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Abstract 
The main purpose of this paper is to introduce the LWE public key crypto-
system with its security. In the first section, we introduce the LWE public key 
cryptosystem by Regev with its applications and some previous research re-
sults. Then we prove the security of LWE public key cryptosystem by Regev 
in detail. For not only independent identical Gaussian disturbances but also 
any general independent identical disturbances, we give a more accurate es-
timation probability of decryption error of general LWE cryptosystem. This 
guarantees high security and widespread applications of the LWE public key 
cryptosystem. 
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1. Introduction 

In 2005, O. Regev proposed the first LWE public key cryptosystem in Tel Aviv 
University in Israel based on LWE distribution ,sA χ . Because of this paper, Re-
gev won the highest award for theoretical computer science in 2018—the Godel 
Award. The size of public key is ( )2O n  bits, and the size of private key s and 
ciphertext is ( )O n  bits. The plaintext encrypted each time is 1 bit. In fact, the 
LWE public key cryptosystem is a probabilistic cryptosystem, which depends on 
a high probability algorithm. Since the security of LWE problem has been clearly 
proved, the LWE cryptosystem has received extensive attention as soon as it was 
proposed, and it becomes the most cutting-edge research topic in the lattice-based 
cryptosystem study. 

Let p be a prime number, ,m n  be two positive integers. Given a list of equa-
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tions with error as follows: 
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where i pv ∈ , n

ps∈ , n
i pa ∈  are selected independently and uniformly, 

and , is a  means the inner product of the vectors s and ia . The errors i pe ∈  
in the above equations come from a probability distribution : pχ +→  , i.e. 
for any 1 i m≤ ≤ , we have ,i i iv s a e= +  and i pe ∈  is generated indepen-
dently according to the probability distribution χ . The problem of finding 

n
ps∈  is denoted as ,LWE p χ  [1] [2]. The LWE public key cryptosystem of 

Regev introduced in the next section is proposed based on this problem. 
The LWE problem could be regarded as an extension of a well known prob-

lem in learning theory which is believed hard to solve. Many researchers worked 
on the LWE problem and proved that the complexity of the best known algo-
rithm is running in exponential time of n [3] [4] [5] [6]. An important theorem 
that gives the difficulty of solving the LWE problem is at least as hard as that of 
hard problems on lattice, such as the determination of the shortest vector prob-
lem (GapSVP) and the continuous shortest vector problem (SIVP) [3], which is 
proved by a quantum polynomial probabilistic reduction algorithm. Since the 
academic community believes that the hard problems on lattice such as the SVP, 
SIVP and GapSVP problems can resist quantum computing effectively, that is, 
there are no known quantum algorithms to solve the hard problems on lattice, 
so that the security of the LWE public key cryptosystem is guaranteed. We will 
give a detailed proof for the security of the LWE cryptosystem proposed by Re-
gev in 2005 in section 3. However, this cryptosystem could only encrypt a single 
bit of plaintext and the efficiency is low. In order to encrypt multiple bits of 
plaintext and improve the efficiency signally, Regev presented a general LWE 
cryptosystem in 2009. We gave a more precise estimation probability of decryp-
tion error based on independent identical Gaussian disturbances and any gener-
al independent identical disturbances in [7], which shows that the general LWE 
public key cryptosystem could have high security. 

An application of the LWE cryptosystem is the fully homomorphic encryption 
(FHE) [8]. The earliest FHE cryptosystem was based on average-case assumptions 
about ideal lattices [9] [10]. Later, Brakerski and Vaikuntanathan constructed the 
second FHE cryptosystem, which was based on the LWE problem [11] [12]. In 
2013, the third fully homomorphic encryption algorithm based on the LWE prob-
lem was proposed by Gentry, Sahai, and Waters, which is proved that has some 
unique and advantageous properties [13]. It also remains some improvable tech-
niques which need to be studied in depth [14]. The main purpose of this paper is 
to introduce the LWE public key cryptosystem with the proof of its security ma-
thematically, which guarantees the widespread applications of it. 
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2. LWE Cryptosystem of Regev 

