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Abstract 
Deep neural networks (DNNs) have achieved great success in tasks such as 
image classification, speech recognition, and natural language processing. How- 
ever, they are susceptible to false predictions caused by adversarial exemplars, 
which are normal inputs with imperceptible perturbations. Adversarial sam-
ples have been widely studied in image classification, but not as much in text 
classification. Current textual attack methods often rely on low-success-rate 
heuristic replacement strategies at the character or word level, which cannot 
search for the best solution while maintaining semantic consistency and lin-
guistic fluency. Our framework, FastAttacker, generates natural adversarial 
text efficiently and effectively by constructing different semantic perturbation 
functions. It optimizes perturbations constrained in generic semantic spaces, 
such as the typo space, knowledge space, contextualized semantic space, or a 
combination. As a result, the generated adversarial texts are semantically close 
to the original inputs. Experiments show that FastAttacker generates adver-
sarial texts from different levels of spatial constraints, making the problem of 
finding synonyms an optimal solution problem. Our approach is not only ro-
bust in terms of attack generation, but also in terms of adversarial defense. 
Experiments have shown that state-of-the-art language models and defense 
strategies are still vulnerable to FastAttack attacks. 
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1. Introduction 

The growing trend of social textual information dissemination, coupled with 
proper sharing with others via the Internet, has led to a huge demand for verifi-
cation, called fact-checking. Adversarial robustness assessment of machine learn-
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ing (ML) models is receiving increasing research attention because of their vul-
nerability to adversarial input perturbations (called adversarial attacks). In other 
words, as the coverage of potentially misleading information and the number of 
false statements increase, automated fact-checking research based on deep learn-
ing applications such as machine learning for text classification, sentiment anal-
ysis and textual entailment becomes promising. 

Deep learning [1] techniques have created a huge demand for research in nat-
ural language processing. It has achieved extraordinary success in many areas. 
While existing work on adversarial samples has been successful in the image and 
speech domains, processing textual data remains challenging due to its discrete 
nature. In recent studies, modern state-of-the-art methods employed on text 
documents have proven vulnerable to adversarial examples of many data pat-
terns. These intentionally artificially crafted examples visually resemble the origi-
nal examples they can still fool state-of-the-art deep classifiers by making small 
modifications to the test input, leading to misclassification of the text input. 
Contrary well-crafted examples can attack state-of-the-art models formulated by 
placing very small pixels on the image and often with imperceptible perturba-
tions to humans. This phenomenon has drawn significant attention to the ro-
bustness of new SOTA deep learning systems such as BERT, which has inspired 
a set of large-scale pre-trained language models for many NLP tasks. BERT is a 
state-of-the-art pre-trained language model nested in a Transformer framework 
with multiple networks. Generating adversarial samples in NLP domains is more 
complex and challenging than in computer vision domains due to the disconti-
nuous nature of the input space, which does not have explicit gradients as image 
inputs and the need to maintain semantic consistency of the original text. 

Current successful textual adversarial generation and attack methods mainly 
use heuristic word- or character-level replacement strategies, which makes find-
ing the optimal solution challenging. Formally, in addition to the ability to deceive 
the target model, the output of a natural language attack system should satisfy 
three key utility-preserving properties: 1) human prediction consistency with 
human predictions should be maintained, 2) semantic similarity—the carefully 
crafted exemplars should have the same meaning as the source, as judged by 
humans, and 3) linguistic fluency—the generated exemplars should look natu-
ral and grammatical. Previous works hardly met these three requirements. 
They are unable to find optimal solutions for the huge space of possible subs-
titution combinations while maintaining semantic consistency and linguistic flu-
ency. The approach of synonym substitution requires arbitrary words in the 
vocabulary to replace input words in the space, which is prone to failure in 
considering semantic perturbation constraints and prone to creating invalid 
adversarial samples. Practical exploitation failures of other works do not han-
dle large search spaces well because in practice a large number of queries are 
required to generate an adversarial example and it grows exponentially with the 
input length. 
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A major bottleneck of most existing textual adversarial attacks is that they 
cannot be generalized to other languages because of their unique language-related 
features and lack of general language resources. Other works, such as the use of 
gradient backpropagation algorithms for perturbations generated as adversarial 
samples, are practical computations from continuous embedding space to dis-
crete token space. Previous rule-based synonym replacement strategies lead to 
more natural adversarial samples from synonym candidate token spaces, such as 
TextFooler. 

