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Abstract 
Federated learning is a distributed machine learning technique that trains a 
global model by exchanging model parameters or intermediate results among 
multiple data sources. Although federated learning achieves physical isolation 
of data, the local data of federated learning clients are still at risk of leakage 
under the attack of malicious individuals. For this reason, combining data 
protection techniques (e.g., differential privacy techniques) with federated 
learning is a sure way to further improve the data security of federated learn-
ing models. In this survey, we review recent advances in the research of diffe-
rentially-private federated learning models. First, we introduce the workflow 
of federated learning and the theoretical basis of differential privacy. Then, 
we review three differentially-private federated learning paradigms: central 
differential privacy, local differential privacy, and distributed differential pri-
vacy. After this, we review the algorithmic optimization and communication 
cost optimization of federated learning models with differential privacy. Fi-
nally, we review the applications of federated learning models with differen-
tial privacy in various domains. By systematically summarizing the existing 
research, we propose future research opportunities. 
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1. Introduction 

Machine learning is a branch of artificial intelligence and computer science that 
focuses on using data and algorithms to mimic how humans learn (Bishop and 
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Nasrabadi [1]). Many fields (e.g., natural language processing (Nadkarni et al. 
[2]), computer vision (Jarvis [3]), bioinformatics (Fatima and Pasha [4]), etc.) 
have benefited from machine learning. An imperative prerequisite to the success 
of machine learning is the availability of large amounts of high-quality data. 
With the help of the data, machine learning models can discover patterns in the 
data and perform tasks that are difficult for humans to carry out, such as fraud 
detection (Bolton and Hand [5]), face recognition (Zhao et al. [6]), speech rec-
ognition (Reddy [7]), etc. 

Machine learning models are centralized models, meaning that all the data for 
the training of the model must be centralized in one location (e.g., a data center). 
As a result, machine learning models face a number of challenges in practice. 
The first challenge is the breach of privacy (Ji et al. [8]). Data privacy breaches 
have been observed in numerous examples as a result of centralizing personal 
data in one place (Ouadrhiri and Abdelhadi [9]). Google+, for instance, has 
leaked personally identifiable information such as name, email address, occupa-
tion, gender, age, and relationship status of approximately 500,000 users because 
of a system vulnerability in 2018. Facebook compromised the personal informa-
tion of approximately 533 million users in 2021 (e.g., phone numbers, login IDs, 
full names, etc.). Twitter compromised 5.4 million accounts in 2022, including 
phone numbers, locations, URLs, profile pictures, etc. The second challenge is 
the problem of data silos. Several countries around the world have passed strict 
laws to safeguard the privacy of personal information. These laws include the 
General Data Protection Regulation of the European Union and the Data Secu-
rity Law of the People’s Republic of China. While these laws protect the security 
of data, they also restrict the flow of data, resulting in the problem of data silos. 

A major challenge in the field of artificial intelligence today is how to resolve 
the problem of data silos while maintaining data privacy and security. Towards 
this end, Google proposed federation learning in 2017 (McMahan et al. [10]). 
The federated learning model is a distributed machine learning model that 
enables multiple devices to collaboratively train the same machine learning model 
without exchanging local data, only by exchanging model parameters or inter-
mediate results, thus achieving a balance between data privacy protection and 
data sharing computation. In the federated learning model, the data of each par-
ticipant is stored locally instead of being centralized in the central server, so that 
the security of each participant’s data can be maintained to a certain extent. Af-
ter the introduction of federated learning, it has rapidly received attention from 
both academia and industry, and many mature federated learning frameworks 
have been developed, for example, TensorFlow Federated developed by Google, 
Pysyft developed by OpenMinded (Ziller et al. [11]), and FATE developed by 
Webank (Liu et al. [12]). 

While the data of each participant is stored locally in a federated learning 
framework, there is still a risk of data leakage (Li et al. [13]). In the course of 
training a federated learning model, each participant must transmit information 
about the model parameters (e.g., gradients) to the central server. A number of 
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examples show that the central server can invert participants’ local data using 
gradient information, which is known as an inference attack (Nasr et al. [14]). 
To make the federated learning model more secure, scholars have introduced 
differential privacy techniques into federated learning. As a result of the combi-
nation of differential privacy techniques with federation learning, the data lea-
kage problem of federation learning models can be effectively solved. 

Although there are some literature reviews on differential-private federated 
learning models, there are some shortcomings. First, federed learning is devel-
oping rapidly and many of the latest research results have not been reviewed in, 
so this paper summarizes the latest research results on differential-private fede-
rated learning. Second, the research on the optimization of differential-private 
federated learning models is also important for the development of this field, but 
less attention has been paid by scholars. Therefore, this paper summarizes the 
research related to the optimization techniques for differential-private federated 
learning models. Finally, differential-private federated learning has achieved ap-
plications in many fields, which this paper summarizes. 

This paper reviews the recent advances in differential privacy techniques for 
federated learning. The rest of this paper is structured as follows. In Section 2, 
we review some background knowledge about federated learning and differential 
privacy. In Section 3, we review the recent advances in federated learning with 
central differential privacy, local differential privacy, and distributed differential 
privacy, respectively. In Section 4, we review the algorithm optimization tech-
niques and communication cost optimization techniques in the differential pri-
vate federated learning model. In Section 5, we review some recent applications 
of the differential private federated learning model. In Section 6, we propose 
some future directions. In Section 7, we draw conclusions. 