Let 1n ≥ , 2q ≥  be positive integers, χ  be a given probability distribution in 

q . The LWE distribution ,sA χ  is 

( )
( )

, , ,

,  mod ,

n
s q qA a b

b a s e q
χ

χ

 = ∈ ×


≡ +

 

                   (1.1) 

where n
qa∈  is uniformly distributed, n

qs∈  is the private key chosen at 
random, qe∈ , e χ←  is called error distribution. LWE cryptosystem de-
pends on LWE distribution ,sA χ , and its workflow has the following three steps: 

1) Public key 
First we choose n

qs∈  at random as the private key, let ( )logm O n q= . 
Then we choose m samples distributed from ,sA χ , ( ), n

i i q qa b ∈ ×  , i qe ∈ , 

ie χ← , 1 i m≤ ≤ . Let 

[ ]1 2, , , ,n m
m qn m

A a a a ×
×

= ∈ 

 
1 1

2 2,  ,  ,m

m m

b e
b e

b e e

b e

χ

   
   
   = = ←
   
   
   

 

 
where A  is a matrix uniformly at random, me χ←  indicates the m samples are 
independent. The public key of LWE cryptosystem is the following ( )1n m+ ×  
matrix 

( )1 .n m
q

A
A

b
+ × 

= ∈ ′ 
                       (1.2) 

If the uniformly random matrix A  is given and saved for all the users of 

LWE cryptosystem, then the true public key is 

1

2 m
q

m

b
b

b

b

 
 
 = ∈
 
 
 





 with size  

( ) ( )O m O n=  . The public key and private key satisfy the following equation: 

( ) ( ),1 mod .s A e qχ′ ′− ≡                     (1.3) 

2) Encryption. 
In order to encrypt plaintext of 1 bit 2u∈ , let { }0,1 mx∈  be an uniformly 

distributed m dimensional vector with each entry 0 or 1. The ciphertext 
1n

qc +∈  is an ( )1n +  dimensional vector in q , defined by 

( ) 1

0
,

2

n
A qf u c Ax qu

+

 
 = = + ∈  ⋅    

                (1.4) 

where 

0
0

0

0

n
q

 
 
 = ∈
 
 
 





, 
2 q
qu   ∈  

 , 
2
q 
  

 is the nearest integer to 
2
q . We call 
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Af  the encryption algorithm of LWE. In order to understand the encryption 
algorithm better, we give another definition of Af . 

The following set { }1,2, , m  has 2m  subsets. We choose a subset 
{ }1, 2, ,S m⊂   uniformly at random which is called the index set. Then the 

encryption algorithm ( )Af u  for plaintext 2u∈  is 

( ) 1.

2

i
i S

n
A q

i
i S

a

c f u qb u

∈
+

∈

 
 

= = ∈   +    

∑

∑
                (1.5) 

In fact, the subset S is corresponding to the uniformly chosen vector 
{ }0,1 mx∈ . The above formula (1.5) was proposed by Regev originally. 

3) Decryption 
We use the private key n

qs∈  for decryption of the ciphertext c. Actually, 
we only need to decrypt for the last entry of vector c. We have 

( ) ( ) ( ) ( )1 ,1 ,1 mod .
2 2A
q qf c s c s Ax u e x u qχ

−    ′ ′ ′= − = − + ≡ +      
    (1.6) 

The error samples are much smaller than q, namely 

2.
2i

i S

qe e x
∈

 ′= <   
∑                      (1.7) 

Therefore, by comparing the distances between the right side of (1.6) and 0 or 

2
q 
  

, one can decrypt successfully: 

( )
( )

( )
1

0,  if ,1  is closer to 0,

1,  if ,1  is closer to ,
2

A

s c
f c qs c
−

′ −
=   ′−   

             (1.8) 

finally we have ( )1
Af c u− =  and finish the whole workflow of LWE cryptosys-

tem. 
Both of the encryption algorithm and decryption algorithm of LWE are 

probabilistic algorithms, so we should verify the correctness, namely 

( ){ } ( )1Pr 1 .Af c u nδ− = ≥ −                   (1.9) 