To address the above problem, we propose a semantic space query efficient 
adversarial attack framework, FastAttacker, to generate semantically close ad-
versarial text to the original input to approach our target goal and resolve the 
current trigger point in the model. Our model achieves a fairly high success rate 
in both target and non-target scenarios through a black-box setting based on re-
locatability. We validate the robustness of the model on the textual implication 
task. 

We experiment on large-scale FEVER and FEVER 2.0 datasets and attack the 
state-of-the-art target models BERT and KernelGAT that are still vulnerable to 
FastAttacker attacks. Our models outperform two powerful baselines: TextFoo-
ler [2] and BERT-Attack [3]. Note that our usage and validation are generic and 
can be referenced and applied to other adversarial example tasks. 

Main Contribution: The results show that our experiments can be used to 
further evaluate the robustness of NLP models in datasets for statement valida-
tion of new datasets. The main contributions of our paper are listed below: 
• We assess the significance of attentional connectivity for word embeddings 

and generate them using BERT. As a result, we introduce FastAttack, a uni-
fied and effective adversarial attack framework that builds semantic pertur-
bation functions that limit perturbations within different semantic spaces 
and their combinations. 

• We discover that traditional methods like GloVE and Word2Vec do not ef-
fectively capture contextual semantics, impacting model predictions. In con-
trast, FastAttack generates context-aware perturbations that don’t require 
external knowledge, making it easily adaptable to various languages. 

• We observe that the fine-tuned models we attack tend to neglect semantics 
and give too much weight to certain word patterns for text prediction, result-
ing in less robust models. To demonstrate this, we carried out comprehensive 
experiments on various datasets and languages and found that FastAttack 
generates adversarial texts that are more semantically similar to benign in-
puts, achieving higher attack success rates compared to existing attack algo-
rithms across different settings. 

2. Related Works 

Our work is related to fact-checking and validation studies and verifies the ro-
bustness weaknesses of current state-of-the-art adversarial attack models. 
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2.1. Fact Verification 

The Fact Extraction and Verification (FEVER) shared task contains 185,445 state- 
ments [4] that are manually crafted input based on Wikipedia page validation 
and output classified as SUPPORTED, REFUTED, or NOTENOUGHINFO. State- 
ments are classified as SUPPORTED and REFUTED, and the exact necessary 
evidence to support or refute a statement needs to be returned by a combination 
of the corresponding sentences. Many statements are extracted from Wikipedia 
by annotators and mutated in various ways, some of which are interpreted and 
some of which are meaning-altering. Most participants in the shared task model 
this as a pipeline that consists of an information retrieval component—a search 
for pages/phrases with content related to a given statement and a natural lan-
guage inference (NLI) component with the label of that statement. The second 
iteration of the task—FEVER 2.0—builds on the same dataset of 1174 statements 
that were manually crafted by participants submitted during the Breaker phase 
of the 2019 shared task. SemAttack generalizes existing word-level attacks by 
proposing generic semantic perturbation functions that optimize and constrain 
perturbations in different semantic spaces so that the generated adversarial text 
retains its semantics. 

The current fact-checking model primarily uses the official FEVER baseline 
from the workshop, downloading datasets from FEVER (2018) and FEVER 2.0 
(2019). FEVER tasks are typically divided into three steps: document retrieval, 
sentence retrieval, and claim validation. In our study, we focus on the claim va-
lidation task. Some previous work performed stringing of evidence to prove the 
label of a statement. Studying the inference of pairs of claim evidence and as-
signing them to claim labels is another research direction. 

Research on the FEVER 1.0 dataset aims to develop efficient automated fact- 
checking systems to check the veracity of human statements from Wikipedia. 
GEAR proposes claim verification as a graph inference task with two types of at-
tention. The FEVER we aim to attack uses the baseline of a kernel graph atten-
tion network (KernelGAT) [5] with a BERT-Large model. KGAT introduces 
node kernels that better measure the importance of evidence nodes and edge 
kernels that perform fine-grained evidence propagation in the graph into the 
graph attention network for more accurate fact verification. The model uses 
graph models to reason about and aggregate claim evidence pairs. The main idea 
of these methods for creating graph-based models is to create node interactions 
for joint inference by connecting multiple pieces of evidence. 