2. Fundamental Principles 

In this section, we review some of the basic concepts of federated learning and 
differential privacy. 

2.1. Federated Learning 

In a federated learning model, multiple devices or clients collaborate in training 
a machine learning model by exchanging only model parameters or intermediate 
results without exchanging local data. As a result, federated learning consists of 
two key components: the central server and the federated learning clients. Let 

{ }1,2, , N= �  be the set of federated learning clients. Each client has a local 
data set i  with data structure ( ),j jx y , where 1d

j ∈x   represents the fea-
tures and m

j ∈y   represents the labels. The central server is responsible to de-
cide the architecture of the machine learning model (e.g., logistic regression, 
etc.), and then sends the model information and model initialization parameters 

2
0

d∈ω  to all federated learning clients. According to the central server, each 
client downloads the initial parameters, trains the machine learning model with 
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their local data, and uploads the model parameters to the central server after the 
training is completed. The central server aggregates the parameters uploaded by 
all clients to form the global model parameters. In order to make the trained 
model more effective, the above process is performed several times until the 
model converges. Specifically, the federation learning model can be divided into 
the following three steps: initialization, local training, and global aggregation, 
and the workflow of the federated learning is shown in Figure 1. 

Step 1. (Initialization) The central server decides the architecture of the ma-
chine learning model and sends the initial parameters 0ω  to each client. 

Step 2. (Local Training) In the t-th round, client i downloads the parameter 

1t−ω  from the central server, and updates the parameter by minimizing its loss 
function based on its local data set i , i.e., 

( )( )
1

*
1arg min , , ,

i
t

i
t i j j tL

−

−= x y
ω

ω ω                   (1) 

( ) ( )1 1
1

, , , , ,
i

i j j t j j t
j

L l− −
=

= ∑x y x y


ω ω                 (2) 

where 1 2: d dml × × →     is the loss function for data sample j and is de-
pendent on the underlying machine learning model; 1 2: d dm

iL × × →     is 
the loss function for client i; i  is the number of the data in i . Equations 
(1) and (2) are usually solved by the stochastic gradient descent method, i.e., 

 

 
Figure 1. Workflow of federated learning. 
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( )* *
1 1, ,i i

t t i j j tLη− −= − ∇ x y wω ω                   (3) 

where ( )1, ,i j j tL −∇ x y ω  is the gradient of ( )1, ,i j j tL −x y ω  and η  is the 
learning rate. Client i uploads the intermediate results (e.g., ( )1, ,i j j tL −∇ x y ω ) 
to the central server. 

Step 3. (Global Aggregation) The central server collects the intermediate re-
sults for each client and updates the global model parameters tω  through the 
global model aggregation algorithm. For example, under the FedAVG [10], 

( )* *
1 1, , .

N
i

t t i j j tN
i

i
i

Lη− −= − ∇∑
∑

x y



ω ω ω               (4) 

In addition to FedAVG, many variants of FedAVG (e.g., FedProx [15], Fed-
PAQ [16], Turbo-Aggregate [17], FedMA [18], HierFAVG [19]) can also be 
used. 

For more details on federated learning models, the readers may refer to Yang 
et al. [20], Rehman and Gaber [21], and Ludwig and Baracaldo [22]. 

2.2. Differential Privacy 

Differential privacy (Dwork and Roth [23]) is a data protection technique based 
on probability theory, and the idea behind it is that if for two adjacent databases 
(i.e., two databases differing by only one record), the statistical characteristics 
derived from these two databases cannot be used to deduce the single record, 
then the records in this database are said to be secure. 

To this end, Dwork et al. [23] first give the definition of distance between da-
tabases and the definition of the randomized algorithm, and then give the con-
cept of differential privacy. A randomized algorithm is an algorithm with the 
domain A and (discrete) range B will be associated with a mapping from A to 
the probability simplex over B, denoted ( )B∆ , and ( ) { : 0B

iB x x∆ = ∈ ≥  
for all i and }1 1B

ii x
=

=∑ . For the databases x and y being collections of records 
from a universe   and being represented by their histograms (i.e., x∈ , in 
which each entry ix  represents the number of elements in the database x of 
type i∈ ), and the distance between x and y can be given by 

1x y− , where 

1⋅  is the 1l -norm. 
Definition 1. (Dwork et al. [23]) A randomized algorithm   with domain 

  is ( ),ε δ -differentially private if for all ( )Range⊆   and for all  
,x y∈  such that 

1 1x y− ≤ : 

( ) ( ) ( )Pr exp Pr .x yε δ∈ ≤ ∈ +                      (5) 

As described above, the definition of differential privacy guarantees privacy 
theoretically, but implementation requires perturbing the data by adding noise. 
By defining 

( ) ( ) 1,
11

max
x y X
x y

f f x f y
∈
− =

∆ = −


                    (6) 
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as the 1� -sensitivity of a deterministic algorithm : kf →  , Dwork and 
Roth [23] add a random variable ( )~ LapY f ε∆  to the deterministic algo-
rithm and propose a Laplacian mechanism, and prove that the Laplace mechan-
ism preserves ( ),0ε -differential privacy. 

