. 

THEOREM 2 Let ( )logm O n= , ( )logk O n=  ,  

1

2 2 2 2
0 1 n

φ φ φ φ
−

= + + + , 22 2M φ= + , 1
1

nMW
M

−
=

−
, 316mkn Wγ ≥ , if we 

can solve the knapsack problem (3.7), then there is a positive probabilistic 
polynomial algorithm solving the covering radius problem CDPγ  for any n 
dimensional full rank ideal lattice L. 

Remark In the original work of Micciancio [42], the parameter γ  is bigger  

than 316mkn , we require 316mkn Wγ ≥ , where W is given by 1
1

nM
M

−
−

. The main 

difference is to estimate the length of convolutional product α β⊗  for any two 
vectors α  and β . It is clearly that nα β α β⊗ ≤  in the case of circulant 
lattice, but it is non-trivial in the case of ideal lattices. 

Lemma 4.1 For any , nα β ∈ , we have 

,Wα β α β⊗ ≤ ⋅  

where W is defined in Theorem 2. 
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Proof. We first prove H Mα α≤ . Let ( )T
0 1 1, , , nα α α α −=  , then 

( ) ( )
( ) ( )

( ) ( )
( )

2 22 2 2
0 n 1 0 1 n 1 2 1 1

2 2 2 2 2 2 2 2
0 n 1 0 1 n 1 2 1 1

22 2 2 2 2
0 2 0 1 1

2 2

2 2

2 2

2 2 .

n n n

n n n

n n

Hα φ α α φα α φ α

φ α α φ α α φ α

α α φ α α α

φ α

− − − − −

− − − − −

− −

= + + + + +

≤ + + + + +

≤ + + + + + +

≤ +





 

 

So H Mα α≤ . Similarly, 

2 2 .H M H Mα α α≤ ≤  

In the same way, we can get k kH Mα α≤ , 1 1k n∀ ≤ ≤ − . Let  
( )T

0 1 1, , , nβ β β β −=  , it follows that 

( )* 1
0 1 1

1 1

0 0

1 .
1

n
n

nn n
i i

i
i i

H H H

MH M
M

α β α β β α β α β α

β α α β α β

−
−

− −

= =

⊗ = = + + +

−
≤ ≤ = ⋅

−∑ ∑



 

We complete this proof. 
Let ( ) nL B= ⊂   be a full rank ideal lattice, 2 24q mkn W≥ ,  

{ }0 1 1, , , n
n qe e e − ⊂   is a standard orthogonal basis, { }1 2, , , nS s s s L= ⊂

 is a 
set of n linearly independent vectors. We define the parameter 

( )4 .
2

nq W Sµ σ
γ

 
= + 
 

                      (4.1) 

According to Lemma 1.6 in Chapter 3 in [44], there is a lattice vector c L∈   

such that ( )0
1
2

c e Sµ σ− ≤ , let ( )( ) 1*B q H c B
−

′ = . It follows that the lattice  

( )B′  generated by B′  satisfies ( )nq B′⊂   according to Lemma 2.1 in 
Chapter 3 in [44]. Therefore, nq  is an additive subgroup in ( )B′ . Randomly 
choose mk elements ( )1 ,1ijx i m j k′ ≤ ≤ ≤ ≤  in the quotient group  

( ) nG B q′=  , the integral vectors '
ijw  of ijx′  is defined by 

,1 ,1 .n
ij ijw x i m j k′ ′=  ∈ ≤ ≤ ≤ ≤  

Let 

( ) ( )
1

mod , mod ,
k

ij ij i ij
j

a w q a w q
=

′ ′≡ ≡∑  

Assume ( )1 2, , , n m
m qA a a a ×= ∈  . Since the knapsack problem (3.7) is solvable 

on n , it could also be solved on n
q . Let ( )1 2, , , n m

m qy y y y ×= ∈   and  
( )1 2ˆ ˆ ˆ ˆ, , , n m

m qy y y y ×= ∈   be two different integer matrices such that  

( )
1

ˆ 0
m

i i i
i

a y y
=

⊗ − =∑ , iy n≤ , ˆiy n≤ , 1 i m∀ ≤ ≤ . We define 

( ) ( )* *1 1, ,1 ,1 ,ij ij ij ijx H c x w H c w i m j k
q q

′ ′= = ≤ ≤ ≤ ≤  

and 
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( ) ( )
1 1

ˆ .
m k

ij ij i i
i j

s x w y y
= =

′ = − ⊗ −∑∑                 (4.2) 

Then ijx  is a lattice vector in the given ideal lattice ( )L B=   (1 i m≤ ≤ ,
1 j k≤ ≤ ), and s′  is also a lattice vector in ( )L B=   based on Lemma 2.2 in 
Chapter 3 in [44]. 