The FEVER shared task (FEVER 2.0) aims to develop automated fact-checking 
systems to check the veracity of human-generated statements by extracting evi-
dence from Wikipedia. FEVER 1.0 was held as a competition on Codalab 1 with 
a blind test set and attracted a lot of attention from the NLP community. Many 
fact-checking frameworks verify statement evidence and utilize natural language 
inference (NLI) techniques. Natural Language Inference (NLI), also known as 
Recognizing Textual Implication (RTE), determines whether a given hypothesis 
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logically follows an implicit, contradictory, or neutral premise. It is similar to the 
FEVER task, except that FEVER requires the system to match pairs of claim evi-
dence and usually has various pieces of evidence corresponding to a claim. 

2.2. Adversarial Attacks in NLP 

Adversarial examples are artificial textual interferences that cause the target 
model to output incorrect predictions or judgments. Adversarial attacks may 
occur at the character, lexical, lexical, syntactic, or semantic level. Many studies 
contribute to the creation of adversarial samples by greedy algorithms that rank 
the token elements in the input sequence by importance according to their pro-
posed initial scoring equations. The elements are then greedily perturbed based 
on a precomputed re-ranking to improve query efficiency. The shortcoming of 
these methods is their inherent limitation of modifying each position at most 
once, which leads to a strictly limited search space. Ribeiro et al. (2018) [6] and 
Michele et al. (2019) propose methods to find adversarial examples by preserv-
ing the semantic content, as these elaborate attacks tend to corrupt the semantics 
of the sentences. Alzanto et al. (2018) and Jin et al. (2019) introduce synonym 
substitution to create adversarial examples with a fixed word embedding space 
to search for the n closest words. Aye et al. (2018) introduce the method by con-
ditionally generating adversaries over syntactic templates to interpret adversarial 
examples. 

2.3. Adversarial Training in NLP 

The intent of operating adversarial training is to ensure our NLP systems are not 
left vulnerable to SOTA attacks. The existing adversarial training work includes 
augmenting the training data by adding the adversaries or replacing the clean 
samples in the training dataset. 

There are three types of semantic spaces taken into account: 
• Typo-Space, fool the models with typo words or characters instead of human 

judges; 
• Embedding-Space, exploiting external linguistics as valid perturbation CAN- 

DIDATES; 
• Semantic-Space, fools the model by utilizing the embedding space of BERT 

to generate a contextualized perturbation set semantically close to the origi-
nal word. 

The semantic space does not require additional knowledge since it utilizes 
BERT to produce contextualized tokens; therefore, it can scale to other languag-
es, especially low-resource languages where large datasets are unavailable. 

2.4. Factual Verification Literature Review 

There are several correlated problems in verifying the truthfulness of one or 
multiple sentences, such as claim verification, natural language inference (NLI), 
misinformation detection, rumor identification, sentiment analysis and subjec-
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tivity detection, Etc. Previously, numerous pieces of research on rumors and the 
credibility of information before fake news appeared among researchers. Kumar 
et al. categorized fake news studies into two types: opinion-based and fact-based. 
Ihsan et al. (2022) classified fake news detection methods to detect fake news on 
a large scale based on the features and methods. 

Prior research aims to study factual verification given different data genres as 
evidence, such as structured, semi-structured, and unstructured data. 

3. Definitions and Notations 

Given an input [ ]0 1, , , nx xx x= � , where ix  is the ith input token, the classifier 
f maps the input to final logits ( ) Cz f x R= ∈ , where C is the number of classes, 
and the outputs a label ( )arg maxy f x= . 

To evaluate the effectiveness of attack algorithms during the attack, we intro-
duce and calculate two indicators: 

Targeted attack success rate (TSR): 

( ) ( ) *arg max
TSR advx D

adv

f x y

D
′∈

 ′∗ ≡ =
∑ 

 

Untargeted attack success rate(USR): 

( ) ( )arg max
USR advx D

adv

f x y

D
′∈

′∗ ≠  
=
∑ 

 

advD : adversarial datasets composed of an attack algorithm generate one ad-
versarial sentence for each sample by the attack algorithm. 