Definition 2. (Dwork et al. [23]). Given a deterministic algorithm  
: kf →  , the Laplace mechanism is defined as: 

( )( ) ( ) ( )1, , , ,L kx f f x Y Yε⋅ = + �                 (7) 

where iY  are i.i.d. random variables drawn from ( )Lap f ε∆ . 
Theorem 1 (Dwork et al. [23]). The Laplace mechanism preserves ( ),0ε - 

differential privacy. 
By defining the arbitrary sensitivity 

( ) ( )
, : 11

max max , , ,
r x y x y

u u x r u y r
∈ − ≤

∆ ≡ −


                (8) 

McSherry and Talwar [24] propose the exponential mechanism and proved 
that the exponential mechanism preserves ( ),0ε -differential privacy. 

Definition 3. (McSherry and Talwar [24]). The exponential mechanism  
( ), ,E x u   selects and outputs an element r∈  with probability propor-

tional to 
( ),

exp
2

u x r
u

ε 
 

∆ 
. 

Theorem 2. (McSherry and Talwar [24]). The exponential mechanism pre-
serves ( ),0ε -differential privacy. 

By defining 

( ) ( )2 2,
11

max
x y X
x y

f f x f y
∈
− =

∆ = −


                   (9) 

as the 2l -sensitivity of a deterministic algorithm : kf →  , Nikolov et al. 

[25] add a random variable ( )2~ 0,Y N σ  and 21.252ln f
σ

δ ε
∆

≥ ⋅  to the de-

terministic algorithm and propose a Gaussian mechanism, and prove that the 
Gaussian mechanism preserves ( ),ε δ -differential privacy. 

Definition 4. (Nikolov et al. [25]). Given a deterministic algorithm  
: kf →  , the Gaussian mechanism is defined as: 

( )( ) ( ) ( )1, , , ,L kx f f x Y Yε⋅ = + �                (10) 

where iY  are i.i.d. random variables drawn from ( )20,N σ  and  

21.252ln f
σ

δ ε
∆

≥ ⋅ . 

Theorem 3. (Nikolov et al. [25]). Let ( )0,1ε ∈  be arbitrary. For  
( )2 2 ln 1.25c δ> , the Gaussian Mechanism with parameter 2c fσ ε≥ ∆  is  

( ),ε δ -differentially private. 
For more details about differential privacy, the readers may refer to Dwork 

[26], Dwork and Roth [27], and Ji et al. [8]. 
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3. An Overview of Federated Learning with Differential  
Privacy 

During the federated learning process, the federated clients need to transmit pa-
rameters (e.g., gradients) to the central server, which may lead to the leakage of 
the federated clients’ local data. In order to protect the data of federated clients, 
both federated clients and the central server must use data protection tech-
niques. Differential privacy is a probabilistic-based data privacy protection tech-
nique that has been successful in federated learning. The studies of differential 
privacy techniques in federated learning can be divided into three categories: fe-
derated learning with central differential privacy, federated learning with local 
differential privacy, and federated learning with distributed differential privacy. 
In this section, we provide an overview of federation learning with differential 
privacy. Specifically, we will first review the recent advances in federated learn-
ing with central differential privacy (in Subsection 3.1). Then, we will review re-
cent advances in federation learning with local differential privacy (in Subsec-
tion 3.2). Finally, we will review recent advances in federated learning with dis-
tributed differential privacy (in Subsection 3.3). 

3.1. Federeated Learning with Central Differential Privacy 

Federated learning with central differential privacy is the way that a trusted cen-
tral server adds noise to global parameters to protect local data. The workflow 
federated learning with central differential privacy is shown in Figure 2. 

Geyer et al. [28] note that vanilla federated learning can be subject to differen-
tial attacks, thus initiating the study of federated learning with central differen-
tial privacy. In particular, a trusted server adds noise to aggregate results in or-
der to protect against differential attacks. According to numerical experiments, 
this approach provides data security protection at the expense of accuracy. Tri-
astcyn and Faltings [29] propose Bayesian differential privacy as a means of pro-
viding more precise privacy loss bounds. As demonstrated in experiments, the 
bayesian differential privacy significantly reduces noise, improves model accu-
racy, and reduces the number of communication rounds. The proposed method 
improves the accuracy of trained models by up to 10% according to experimen-
tal results. In Wei et al. [30], they propose a novel approach, NbAFL, which adds 
artificial noise to parameters at the client’s side prior to aggregation. The NbAFL 
can satisfy the central DP under different levels of protection by properly adapt-
ing different variances of artificial noise. Furthermore, the authors develop a 
theoretical convergence bound for the loss function of the trained FL model in 
the NbAFL. Bernau et al. [31] examine the inference attack on central differen-
tial privacy. The authors of Zhang et al. [32] propose a clipping-enabled FedAvg, 
which combines the clipping technique with federated learning and central dif-
ferential privacy. They demonstrate the relationship between clipping bias and 
the distribution of the client’s updates by analyzing the convergence of FedAvg 
with clipping. Hu et al. [33] present a new differentially-private FL scheme  
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Figure 2. Workflow of federated learning with central differential privacy. 
 

referred to as Fed-SMP, which provides client-level DP guarantees while main-
taining high model accuracy. To minimize the impact of privacy protection on 
model accuracy, Federal-SMP employs a new technique called Sparsified Model 
Perturbation (SMP), which involves sparsifying local models before perturbing 
them with additive Gaussian noise. Extensive experiments on real-world datasets 
demonstrate Fed-SMP’s capability to improve model accuracy while simulta-
neously reducing communication costs. Table 1 summarizes the recent advance 
in central differential privacy. 