Here ( )nδ  is a negligible function of n, i.e. ( ) 1
log

n o
nεδ

 
=  

 
, 0ε∀ > , 

more precisely: 

( )lim log 0,  0.
n

n nεδ ε
→∞

= ∀ >
 

We prove (1.9) with given discrete Gauss distribution αχ ψ= . For qa∈ , 
{ }0,1, , 1q q= −  , 

,  if 0 ,
2

,  if 1.
2

qa a
a

qq a a q

  < ≤    = 
  − < ≤ −   

                (1.10) 
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For [ )0,1x T∈ = , we define 

1,  if 0 ,
2

11 ,  if 1.
2

x x
x

x x

 ≤ <= 
 − ≤ <


                  (1.11) 

Lemma 1.1: Let 0δ > , 0 k m≤ ≤ , if the distribution kχ  satisfies 

~
Pr 2 1 ,

2ke

qe
χ

δ  < > −    
                  (1.12) 

then (1.9) holds, i.e. 

( ){ }1Pr 1 .Af c u δ− = > −
 

Proof: When we choose the error samples i qe ∈ , ie χ← , we can always 
guarantee i ie e=  without changing the probability distribution. By (1.7), 
suppose that S k= , the corresponding sample 

1

2

1 1
,  .

k k

i i
i i

k

e
e

e e e e

e
= =

 
 
 = = =
 
 
 

∑ ∑


 
As long as (1.7) holds, i.e. 

( )12 ,
2 A
qe f c u− < ⇒ =    

then 

( ){ }1Pr Pr 2 1 .
2A
qf c u e δ−   = ≥ < > −      

  
Next we prove (1.12) holds for discrete Gauss distribution αψ  in q . The 

following assumptions are made for the selection of parameters: 

( )( )

( ) ( )

2 21,  2,  2 ,
1 1 log ,  0 is any positive real number,

1,  ,
logn

n q n q n
m n q

n o
n nα

ε ε

χ ψ α

 ≥ ≥ ≤ ≤


= + + >


  = =    
 

     (1.13) 

where the symbol o indicates 

( )
0

lim log 0.
n

n n nα
→

⋅ =
 

For example, we can choose ( ) 2

1
log

n
n n

α = , or 

( ) ( ) 11log ,  0.n n nεα ε
−

+= ∀ >
 

Lemma 1.2: Under the condition for parameters of (1.13), for any 0 k m≤ ≤ , 
we have 
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( )
( )

~
Pr 2 1 ,

2k
ne

qe n
αψ

δ  < > −    
               (1.14) 

where ( ) 1
log

n o
nεδ

 
=  

 
, 0ε∀ > , is a negligible function. 

Proof: Based on (1.13), when 0n n≥ , it is easy to see that 

( )( )
2

0 4 1 1 log .
32 32
n qk m n nε≤ ≤ ≤ + + < ≤

 

The k samples 
1

k

e
e

e

 
 =  
 
 

  distributed as k
αψ  could be obtained from the k 

samples 1 2, , , kx x x  of distribution αψ , where 

10, ,   mod ,  1 .
2i i ix e qx q i k ∈ = ≤ ≤     

Here the set of representative elements of q  is 

| .
2 2q
q qa a = ∈ − ≤ < 

 
 

 
So we have 

1 1
 mod .

k k

i i
i i

e e qx q
= =

= =   ∑ ∑
 

Note that 

( )
1

 mod ,
32

k

i i
i

qqx qx q k
=

− ≤ ≤  ∑
 

therefore, 

1 1

1 mod  mod 1 ,
16 16

k k

i i
i i

qqx q x
= =

 ≤ ⇒ ≤ 
 

∑ ∑
 

we have 2
2
qe  <   

. Since 
1

k

i
i

x
=
∑  mod 1 distributed as kαψ , where  

1
log

k o
n

α
 

⋅ =   
 

, so 

( )
1

1Pr  mod 1 1 ,
16

k

i
i

x nδ
=

 < = − 
 
∑

 

where ( ) 1
log

n k o
n

δ α
 

= ⋅ =   
 

. We complete the proof. 