*y : targeted false class. 
y: ground truth label. 
( )⋅ : indicator function. 

4. Methods 

To tackle the issues of adversarial texts semantically inconsistent, we adopt the 
general form of the semantic perturbation functions and discuss their classifica-
tions under different semantic circumstances. 

x: one token as input. 
S: CANDIDATES perturbation space, * * *

0 1, , , nS x x x= � . 
f: perturbation function. 

4.1. Algorithm 

Whitebox and Blackbox Attack: FastAttacker requires access to the parameters 
and gradients of the function created by the model but can be used under both 
white-box and black-box scenarios. Our experiments utilize a zero-query black- 
box setting, with state-of-the-art large-scale language target models enhanced 
with cutting-edge defense methods. The framework is inaccessible during the 
attack progress. We create a common scenario in social media applications and 
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better verify [7] the generic effectiveness and efficiency across the models. 
The algorithm is to propose a genetic function: semantic perturbation func-

tion. The advantage of this method is that FastAttacker can produce [8] an ad-
versarial text which keeps the textual semantic to the largest extent, and the 
problem of searching for the optimal perturbation in different semantic spaces 
determined by the semantic perturbation function [9] is transferred into the 
problem of finding the optimal solution. Thus, the query work token can be re-
duced as little as possible when the targeted Attack is realized. We adopt base- 
line methods to the setting of zero-query by performing a transferability-based 
black-box attack, creating adversarial texts by BERT to attack the target models. 

In conclusion, FastAttack is: 1) effective, outperforming prior attacks in both 
success rate and perturbation rate; 2) utility-preserving, maintaining semantic 
content, grammaticality, and classification accuracy as determined by human 
evaluators; and 3) efficient, generating adversarial text with computational com-
plexity proportional to text length. 

For the detail of utilizing the algorithm, we: 
1) First, set English words as tokens from the datasets, [ ]0 1 2, , , , nx x x x x= � . 
2) Utilize BERT as a classifier to map each ix  from input space to final out-

put logits z. We use BERT to map the input x to embedding vector e.  

i BERT ie Matrix x= ∗  
3) Initialize perturbation *e , and add *e  to e for m iterations. We assign the 

perturbed embedding to e′ , which means: *
i i ke e e′ = + . 

4) Initialize the adversarial text x′  with x. 
5) Optimize *e  with construct optimization function:  

( ) ( )* *
p

L e e c g x′= + ∗ . The p-regularization of *e  aims to limit and control 
the magnitude of *e . 

6) ( )g ⋅  is the attack objective function that divides the attack scenario into 
targeted and untargeted. In our experiments, we operate datasets on both scena-
rios. We use c to adjust the weights of the attack goal against the attack cost. 

7) We construct the semantic space S with perturbation function ( )F ⋅ ,  
( )iS F x=  for each input token ix . We select the perturbed token ix′  from  

the space S, which we have: ( )( )arg min ,i i e i ip
x e M x x S′ ′ ′ ′= − ∈ . 

8) Optimization: We calculate the descent of function ( )*L e , set as ( )*e∇ . 
We use α  as the step size of the gradient descent and update the *

1ke +  with 

( )* * *
1k k ke e L eα+ = − ∇ . 

9) Token Substitution: After optimization, we get the optimal *
1ke +  and per-

turbed embedding *
1ke e e +′ = + . 

10) Finally, we update and obtain the optimal adversarial text x′  by calcu-
lating the argument of the minimization of the p-norm of perturbed embedding 
with BERT embedding of adversarial text x′  and  

( )arg min
ii x S i e i p

x e M x′∈′ ′ ′= − . 

4.2. Typo-Based Perturbation Function 
Perturbation at a word or character level determined by function ft constrains 
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the search space in the typo space. Utilize typo words or characters to replace 
original tokens to fool the model but keep the original meaning perceived by a 
human. We employ the TextBugger (Li et al., 2018), which can attack deep text 
understanding systems under both white-box and black-box scenarios, as a ref-
erence for generating typos. Since our experiments were conducted under the 
black-box setting, gradients of the model are not directly available, and we need 
to change the input sequence without the influence of gradients. Thus, instead of 
directly selecting important words based on gradient information from white-box 
attacks, we first find important sentences and then the important words within 
them under the black-box settings. We find the important sentences, then utilize 
a scoring function to determine the importance of every word according to the 
classification result, and rank the words according to their scores. Finally, we use 
the bug selection algorithm to change the selected words. 