3.2. Federated Learning with Local Differential Privacy 

In the framework of federation learning with central differential privacy, a ne-
cessary condition for this framework to be able to secure client data is that the 
central server is trusted, and if the central server is honest but curious, then the 
local client’s data will be leaked to the central server (e.g., Li et al. [34] and Melis 
et al. [35]). Therefore, a more secure framework is the federation learning with 
local differential privacy, i.e., each client adds noise to the parameters uploaded 
to the central server to secure the local data. The workflow federated learning 
with local differential privacy is shown in Figure 3. 

Federated learning with local differential privacy is first formalized by Kasi-
viswanathan et al. [36]. They show that a concept class is learnable by a local  
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Table 1. Summary of contributions in central differential privacy. 

Approach Technique Main Idea 

Geyer et al. [28] FL + CDP Initiate the study of federated learning with 
central differential privacy and verify the validity 
of the model by numerical experiments 

Triastcyn and 
Faltings [29] 

Bayesian 
differential privacy 

Develop a relaxation of federated learning with 
central differential privacy, named Bayesian 
differential privacy. 

Wei et al. [30] NbAFL Develop a novel framework (named NbAFL) 
based on DP in which artificial noises are added 

Zhang et al. [32] Clipping-enabled 
FedAvg 

Develop a novel central differential privacy 
framework (named clipping-enabled FedAvg) 
based on clipping technique. 

Hu et al. [33] Fed-SMP Develop a novel framework, named Fed-SMP, to 
mitigate the inaccuracy issue of LDP by using a 
technique called Sparsified Model Perturbation 
(SMP) where local models are sparsified first 
before being perturbed by Gaussian noise. 

 

 
Figure 3. Workflow of federated learning with local differential privacy. 
 

differentially private algorithm if and only if it is learnable in the statistical query 
model. Erlingsson et al. [37] propose a privacy-preserving mechanism called 
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Randomized Aggregatable Privacy-Preserving Ordinal Response, or RAPPOR. 
They demonstrate that RAPPOR allows the collection of statistics on the popula-
tion of client-side strings with strong privacy guarantees for each client and 
without linking the reports of the clients. Liu [38] proposes a generalized Gaus-
sian (GG) mechanism based on LP global sensitivity and demonstrates that the 
GG mechanism reaches DP at a specified level of privacy. Truex et al. [39] fo-
cuses on federated learning frameworks with high-dimensional, continuous val-
ues and high-precision client data. As a result, the existing LDP protocols cannot 
be applied in this situation. The authors therefore proposed LDP-Fed, which 
provides a formal differential privacy guarantee for repeated collection of model 
parameters in federated neural network training over multiple individual par-
ticipants’ private datasets. Sun et al. [40] examine whether differential privacy 
can protect backdoor attacks and demonstrate that norm clipping and weak dif-
ferential privacy mitigate attacks without affecting overall performance. Xu et al. 
[41] addresses the situation where sensitive data about each user must be col-
lected from multiple services independently and can be combined. In this re-
search, the authors focus on preventing the privacy guarantee from being com-
promised during the joint collection of data and on how to analyze perturbed 
data from different services jointly. Towards this end, they propose mechanisms 
and estimation methods to process multidimensional analytical queries. Naseri 
et al. [42] investigate the robustness of local differential privacy techniques in FL. 
Experiments show that central differential privacy techniques are robust to de-
fend against backdoor attacks. Wang et al. [43] propose a local differential pri-
vacy-based framework (named FedLDA) for federated learning of LDA models, 
as well as a novel LDP mechanism called Random Response with Priori (RRP). 
According to theoretical results, the novel framework provides theoretical guar-
antees regarding data privacy as well as model accuracy. Girgis et al. (2021) [44] 
propose a novel shuffle privacy model, in which each client randomizes its re-
sponse and the server only receives a random shuffle of the clients’ responses. In 
sub-sampled shuffled models, numerical results demonstrate significant im-
provements in privacy guarantee over the state-of-the-art approximate Differen-
tial Privacy guarantee. Wei et al. [45] proposes a user-level differential privacy 
(UDP) algorithm by adding artificial noise to the shared models before they are 
uploaded to the servers. Through varying the variances of the artificial noise 
processes, they demonstrate that the UDP framework can achieve (ε-δ)-LDP for 
the ith mobile terminal with adjustable privacy levels. Furthermore, they derive a 
theoretical upper bound for the convergence of UDP. Zhou et al. [46] propose a 
novel privacy-preserving federated learning framework for edge computing 
(PFLF). In PFLF, each client and the central server add noise before sending the 
data. For the purpose of protecting the privacy of their clients, they developed a 
flexible arrangement mechanism for counting the optimal training times for 
each individual, and prove that PFLF guarantees the privacy of clients and serv-
ers during the entire training process. As Thapa et al. [47] observe, federated 
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learning and split learning are two distributed machine learning methods that 
perform similar tasks. Federated learning does not provide as much privacy as 
split learning. Split learning, however, performs slower than Federated learning. 
Thapa et al. [47] combines federated learning with split learning and presents a 
novel approach, splitfed learning (SFL), as well as a revised architectural confi-
guration that incorporates differential privacy to enhance data privacy and mod-
el robustness. Wu et al. [48] present FedPerGNN, a federated GNN framework, 
which is capable of both effective and privacy-preserving personalization. The 
experimental results on six datasets demonstrate that FedPerGNN is capable of 
achieving 4.0 - 9.6 percent lower errors than the state-of-the-art federated per-
sonalization methods under good privacy protection. To secure cross-silo fede-
rated learning, Wang et al. [49] proposes a three-plane approach in which Local 
Differential Privacy is applied to user data before it is uploaded. According to 
theoretical results, LDP is capable of providing strong data privacy protection 
and still retaining user data statistics in order to maintain its high utility. Zhang 
et al. [50] propose federated f-differential privacy, a new notion specifically tai-
lored to federated settings, based on the framework of Gaussian differential pri-
vacy. They then design PriFedSync as a generic framework for private federated 
learning. Table 2 summarizes the recent advance in local differential privacy. 