  

3. The Proof of Security 

To prove the security of Regev’s cryptosystem, we first prove some general 
properties for the probability distribution of Abel group by Impagliazzo and 
Zurkerman [15]. 
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Let G be a finite Abel group, 1k ≥  be a positive integer. For any l  elements 

1 2, , , lg g g G∈ , suppose { }0,1 lx∈ , ( )1 2, , , lg g g g=  , then 

1
,  0 or 1

l

i i i
i

gx x g x
=

= =∑
 

is called a subsum of { }1 2, , , lg g g . Randomly choose { }0,1 lx∈ , let gx  de-

note the distribution of subsum, and let ( )U G  denote the uniformly distribu-
tion on G. 

Lemma 2.1: For any l  elements { }1 2, , , lg g g  uniformly at random, the 
expectation of statistical distance between the distribution of subsum and the 
uniformly distribution on ( )U G  is 

( )( )( ) ( )
1
2, 2 .lE gx U G G∆ ≤

 

Specially, the probability that the statistical distance is larger than ( )
1
42lG  

is no more than ( )
1
42lG , i.e. 

( )( ) ( )

( )

1
4

1
4

Pr , 2

2 .

l

l

gx U G G

G

  ∆ ≥ 
  

≤

 

Proof: Let ( )1 2, , , lg g g g=   be l  group elements chosen at random, 

h G∈  is a given group element. Define ( )gP h  

( )

{ }
1

1 0,1 , ,
2

g

ll
i il

i

P h

x gx x g h
=

 = ∈ = = 
 

∑
 

we call ( )gP h  the distribution of subsum for g. In order to prove ( )gP h  is 
close to uniformly distribution, we first prove the 2l  norm between ( )gP h  
and the uniformly distribution is very small. In fact, we have: 

( ) { }

{ }

2

,

,

Pr

1 Pr , .
2

g x xh G

l x x

P h gx gx

gx gx x x

′∈

′

′= =

′ ′= + = ≠

∑
 

Note that for any x x′≠ , 

{ } 1Pr .
g

gx gx
G

′= =
 

So the expectation of 2l  norm for g satisfy 

( )2 1 1 .
2g lg h G

E P h
G∈

  ≤ +  
∑

 
Finally, we have the following estimation 
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( ) ( )

( )

( )

( )

1
2 21

2

1
21 2

2

1
21 2

2

1
2

1 1

1

1

2 .

g gg gh G h G

gg h G

gg h G

l

E P h E G P h
G G

G E P h
G

G E P h
G

G

∈ ∈

∈

∈

 
     
 − ≤ −               
 
  = −   
   

  = −  
   

≤

∑ ∑

∑

∑

 
We complete the proof. 

  
The security of LWE public key cryptosystem by Regev is ascribed to the fol-

lowing theorem, which is the most important result in this section. 
Theorem 1: For any 0ε > , ( )( )1 1 logm n qε≥ + + , if there is a probabilistic 

polynomial time algorithm W which distinguishes the plaintext 0u =  or 1u =  
from the ciphertext c, then there exists a polynomial time algorithm solving the 

, , ,D-LWEn q mχ  problem. 

Proof: The public key of LWE cryptosystem is 
A

A
b
 

=  ′ 
, where n m

qA ×∈  is 

a matrix uniformly at random, 
1

m
q

m

b
b

b

 
 = ∈ 
 
 

   is an m dimensional vector cho-

sen uniformly. The encryption function ( )Af u  is 

( ) { }1

0
,  0,1 .

2

mn
A qc f u Ax xqu

+

 
 = = + ∈ ∈  
    



 
Since W is a probabilistic polynomial time algorithm, suppose ( )0P W  is the 

probability that decrypting 0u =  from ( )0Af  by W, and ( )1P W  is the 
probability that decrypting 1u =  from ( )1Af , i.e. 

( ) ( )( ){ }
( ) ( )( ){ }

0

1

Pr 0 0 .

Pr 1 1 .