In order to illustrate how the proposed framework can be effectively and effi-
ciently adapted to the English setting, we generate word/character-level semantic 
space. We modify characters such as letters, special symbols, or numbers for 
character-level perturbation. For word-level perturbation, we modify the words 
by synonyms, misspellings, specific types of keywords, etc. 

For vulnerable words, we use word replacement via BERT. We iteratively re-
place the words in the list for each word to search for the perturbations that can 
fool the target model. Compared with previous work, which usually uses mul-
tiple human-crafted approaches to ensure the semantic consistency of the gen-
erated example, FastAttacker can search the optimal perturbations from differ-
ent typo-level spaces determined by the semantic perturbation function. 

4.3. Embedding-Based Perturbation Function 

The embedding level-based perturbation determined by the function fe limits the 
embedding perturbation search space. The perturbation function uses tagged 
embeddings to construct candidate perturbation sets in the study for all possible 
replacements of the selected words as synonym sets. We initiate CANDIDATES 
using the N closest synonyms as their cosine similarity to each other in context. 
We use word embeddings to represent the words from to improve the quality of 
the adversarial examples and manually tag words with their semantic relations 
so that synonyms queried from the synonym set will maintain the semantic mea- 
ning of the queried words. We select these synonyms queried from CANDI- 
DATES, construct the search space with these synonyms, and select these syn-
onyms returned from CANDIDATES as the search space. FastAttacker utilizes 
this set of embedding vectors to select the top N synonyms with a cosine similar-
ity to word “w” greater than the threshold value of. It is important to note that 
the list of candidates may contain both superlative and comparative words, which 
can result in issues with synonym substitution. To address this, the candidate 
search space is limited to synonym sets only. 

Furthermore, even though BERT [10] is used to generate context-based word 

https://doi.org/10.4236/jis.2023.142011


M. Lu 
 

 

DOI: 10.4236/jis.2023.142011 189 Journal of Information Security 
 

embedding tags, the same tag for a word may have different lexical (POS) tags 
for different synonyms (e.g. “experienced” as a verb and “skilled” as an adjec-
tive) [11]. This issue could result in meaningless substitutions. To avoid this, 
FastAttacker only retains words with identical lexical tags. The frequency of POS 
is calculated in the set of synonyms and the most frequent ones are selected. Fi-
nally, after filtering the words using the created synonym set, the goal of gene-
rating adversarial input tokens that trick the model yet still maintain human in-
terpretability is achieved. 

4.4. BERT-Based Semantic Perturbation Function 

The function fb determines the context-level perturbation and leverages the con-
textual semantic space to avoid polysemy issues present in non-contextual em-
bedding spaces like GLoVE or Word2Vec. By processing data with the BERT em-
bedding space, FastAttacker can preserve contextualization both semantically 
and syntactically as much as possible. Additionally, to make the POS checking 
process easier, fb can handle any language model, as long as pre-trained BERT 
models for that language exist. 

5. Experiments 

This section describes our experiments’ dataset, evaluation metrics, baselines, 
and implementation details. 

In our experiments, we construct BERT-base embedding space (Yuan et al., 
2019) and BERT-base-case (Devlin et al., 2019). The number of BERT layers' 
hidden size is 768, the number of attention heads in each layer is 12, the hidden 
layer dropout probability is 0.1, the size of hidden embeddings is 12, and the 
maximum position of embeddings is 512. The computation can be parallelized 
by batching multiple input word tokens to increase throughput. We operate our 
experiments in a zero-query black-box setting. The target models are the state- 
of-the-art large-scale language models “Bert (Devlin et al., 2019) and KernelGAT 
(Liu et al., 2019)” enhanced with cutting-edge defense methods. This setting is a 
common scenario in real-world applications and better demonstrates the algo-
rithm’s ability to generalize across models. We adopt FastAttacker and baselines to 
this setting by performing a transferability-based black-box attack [12]. 