The next lemma gives an estimation of the length of s′ , which has some 
differences from the proof of Micciancio’s. 

Lemma 4.2 Let { }1 2, , , nS s s s L= ⊂
 be a set of n linearly independent vectors  

in the full rank ideal lattice L. Denote 
1
max ii n

S s
≤ ≤

= , s′  is the lattice vector defined 

in (4.2), then 

1 .
2

s S′ ≤  

Proof. This proof is similar to that of Lemma 2.3 in Chapter 3 in [44] except  

some computations about the parameters. We prove ( )1
2

s S
n
σ′ ≤  first. Based 

on the definition of s′  in (4.2), 

( ) ( )
1 1

ˆ .
m k

ij ij i i
i j

s x w y y
= =

′ ≤ − ⊗ −∑∑                 (4.3) 

( )( ) ( )*1 1 .ij ij ij ij ij ijx w H c x w c x w
q q

′ ′ ′ ′− = − = ⊗ −  

Let 0c eα µ= − , where µ  is defined in (4.1). Then ( )1
2

Sα σ≤ , and 

( ) ( ) ( )( )

( )( ) ( )( )

( ) ( )( )

*
0 0

* *
0

*

1 1

1 1

1 .

ij ij ij ij ij ij

ij ij ij ij

ij ij ij ij

x w e x w H e x w
q q

H e x w H x w
q q

x w H x w
q q

α µ α µ

µ α

µ α

′ ′ ′ ′− = + ⊗ − = + −

′ ′ ′ ′= − + −

′ ′ ′ ′= − + −

 

Since n
ij ijw x′ ′=  ∈ , we have 

1 ,
2ij ijx w n′ ′− ≤  

combine with Lemma 4.1, we get 

( ) ( )

( ) ( ) ( )

( ) ( )

3
2

3 3 3
2 2 2

1 1 1 1
2 2 2

4 2
2 2 4 2

1 1 1 1 1 .
8 8

4

ij ij ij ij ij ij
nx w x w x w n W S

q q q q

n nq W nW n nWS S S
q q q

S S
mkn W mkn W mkn W

µ µα σ

σ σ σ
γ γ

σ σ

′ ′ ′ ′− ≤ − + ⊗ − ≤ ⋅ + ⋅ ⋅ ⋅

 
   = + + = +      

 
 
 ≤ ⋅ + ⋅ =
 
 

 

Based on (4.3), we know 
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( ) ( )
,

3
2

ˆmax max

2 .
24

ij ij i ii j i
s mkW x w y y

S S
mkW n

nmkn W

σ σ

′ ≤ − ⋅ −

≤ ⋅ ⋅ =
 

Since 

( )
1
22

1

n

i
i

S s n Sσ
=

 ≤ ≤ 
 
∑  

We can get 

( ) 1 .
22 2

S n S
s S

n n
σ

′ ≤ ≤ =  

So we complete the proof of Lemma 4.2. 
Based on the above lemmas, Theorem 2 follows directly from Micciancio’s 

method [42]. From Theorem 2, we can see that the general compact knapsack 
problem over n  is at least as hard as the covering radius problem CDPγ  of 
any ideal lattice. Therefore, the security of our unbounded FHE scheme is solely 
under the worst-case complexity assumption, as a result, it is a reasonable solution 
to Open Question 11 of [2]. 

5. A Practical System 

As an example, we introduce a practical system for FHE using some basic results 
about the cyclotomic field [50]. Suppose that p is an odd prime number and  

( )pQ ξ  is the cyclotomic field, where 
2

e
i

p
pξ

π

=  is a primitive p-th root of the 

unit.  
Let 

1

0
| .

p
i

p i p i
i

a aξ ξ
−

=

   = ∈    
∑   

It is known that pξ    is the ring of algebraic integers of field ( )pQ ξ . 
Therefore pξ    is a Dedekind domain (so we have unique factorization into 
prime ideals, etc. see Proposition 1.2 of [50]). 

To construct a commutative ring for n , we select  
( ) [ ]1 2 1p px x x x xφ − −= + + + + ∈  . Obviously, ( )xφ  is the minimal polyno- 

mial of pξ . Let 1n p= − , then we obtain a ring ( ), ,n + ⊗  in terms of ( )xφ  
and the rotation matrix Hφ , it is easy to see that (see (3.2) of [43]) 

( ) [ ] ( ), , .n
px xφ ξ + ⊗ ≅ ≅      

Thus, n  becomes a Dedekind domain. 
For any integer q∈ , we define an integer vector n

qα ∈  by 

0
.