A

A

P W W f

P W W f

 = =


= =
                 (2.1) 

If m
qb∈  is uniformly at random, then LWE distribution ,sA χ  is uniformly 

LWE distribution. Let ( )uP W  be the probability of decryption successfully by 
W under the condition of uniformly distribution ,sA χ . Suppose that 

( ) ( )0 1
1 ,  0.P W P W
nδ δ− ≥ >                  (2.2) 

Under the assumption of (2.2), we will construct a new algorithm W ′  satis-
fying 

https://doi.org/10.4236/jis.2023.141003


Z. Y. Zheng et al. 
 

 

DOI: 10.4236/jis.2023.141003 33 Journal of Information Security 
 

( ) ( )0
1 .

2uP W P W
nδ

′ ′− ≥                    (2.3) 

By (2.2), we have 

( ) ( ) ( ) ( )0 1
1 1,  or .

2 2u uP W P W P W P W
n nδ δ− ≥ − ≥

 
If the first inequality of the above formula holds, let W W′ = . If the second 

inequality of the above formula holds, then construct W ′  as follows. Let the 

function σ  be ( ) ( )
0

1
2

A Af u f u q
 
 → + −  
 

. Thus, σ  maps the LWE distribu-

tion ( ),A b  to 
1,

2
qA b − + 

 
. If b is uniformly at random, so is 1

2
qb −

+ . We 

define W ′  to be the decryption on LWE distribution 1,
2

qA b − + 
 

 by W. 

According to (1.5), 

( ) ( ) ( ) ( )0 1 1 0,  ,P W P W P W P W′ ′= =  
So W ′  is the algorithm which satisfies (2.3). 
Let n

qs∈ , the public key sample satisfies distribution of  

( ) ,, n m m
q q sA b A χ
×∈ × =  . Let ( )0P s  be the probability of decryption 0u =  

successfully by W ′ , i.e. 

( ) ( )( ){ }0 Pr 0 0 .AP s W f′= =
 

Similarly, let ( )uP s  be the probability of decryption successfully by W ′  if 

( ),A b  is uniformly at random. Suppose 

( ) ( )0
1 ,

2us s
E P s E P s

nδ− ≥                        (2.4) 

We define 

( ) ( )0
1| .

4
n
q uY s P s P s

nδ
 = ∈ − ≥ 
 

               (2.5) 

It’s easy to prove: if n
qs∈  is uniformly distributed, then we have 

1 .
4

nY q
nδ≥

 
Therefore, in order to prove theorem 1, we need to find an algorithm Z to de-

termine whether the LWE distribution ,sA χ  is uniformly at random for any 
s Y∈ . The construction of algorithm Z: let R be a probability distribution on 

n
q  which is uniform LWE distribution or general LWE distribution when 

s Y∈ , i.e. 

,uniform LWE distribution, or ,  .sR R A s Yχ= = ∈  

Let [ ]1, , n m
m qA a a ×= ∈  , 

1
m
q

m

b
b

b

 
 = ∈ 
 
 

   be m random samples from dis-
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tribution R. Let ( )0P R  be the probability of decryption 0u =  successfully by 

W ′ , where ( ) ,, sa b A χ= , s Y∈ . In the same way, suppose ( )uP R  is the prob-
ability of decryption 0u =  successfully by W ′  if R is uniform LWE distribu-
tion. We estimate ( )0P R  and ( )uP R  by using the algorithm W ′  polynomial 

times so that the error could be controlled within 1
64nδ . If  

( ) ( )0
1

16uP R P R
nδ− ≥ , then the algorithm Z is effective, otherwise it is nonef-

fective. 
We first confirm: if R is uniform LWE distribution, then Z is noneffective 

with high probability. Because in this case, ( ), n m m
q qA b ×∈ ×  , b is uniformly at 

random. According to lemma 2.1, the Abel group n
q qG = ×  , we have 

( ) ( ) ( )
0 2 ,n

uP R P R −Ω− ≤
 

In this case, Z is noneffective. 
If ,sR A χ= , where s Y∈ , we are to prove the algorithm Z is effective with 

probability 
( )

1
Poly n

, i.e. one can distinguish s Y∈  from uniform distribution. 

Since ( ) ( )0
1

4uP R P R
nδ− ≥ , in the average sense we get 

( ) ( )0
1 1Pr .