5.1. Datasets 

We construct a purpose-built large public [13] fact verification dataset FEVER 
and FEVER 2.0 for this task. FEVER contains 185,445 human-generated claims, 
annotated claims with 5,416,537 Wikipedia documents from the June 2017 Wi-
kipedia dump. Annotators classify all claims as SUPPORTS, REFUTES, or NOT 
ENOUGH INFO. We pre-trained and fine-tuned BERT with all FEVER train 
datasets and leveraged 999 claims for testing the BERT model. The dataset parti-
tion of the experiments re-mains the same with the FEVER Shared Task as 
shown in For the FEVER shared task (2.0) dataset, which contains 1774 claims. 
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We test the FEVER 2.0 datasets on the pre-trained model with FEVER datasets. 
The datasets were constructed in two stages, and we partitioned the dataset and 
kept the same with the FEVER Shared Task, as shown in Table 1. 

5.1.1. Claim Generation 
Information is extracted from Wikipedia and statements are generated. These 
statements are generated by interpreting facts and changing them in various 
ways, including mean changes. 

5.1.2. Claim Labeling 
Classify whether a claim is supported or refuted by Wikipedia, select the evi-
dence for or against it, or determine whether there is not enough information to 
make a decision. Annotators select evidence from Wikipedia in the form of sen-
tences without knowing where the statement was generated from. 

5.1.3. Evaluation Metrics 
Traditional metrics for evaluating [14] statement validation include primarily 
FEVER scores and label accuracy. One of our baseline methods, KernelGAT, uti-
lizes the FEVER score and considers the Golden FEVER score. 

5.2. Attack Baselines 

We evaluate our model on Fever 1.0 and Fever 2.0 datasets and compare our me-
thod with two black-box settings: TextFooler and BERT-Attack, on adversarial at-
tack success rate as our baselines, under both targeted and untargeted scenarios. 
• TextFooler is a simple but powerful baseline for natural language attacks in 

the black box setting, and it can quickly create high-profile utility-preserving 
adversarial examples that force the target model to make incorrect predic-
tions in the black box setting. 

• BERT-Attack is a simple and effective method for generating adversarial 
samples using BERT as a language model, which can effectively generate flu-
ent and semantically preserved adversarial samples that can successfully mis-
lead state-of-the-art models in NLP, such as fine-tuned BERT for various 
downstream tasks. 

5.3. Models 

We evaluated the robustness of the BERT and KernelGAT models. We show 
their test accuracies in Table 2 and Table 3. Hyperparameter settings and train-
ing details are discussed below. The selected large-scale models and methods  

 
Table 1. FEVER 1.0. 

SPLIT SUPPORTED REFUTED NOTENOUGHINFO 

TRAIN 80,035 29,775 35,639 

DEV 6666 6666 6666 

TEST 6666 6666 6666 
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represent the SOTA performance on the RTE task and achieve the highest ro-
bustness. Athene, KGAT, and UNC NLP encode declarative evidence pairs using 
ESIM. 

BERT and KernelGAT are our two main target models, and our approach ge-
nerates adversarial attacks that significantly outperform previous SOTA ap-
proaches without pre-training. TextFooler and BERT-Attack are the two base-
lines in our experiments. They implement BERT word embedding classification 
and text entailment tasks to obtain better performance. For KernelGAT, they 
implement a version of GAT using dot product instead of kernel, similar to 
GEAR, to evaluate the effectiveness of kernel. GEAR uses graphical attention 
networks to extract complementary information from other evidence and ag-
gregates all evidence through the attention layer. For our FastAttacker, the input 
is a long sentence connecting the statement and the evidence, and we perform a 
training task on the statement and pass its one-dimensional output to the attack 
model. For KernelGAT, the input is each statement-evidence pair, which has a 
different data dimension than our framework. The KernelGAT input needs to 
combine each statement’s synonym substitution with all its evidence to form a 
two-dimensional array and pass them to the attack model. After training the 
statements using our framework and searching the set of synonyms for each  

 
Table 2. Zero-query blackbox attack success rate for different attacks under targeted/un- 
targeted attacks (TSR/USR) and corresponding word perturbation percentage against 
large-scale LMs and defense methods on FEVER 1.0 datasets. 