 
Table 2. Summary of contributions in local differential privacy. 

Approach Technique Main Idea 

Wang et al. [43] FedLDA Develop a novel framework (named FedLDA) for 
federated learning of LDA models, as well as a novel 
LDP mechanism called Random Response with 
Priori (RRP). 

Girgis et al. [44] Shuffle method Develop shuffle method under with only a random 
permutation of the clients’ responses are received by 
the server without their association with the clients’ 
identities. 

Wei et al. [45] UDP Develop a novel framework, named UDP, in which 
each client can achieve adjustable privacy protection 
levels. 

Zhou et al. [46] PFLF Develop a novel framework, named PFLF, in which 
the client and the central server add noise before 
sending the data. 

Thapa et al. [47] SFL Develop a novel framework SFL that combines 
federated learning and split learning to achieve high 
model accuracy and communication efficiency. 

Wu et al. [48] FedPerGNN Develop a novel framework FedPerGNN to achieve 
both effective and privacy-preserving 
personalization. 

Zhang et al. [50] PriFedSync Develop federated f-differential privacy and propose 
a generic framework for private federated learning. 
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3.3. Federated Learning with Distributed Differential Privacy 

Both centralized differential privacy and local differential privacy have short-
comings. For centralized differential privacy, it requires a trusted central server, 
and once the central server is malicious, then the data of the federated learning 
clients will be compromised, and a trusted central server is hard to find in prac-
tice. For local differential privacy, each client adds a lot of noise to the interme-
diate results they upload to satisfy the local differential privacy condition. Al-
though the local data of the federated learning clients are secure under local dif-
ferential privacy, it leads to too much noise in the aggregated results obtained by 
the federated servers, which leads to poor privacy-utility trade-offs. To address 
these shortcomings, scholars have proposed a differential privacy model that can 
guarantee data security while keeping the amount of added noise limited, i.e., 
distributed differential privacy. In this model, each federated learning client only 
needs to add a small amount of noise to ensure that the aggregation result of the 
central server satisfies the central differential privacy; at the same time, since the 
amount of noise added by each federated learning client is small and cannot 
guarantee the security of local data, the federated clients will use the secure ag-
gregation technique (Bonawitz et al. (2017) [51]), so that the federated server 
can only get the aggregation result of the intermediate parameters of all fede-
rated clients, but cannot get the intermediate parameters of each federated client, 
thus securing the federated clients’ local data. The workflow federated learning 
with distributed differential privacy is shown in Figure 4. 

Dwork et al. [52] proposed a Binomial mechanism and prove that the binomi-
al mechanism achieves the (ε − δ) differential privacy condition. Agarwal et al. 
[53] applied the binomial mechanism to federated learning and proposed a sto-
chastic k-level quantization method and a randomized rotation method. Results 
show that the Binomial mechanism with the stochastic k-level quantization me-
thod and randomized rotation method can achieve nearly the same utility as the 
Gaussian mechanism, yet requires fewer representation bits. Canonne et al. [54] 
proposed a discrete Gaussian mechanism. According to the authors, discrete 
Gaussian noise can provide essentially the same level of privacy and accuracy as 
continuous Gaussian noise, both theoretically and experimentally. On the basis 
of Canonne et al. [54]’s work, Kairouz et al. [55] applied the discrete Gaussian 
mechanism to federated learning with secure aggregation, and results show that 
the model can provide 21 2ε  central differential privacy and the mean squared 
error of the model is at most ( )2 2 2O c d ε . Agarwal et al. [56] proposes a new 
multi-dimensional Skellam mechanism based on the addition of the difference 
of two independent Poisson random variables as noise. According to their find-
ings, even when the precision of the Skellam mechanism is low, it provides the 
same privacy-accuracy trade-off as the continuous Gaussian mechanism. In Bao 
et al. [57], they propose a Skellam mixture mechanism (SMM) based on inject-
ing random noise from a mixture of two shifted symmetric Skellam distribu-
tions. The SMM is found to satisfy the (ε − δ) differential privacy condition. By  
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Figure 4. Workflow of federated learning with distributed differential privacy. 
 

applying SMM to federated learning with distributed SGD, the authors show 
that SMM improves model utility by eliminating the step of rounding the gra-
dients. Chen et al. [58] proposes a Poisson binomial mechanism (PBM) under 
which it encodes local information as parameters of a binomial distribution, re-
sulting in discrete outputs. Theoretically results show that PBM satisfies the 
(ε-δ)-approximate differential privacy, the communication cost equals is  

( ) ( )( )( )( )( )2
10 Dp 10log log 1O d n d nε δ+  and an MSE is at most  

( ) ( )( )2 2 2
DPO c d n ε . Chen et al. [59] characterize the fundamental communica-

tion cost required to obtain the best accuracy achievable under ε central diffe-
rential privacy. Theoretical results show that ( )( )2 2min ,O n dε  bits per client 
are both sufficient and necessary for obtaining the best accuracy achievable 
ε-differential privacy. Cheu et al. [60] investigate the Shuffling method in distri-
buted differential privacy and show that this model provides the power of the 
central model while avoiding the need to trust a central server and the complex-
ity of cryptographic secure function evaluation. Jiang et al. [61] focus on the 
client dropout problem in distributed differential privacy and propose a distri-
buted differentially private FL framework, named Hyades. Results show that 
Hyades is capable of managing client dropout in various realistic scenarios and 
achieving the optimal privacy-utility trade-off. Table 3 summarizes the recent 
contributions in distributed differential privacy. 
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Table 3. Summary of contributions in distributed differential privacy. 