0
1

n
q

q

α

 
 
 
 = ∈
 
 
 
 

   

https://doi.org/10.4236/jis.2023.144021


Z. Y. Zheng et al. 
 

 

DOI: 10.4236/jis.2023.144021 389 Journal of Information Security 
 

The principal ideal qα  generated by qα  is denoted by 

( )( )* .q q qI Hα α= =  

Lemma 5.1 If 1q  and 2q  are two different prime numbers, then 
1qI  and 

2qI  are relatively prime ideal lattices in n . 
Proof. Suppose that q is a prime number. Since ( ) [ ] ( ), ,n x xφ+ ⊗ ≅  , we 

see the polynomial ( ) ( ) [ ]1 1n
q q x x q xτ α α− −= = + ∈ , which is the type 

polynomial of Eisenstein, thus it is an irreducible polynomial over [ ]x
. 

Regarding ( )q xα  as the polynomial of [ ] ( )x xφ , clearly, it is also an 
irreducible polynomial in [ ] ( )x xφ . By assumption, 1q  and 2q  are 
different prime numbers, we show that the principal ideals ( )

1q xα , and  

( )
2q xα  are relatively prime ideals in [ ] ( )x xφ . Since [ ] ( )x xφ  is a  

Dedekind domain, if ( )
1q xα  and ( )

2q xα  are not relatively prime, then,  

there exists a prime ideal P in [ ] ( )x xφ  such that 

( ) ( )
1 2

, and .q qx P x Pα α⊂ ⊂  

It follows for any positive integer 1k ≥  that 

( ) ( )
1 2

, and .k k k k
q qx P x Pα α⊂ ⊂  

It is known that three exists a positive integer 1k ≥ , such that ( )kP d x=  
is a principal ideal, we thus have 

( ) ( ) ( ) ( )
1 2

, and .k k
q qx d x x d xα α⊂ ⊂  

In other words, we have ( ) ( )
1

| k
qd x xα , and ( ) ( )

2
| k

qd x xα . However, this is 
impossible, since ( )

1q xα  and ( )
2q xα  are two irreducible polynomials in  

[ ] ( )x xφ , and ( ) ( )
1 2q qx xα α≠ . 

This proves that ( )
1q xα  and ( )

2q xα  are relatively prime ideals in  
[ ] ( )x xφ . Equivalently, 

1qI  and 
2qI  are two relatively prime ideal lattices 

in n . 
Lemma 5.2 The one dimensional modulus of the principal ideal qI  is 

( ) 1 1.n n
q qt t I q q q−= = − + − +  

Proof. It is not hard to compute that ( )( )* 1det 1n n
qH q q qα −= − + − +

. 
Since the polynomial 1 1n nx x x−− + − +  is an irreducible polynomial over  , 
we have the assertion of lemma immediately. 

According to Lemma 5.1 and Lemma 5.2, we obtain a generating algorithm 
for the secret key as follows: 

 

Algorithm 6: Generating Algorithm for Secret Key 

• Randomly select m different prime numbers 1 2, , , mq q q  such that iq p≠ . The 
principal ideal lattices 

, 1
i iq qI i mα= ≤ ≤

 
are the secret key, and the corresponding one dimensional modulus 

iqt  given by 

( ) 1 1.
i i

n n
q q i i it t I q q q−= = − + − +                     (5.1) 
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To get an attainable algorithm for public key, we define m vectors ( )1id i m≤ ≤  
by 

1 2 1 1 1 , 1 .
i i m j

m
i q q q q q j q

j i
d i mα α α α α α

− + =
≠

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ =⊗ ≤ ≤ 
 

Lemma 5.3 For every vector ( )1id i m≤ ≤ , there is a vector n
i ∈  such 

that 

( )mod ,
ii i qd e I⊗ ≡  

where 

1
0

0

e

 
 
 =
 
 
 



 is the unit element of rimg ( ), ,n + ⊗ . 

Proof. By lemma 5.1, 
1 2
, , ,

mq q qI I I
 are pairwise relatively prime ideals, 

hence we have ( )1 2 1 1
, 1

i i i mq q q q q qI I I I I I
− +

= 
. In other words, we have  

( ), 1
iq idα = , or 

.
i

n
q idα + =   

Therefore, there is a vector n
i ∈  such that ( )mod

ii i qd e I⊗ ≡ . We have 
Lemma 5.3. 

We propose a polynomial algorithm to find the vector i  appeared in Lemma 
5.3, and then put i i iA d= ⊗  getting the public key 1 2, , , mA A A . The poly- 
nomial algorithm for finding vector i  like follows. 