Model Attack Method USR%/TSR% Perturbation% 

 TextFooler 69.5/24.0 13.9/43.9 

BERT FastAttacker(+ft) 42.4/9.3 4.7/9.1 

Acc: FastAttacker(+fe) 74.4/59.3 5.7/10.9 

 FastAttacker(+fb) 84.3/79.7 4.4/9.1 

 FastAttacker(+fall) 94.6/90.8 4.3/10.2 

 BERT-Attack 80.3/44.9 25.0/30.3 

 
Table 3. Zero-query blackbox attack success rate for different attacks under targeted/un- 
targeted attacks (TSR/USR) and corresponding word perturbation percentage against large- 
scale LMs and defense methods on FEVER 2.0 datasets. 

Model Attack Method USR%/TSR% Perturbation% 

 TextFooler 32.3/17.8 11.6/13.4 

KernelGAT FastAttacker(+ft) 53.8/33.4 23.9/29.1 

Acc: FastAttacker(+fe) 40.7/23.2 21.4/22.2 

 FastAttacker(+fb) 76.5/63.8 30.9/36.3 

 FastAttacker(+fall) 86.2/68.5 39.0/36.9 

 BERT-Attack 80.3/44.9 25.0/30.3 
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word, we transfer the evidence to the generated statements, construct new state- 
ment-evidence pairs and transfer them to KernelGAT. Therefore, to evaluate our 
attack approach for the KernelGAT setup, we adjust the dimensionality of the 
input array from 1 to 2 dimensions when solving this data processing problem. 

Adversarial Attack 
To verify and prove the robustness of the model in realistic scenarios, we con-
sider performing a black-box attack: a zero-query setup. We validate and eva-
luate the robustness of BERT and KernelGAT and show their testing accuracy 
and perturbations in Table 2 and Table 3. 
• BERT-Attack (Li et al., 2020): a high-quality and effective strong black-box 

attack method that generates adversarial samples utilizing pre-trained masked 
language models exemplified by BERT. The core algorithm of BERT-Attack 
is straightforward and consists of two stages: finding the vulnerable words in 
one given input sequence for the target model; then applying BERT in a se-
mantic-preserving way to generate substitutes for the vulnerable words. With 
the capability of BERT, the perturbations are generated considering the con-
text around it. 

• TextFooler: a black box attack method for generating adversarial text per-
forms synonym replacement using a fixed word embedding space. Applying 
it to two fundamental natural language tasks can successfully attack three 
target models, including the powerful pre-trained BERT and widely used con-
volutional and recurrent neural networks. 

5.4. Implementation Details 

We apply this method to attack different types of models in the textual implica-
tion pipeline. We conducted a comprehensive experiment to evaluate the attack 
algorithm we set up, FastAttacker. We first fine-tuned the BERT model on the 
FEVER 1.0 dataset and took as input the declared crosstabs and their corres-
ponding evidence. Second, we attack the pre-trained BERT using our model on 
different datasets using the TextFooler and BERT-Attack baselines. Next, third, 
we attack the KernelGAT model and compare the results with the two SOTA 
baselines. Finally, we evaluate and compare the experimental results of different 
baselines in different scenarios. 

5.5. Adversarial Attack Evaluation 

In the black-box attack scenarios in Table 2 and Table 3, FastAttacker was able 
to make the model incorrectly classify almost all sentences with only a small 
number of characters in both the target and non-target settings. The untargeted 
attack achieves a success rate of 94.6% by replacing a small number of tokens on 
the FEVER dataset. 

6. Conclusion 

In this paper, we propose a novel framework for semantic space-constrained 
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adversarial attacks, FastAttacker, which uses perturbation functions within dif-
ferent semantics to generate synonym substitutions. Our comprehensive expe-
riments show that FastAttacker can generate natural adversarial texts in different 
semantic spaces and achieve higher attack success rates than existing textual at-
tacks. Experiments show that FastAttacker leads to more accurate fact verifica-
tion. Our study shows that four perturbation functions play different roles in 
generating adversarial texts in different semantic spaces and contribute to dif-
ferent aspects that are crucial for fact verification. We also demonstrate that ex-
isting SOTA LM and defense methods are still vulnerable to FastAttacker at-
tacks. In the future, we will further investigate FastAttacker in more realistic 
scenarios and demonstrate that it is more general and can generate natural ad-
versarial texts with high attack rates for different languages (e.g., English and 
Chinese). We hope that our research will throw light on future research to eva-
luate and enhance the robustness of LM to different languages. 
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