Approach Technique Main Idea 

Dwork et al. [52] Binomial 
mechanism 

Propose a Binomial mechanism. 

Agarwal et al. [53] FL + Binomial 
mechanism 

Apply the binomial mechanism to federated learning 
and propose a stochastic k-level quantization method 
and a randomized rotation method to optimize the 
communication efficiency. 

Canonne et al. 
[54] 

Discrete 
Gaussian 
mechanism 

Propose a discrete Gaussian mechanism. 

Kairouz et al. [55] FL + Discrete 
Gaussian 
mechanism 

Apply the discrete Gaussian mechanism to federated 
learning, and results show that the model can provide 

21 2ε  central differential privacy. 

Agarwal et al. [56] FL + Skellam 
mechanism 

Proposes a Skellam mechanism based on the addition 
of the difference of two independent Poisson random 
variables; Apply it to federated learning and achieve 

( )( ), )α ε α  Rényi differential privacy. 

Bao et al. [57] FL + Skellam 
mixture 
mechanism 

Proposes a Skellam mixture mechanism based on a 
mixture of two shifted symmetric Skellam 
distributions; Apply it to federated learning and 
achieve (ε − δ) differential privacy condition. 

Chen et al. [58] FL + Poisson 
binomial 
mechanism 

Proposes a Poisson binomial mechanism; Apply it to 
federated learning and achieve the (ε − 
δ)-approximate differential privacy. 

4. Optimization Techniques in Federated Learning with  
Differential Privacy 

Applying differential privacy techniques to federation learning models can effec-
tively protect clients’ data security, however, differential privacy techniques also 
lead to problems such as decreasing model accuracy and increasing communica-
tion costs. Therefore, scholars have started to optimize the federated learning 
models with differential privacy, and the main directions of optimization are al-
gorithm accuracy optimization and communication cost optimization. 

Zhou and Tang [62] design a differentially private distributed algorithm based 
on the stochastic variance reduced gradient (SVRG) algorithm, which is capable 
of preventing the learning server from accessing and inferring private training 
data. The authors further quantify its impact on learning in terms of conver-
gence rate and shows that noise added at each gradient update results in a bounded 
deviation from the optimal way of learning. Hu et al. [63] address the issue of 
privacy-preserving techniques for federated learning models under heterogene-
ous customer data sets. They show that the model satisfies (ε − δ) differential 
privacy when the Gaussian mechanism is used by each client. Van Dijk et al. [64] 
propose a new algorithm for asynchronous federated learning that eliminates 
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waiting times while at the same time reducing overall network communication. 
By adding Gaussian noise, they demonstrate how our algorithm can be made 
differentially private. Girgis et al. [65] focuses on the stochastic gradient descent 
algorithm for solving federated learning models with local differential privacy 
and proposes a distributed communication-efficient and locally differentially 
private stochastic gradient descent algorithm (CLDP-SGD) along with a detailed 
analysis of its communication, privacy, and convergence tradeoffs. Zhang et al. 
[32] examine the impact of clipping on federated learning with differential pri-
vacy and provide a convergence analysis of a differential private (DP) FedAvg 
algorithm. Zhang et al. [66] propose a federated learning scheme based on diffe-
rential privacy and mechanism design. In addition to differential privacy me-
chanisms, two dominant-strategy truthful, individually rational, and budg-
et-balanced mechanisms are designed to motivate clients to participate in train-
ing. Experiments demonstrate the effectiveness of the proposed scheme. Using 
optimal private linear operators on adaptive streams, Denisov et al. (2022) [67] 
present an improved Differential Privacy for SGD. The proposed algorithm 
achieves significant improvements in a notable problem in federated learning 
with differential privacy at the user level. 

Lian et al. [68] presented COFEL, a novel federated learning system that re-
duces communication time through layer-based parameter selection and enhances 
privacy protection through local differences in privacy. In addition, they propose 
the COFEL-AVG algorithm for global aggregation as well as a layer-based para-
meter selection method, which enables the selection of the most valuable para-
meters for global aggregation in order to optimize the communication and train-
ing process. Amiri et al. [69] discuss the communication costs brought about by 
differential privacy, and present a novel algorithm for compressing client-server 
communications through quantization in order to achieve both differential pri-
vacy and reduced communication overhead. Liu et al. [70] propose a Projected 
Federated Averaging (PFA) scheme to explicitly model and leverage the hetero-
geneous privacy requirements of different clients and optimize utility for the 
joint model while minimizing communication cost. Truex et al. [71] present a 
novel approach that combines differential privacy and SMC, thus enabling users 
to reduce the growth of noise injection as the number of parties increases with-
out sacrificing privacy while maintaining a pre-defined rate of trust. Table 4 
summarizes the optimization techniques in differential private federated learn-
ing models. 