 
Algorithm 7: Generating Algorithm for Public Key without Noises 

• Let 

( ) ( )1
1 ,1 .m n

ji j
j i

d x x q i m−
=
≠

= + ≤ ≤∏
 

Since polynomial 1n
ix q− +  and ( )1n

jx q j i− + ≠  are relatively prime in  

[ ] ( )x xφ , it follows that ( )( )1 , 1n
i ix q d x− + = . Therefore, there is a polynomial 

( )i x  such that 

( ) ( ) ( )( )11 mod .n
i i id x x x q−≡ +

 

We obtain ( )( )i i xτ=   under the mapping τ  given in section 2. 

 
Now, we describe an attainable algorithm for our FHE Scheme based on 

cyclotomic field as follows. 
 

Algorithm 8: A Practical Scheme for Unbounded FHE 

•   Secret key:  Let 1 2, , , mq q q  be m different prime numbers such that iq p≠ . The 
m pairwise relatively prime principal ideal lattices 

1 2
, , ,

mq q qI I I  are 

the secret keys for decryption. 
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Continued 

•  Public Key:  Let ( )1i i iA d i m= ⊗ ≤ ≤ , then { }1 2, , , mA A A Aχ ′ ′ ′=   are the public 

key for encryption, where i i iA A E′ = ⊗  and iE  is given by (3.4) ac-
cording to the probabilistic distribution χ . The plaintext space is 

1 2
,

mt t t= ⊕ ⊕ ⊕    

where it  is the one dimensional modulus of 
iqI  given by (5.1). 

•  Encryption:  For any plaintext ( )1 2
1

, , ,
i

m

m t
i

u u u u
=

= ∈⊕  , then 

( ) 1 1 2 2 ,m mc f u u A u A u Aχ ′ ′ ′= = ⊗ + ⊗ + + ⊗
 

where iu  is the embedding of iu  into n . 

•  Decryption:  For given ciphertext nc∈ , there is an unique vector iu  in the or-

thogonal parallelepiped ( )iqI , such that ( )mod
ii qc u I≡ , 1 i m≤ ≤ . 

Thus, one has 

( ) ( ) ( )1 1
1 2, , , .mf c f c u u u uχ

− −= = =  

 
The property of FHE follows immediately from the general construction. We 

mainly discuss the security of this practical system for FHE. Obviously, an addi-
tional risk comes from the messages of one-dimensional modulus ( )1it i m≤ ≤ . 
It is equivalent to find a solution to the algebraic equation with a high degree of 

1 1n nx x x t−− + − + =  

For a given target value t∈ . This is an ancient hard problem in mathematics, 
there is no general method to find the solution according to the famous Galois 
theory. Therefore, we conclude that there are no special risks coming from the 
one-dimensional modulus it  of 

iqI . 

6. Conclusions 

In this work, we construct the first unbounded fully homomorphic encryption 
scheme without the bootstrapping transformation technique. In the encryption 
algorithm (3.5), we see that ( )*

nH a aI=  for any a∈ . Therefore, the problem 
of security may transfer to the standard Ring-SIS problem: suppose that  

[ ]1 2, , , n m
mA A A Aχ

×′ ′ ′= ∈  , where iA′  is given by (3.2), nu∈  is a target  

vector, find 
1

m

m

x
x

x

 
 = ∈ 
 
 

   such that Ax u= , and 0 x β< ≤ . Let q be a  

sufficiently large positive integer, if one can show that every column iA′  of Aχ  
is uniformly random vectors in n

q , then this problem can be changed to an 
inhomogeneous version of the SIS problem, which is to find a short integer 
solution to ( )modAx u q≡ . It is not hard to show that the homogeneous and 
inhomogeneous problems are essentially equivalent to typical parameters. 

According to Ajtai’s seminal work [23] [41], the hardness of the SIS problem 
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is relative to the worst-case lattice problem. More precisely, for any ( )polym n= , 
any 0β > , and any sufficiently large ( )polyq nβ≥ ⋅ , solving , , ,SISn q mβ  with 
non-negligible probability is at least as hard as solving the decisional approximate 
shortest vector problem GapSVPγ  for some ( )poly nγ β= ⋅  (also see [52] and 
Theorem 4.1.2 of [2]). Perhaps, we may find another proof that the security of 
our FHE scheme is solely under a worst-case complexity assumption. 

On the other hand, the fully homomorphic signature is the dual question of 
the fully homomorphic encryption, we will develop a scheme for a fully homo-
morphic signature in another article. 
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