5. Application of Differential Private Federated Learning 

Differential privacy-preserving federated learning techniques can effectively ad-
dress data security issues in federated learning, and thus have achieved impor-
tant applications in many fields. 

Andrés et al. [72] investigate the application of differential privacy techniques 
in protecting customer geolocation data. They present a mechanism for achieving  
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Table 4. Summary of contributions in optimization techniques. 

Approach Technique Main Idea 

Zhou and Tang 
[62] 

SVGR Algorithm Develop a novel differentially private distributed 
algorithm based on the stochastic variance reduced 
gradient technique. 

Van Dijk et al. 
[64] 

Asynchronous 
federated learning 
algorithm 

Develop a novel algorithm that eliminates waiting 
times and reduces overall network communication. 

Girgis et al. [65] CLDP-SGD Develop a distributed communication-efficient and 
locally differentially private stochastic gradient 
descent algorithm along with a detailed analysis of 
its communication, privacy, and convergence 
tradeoffs. 

Zhang et al. [66] Mechanism 
Design 

Develop a federated learning scheme based on 
differential privacy and mechanism design under 
which high-quality clients are selected to improve 
the accuracy of the model. 

Denisov et al. 
[67] 

Optimal Private 
Linear Operators 

Develop improved differential privacy for SGD that 
achieves significant improvements in a notable 
problem in federated learning with differential 
privacy at the user level. 

Lian et al. [68] COFEL Develop a novel federated learning system that 
reduces communication time through layer-based 
parameter selection and enhances privacy 
protection through local differences in privacy. 

Amiri et al. [69] Universal Vector 
Quantization 

Develop a novel algorithm for achieving differential 
privacy and reduced communication overhead 
through compression of client-server 
communication by quantization. 

Liu et al. [70] FL-PFA Develop a novel framework, named FL-PFA, that 
achieves communication cost minimization. 

Zhang et al. [32] Clipping Develop a novel federated learning framework with 
clipping technique 

Truex et al. [71] Security 
Multi-party 
Computation 

Develop a novel approach that combines 
differential privacy and SMC, thus enabling users 
to reduce the growth of noise injection. 

 
geo-indistinguishability by adding controlled random noise to the user’s loca-
tion. Wang et al. [73] consider local differential privacy protection for both qua-
litative data (e.g., categorical data) and discrete quantitative data (e.g., location 
data). They derive a k-subset mechanism and an efficient extension of k-subset 
mechanism for categorical data and discrete quantitive data, respectively. Zhao 
et al. [74] study the application of federated learning in the Internet of Vehicles. 
In this context, user data, such as traffic information, vehicle registration infor-
mation, etc., may be exposed. For this purpose, the authors propose a novel local 
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differential privacy mechanism, named as Three-Outputs, to protect the privacy 
of clients’ data, and propose an LDP-FedSGD to train the model. Cao et al. [75] 
examine the application of differential private federated learning in the context 
of the Power Internet of Things. The authors propose IFed, a novel federated 
learning framework that takes into account the trade-off between local differen-
tial privacy, data utility, and resource consumption, to allow electric providers 
who normally have adequate computing resources to assist users in the Power 
Internet of Things. Jia et al. [76] propose a blockchain-enabled differential pri-
vate federated learning in the Industrial Internet of Things (IIoT). Extensive ex-
perimental results show that the proposed scheme and working mechanism have 
better performance in the selected indicators. Olowononi et al. [77] propose the 
use of FL, together with differential privacy to improve the resiliency of vehicu-
lar cyber-physical systems to adversarial attacks in connected vehicles. Liu et al. 
[78] propose a federated learning framework for distributed medical institutions 
to collaboratively learn a prediction model. In comparison with state-of-the-art 
and in-depth ablation experiments, the proposed method performs better on 
two medical image segmentation tasks. Kaissis et al. [79] present PriMIA, a dif-
ferential private federated learning framework for image analysis, and theoreti-
cally and empirically evaluate its performance and privacy guarantees, and dem-
onstrate that the protections provided prevent gradient-based model inversion 
attacks from regenerating usable data. Adnan et al. (2022) [80] investigates the 
application of differentially private federated learning to the analysis of histopa-
thology images. In a comparison of the performance of the conventional ma-
chine learning model with the federated learning model, the authors found that 
the federated learning model could achieve a similar performance while provid-
ing strong privacy guarantees. Zhang et al. (2022) [81] investigated the applica-
tion of differential private federated learning models to industrial cyber-physical 
systems. The authors propose a Privacy-Enhanced Momentum Federated Learn-
ing framework called PEMFL, which incorporates differential privacy (DP), 
momentum federated learning (MFL) and chaos-based encryption methods. 
Theoretical analysis and experimental results demonstrate the excellent accuracy 
and privacy security of the PEMFL. Liu et al. [82] investigate the application of 
differential private federated learning to wireless sensor networks. As a result of 
integrating hybrid differential privacy into federated learning, the authors pro-
pose a secure and reliable federated learning algorithm. Based on a theoretical 
analysis and an experimental evaluation on real-world datasets, the validity of 
the algorithm is demonstrated. Table 5 summarizes the applications of differen-
tial private federated learning models. 

6. Future Directions 

Differential privacy techniques have had some success in federated learning. En-
terprises such as Microsoft, Apple, and Google have applied differential priva-
cy-preserving federated learning models to their operations (Cormode et al. [83]).  
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Table 5. Summary of contributions in applications of DPFL. 

Approach Area Main Idea 

Andrés et al. [72] Geography Investigate the application of differential privacy 
techniques in protecting customer geolocation data. 

Zhao et al. [74] Internet of 
Vehicles 

Propose a novel local differential privacy 
mechanism, named as Three-Outputs, to protect 
the privacy of client’s data, and propose an 
LDP-FedSGD to train the model. 

Cao et al. [75] Power Internet 
of Things 

Propose IFed, a novel federated learning 
framework that takes into account the trade-off 
between local differential privacy, data utility, and 
resource consumption, to allow electric providers 
who normally have adequate computing resources 
to assist users in the Power Internet of Things. 

Jia et al. [76] Industrial 
Internet of 
Things 

Propose a blockchain-enabled differential private 
federated learning in Industrial Internet of Things 
(IIoT). 

Olowononi et al. 
[77] 

Vehicular 
Cyber-physical 
Systems 

Propose a differential-private federated learning 
framework to improve the resiliency of vehicular 
cyber-physical systems to adversarial attacks in 
connected vehicles. 

Liu et al. [78] Medical 
Institutions 

Propose a federated learning framework for 
distributed medical institutions to collaboratively 
learn a prediction model. 

Kaissis et al. [79] Medical Image 
Analysis 

Propose a differential private federated learning 
framework for image analysis, named PriMIA, and 
theoretically and empirically evaluate its 
performance and privacy guarantees. 

Liu et al. [82] Wireless Sensor 
Networks 

Propose a secure and reliable federated learning 
algorithm for wireless sensor networks. 

 
But existing research is still lacking. In this section, we discuss three possible fu-
ture research directions for differential privacy techniques in federation learning: 
research on the conditions for the use of differential privacy, research on the de-
sign of differential privacy features-based algorithms, and research on the com-
bination of game theory and distributed differential privacy. 

6.1. Research on the Conditions for the Use of Differential Privacy 

Most of the existing studies on differential privacy-preserving federated learning 
assume that the central server or federated learning clients use differential pri-
vacy techniques from the beginning of model training, and there is no discussion 
on the conditions for using differential privacy techniques. We know that at-
tacking a federated learning model is costly, so even a malicious individual will 
make a cost-benefit tradeoff before launching an attack on a federated learning 
model. If the cost of attacking a federated learning model is too high, i.e., more 
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than the benefit from attacking a federated learning model, then a malicious in-
dividual will not launch an attack on the model. Thus, there is no need to use 
differential privacy techniques in a federated learning model under such condi-
tions. Therefore, it is necessary to analyze the conditions under which an attacker 
initiates an attack from the perspective of the attacker’s utility and thus determine 
the conditions under which differential privacy techniques should be used. 

6.2. Research on the Design of Differential Privacy  
Features-Based Algorithms 

The stochastic gradient descent algorithm is a common algorithm for solving 
large-scale differential privacy-preserving federated learning models. Scholars 
have made a series of optimizations on the convergency and convergence speed 
of the stochastic gradient descent algorithm. However, in some cases, the results 
of using the stochastic gradient descent algorithm to solve differential privacy- 
preserving federated learning models still fail to meet the requirements for in-
dustrial use. One possible reason is that the stochastic gradient descent algo-
rithm is a general algorithm, and the characteristics of the differential priva-
cy-preserving federated learning model are not fully considered in the design of 
this algorithm. Therefore, it is necessary to develop algorithms with better con-
vergence and higher accuracy based on the features of differential privacy-pre- 
serving federated learning models. 

6.3. Research on the Combination of Game Theory and  
Distributed Differential Privacy 

Distributed differential privacy can improve the accuracy of federated learning 
models while protecting the security of federated learning clients’ data. However, 
distributed differential privacy requires the use of secure aggregation techniques, 
which imposes expensive communication costs on the federated learning mod-
els. Therefore, federated learning models with distributed differential privacy 
usually include the step of federated learning client selection. Existing client se-
lection methods are mainly based on probability theory in which the probability 
of a federated learning client being selected is constructed by the norm of the 
gradients uploaded by federated learning clients. This portrayal is too simple and 
does not sufficiently consider the contribution of federated learning clients to 
the federated learning model. A more reasonable way is to apply cooperative 
game theory and mechanism design theory to consider the game relationship 
between the central server and the federated clients and among the federated 
clients to make a reasonable portrayal of the contribution of the federated learn-
ing users, so as to select higher quality federated clients to participate in the fe-
derated learning model. Therefore, it is essential to conduct research that com-
bines game theory with distributed differential privacy. 

7. Conclusion 

Differential privacy techniques are a key design element of federated learning 
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systems. In this work, we extensively survey state-of-the-art approaches and open 
up some interesting future research directions. First, we introduce the workflow 
of federated learning and the theoretical foundations of differential privacy tech-
niques. Then, we overview three paradigms arising from the combination of dif-
ferential privacy techniques and federation learning models, namely: centralized 
differential privacy, local differential privacy, and distributed differential priva-
cy. After this, we review the optimization study of federated learning models 
oriented to differential privacy preservation. Finally, we review the applications 
of differential privacy-preserving federated learning models in various domains. 
In conclusion, differential privacy techniques play a crucial role in federated lear- 
ning systems. From this survey, we expect more and more researchers to devote 
themselves to this field. 
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