8 8uP R P R
n nδ δ

 − ≥ ≥ 
   

Thus, the algorithm Z is effective for ,sA χ , s Y∈  with positive probability. 
We complete the proof of theorem 1. 

  

4. General LWE-Based Cryptosystem 

We introduced the LWE cryptosystem proposed by Regev in section 2, and 
proved its security in section 3. However, it could only encrypt a single bit of 
plaintext and the efficiency is low. Based on the definition and properties of 
rounding function, Regev presented a general LWE cryptosystem in 2009, which 
could encrypt multiple bits of plaintext l

tv∈  with size ( )lO t  and improve 
the efficiency signally. In this section, we introduce general LWE cryptosystem 
first. Then we discuss the probability of decryption error for this cryptosystem 
and prove that it could be sufficiently small with suitable parameters. So we ve-
rify our core result that the LWE cryptosystem could have high security. 

Definition 3.1: Let , ,t q l  be positive integers, we define function  
: l l

t qF →   as 

( ) ( )1 2 1 2, , , ,  , , , ,l l
l q l t

q q qF a a a a a a a a
t t t

      = ∈ ∀ = ∈            
      (3.1) 

and the “inverse function” 1 : l l
q tF − →   as 
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( ) ( )1
1 2 1 2, , , ,  , , , .l l

l t l q
t t tF b b b b b b b b
q q q

−       
= ∈ ∀ = ∈      

      
      (3.2) 

Let , , , , ,t q m n l r  be positive integers, q t> , function F and its “inverse func-
tion” are defined in 3.1. The workflow of general LWE cryptosystem is as follows: 

1) Selection of private key S: n l
qS ×∈  is an n l×  matrix uniformly at ran-

dom in q . 
In the LWE cryptosystem introduced in section 2, the private key is an n di-

mensional randomly chosen vector n
qs∈ . To encrypt more general plaintext 

l
tv∈ , we randomly select l  private keys 1 2, , , n

l qs s s ∈   independently and 
form an n l×  matrix [ ]1 2, , , lS s s s=  . This is the private key S for general 
LWE cryptosystem. 

2) Public key. 
When the private key n l

qS ×∈  is fixed, in order to choose samples from LWE 
distribution, we first select m uniform n dimensional vectors 1 2, , , n

m qa a a ∈   in 
n
q  and form a uniform random matrix 

[ ]1 2, , , .n m
m qn m

A a a a ×
×

= ∈ 

 
Then we generate m l×  noise matrix samples ( )ij m l

E E
×

=  from distribu-
tion αψ , i.e. ij qE ∈ , ijE αψ← , 1 i m≤ ≤ , 1 j l≤ ≤ , and the m l×  samples 
are mutually independent. Finally we get an m l×  matrix P 

1 1 11 1 1
T

1 1

, ,
.

, ,

l l

m m m l ml m l

a s E a s E
P A S E

a s E a s E
×

 + +
 = + =  
 + + 



  



 
The public key of LWE cryptosystem is ( ),A P , which is similar to that in 

section 2. Here we only change the public key from m
qb∈  to m l×  matrix 

m l
qP ×∈ . If the uniformly random matrix A is given and saved for all the users 

of LWE cryptosystem, then the true public key is the matrix P, and the public 
key and private key satisfy the following equation 

( )T mod .P A S E q
αψ

− ≡
 

3) Encryption. 
To encrypt multiple bits of plaintext l

tv∈ , let { }, 1, , ma r r r∈ − − +   be an 
m dimensional vector with each entry selected uniformly in { }, 1, ,r r r− − +  ,  

i.e. a is uniformly distributed. Ciphertext 
u
c
 
 
 

 is an n l+  dimensional vector, 

defined by 

( ) ( )T
, ,  ,  ,A P

u
g v u Aa c P a F v

c
 

= = = + 
   

where F is defined in (3.1), and ,A Pg  is called the encryption algorithm of LWE 
cryptosystem. 

4) Decryption. 
Given ciphertext ( ),u c  and the private key S, we compute ( )1 TF c S u− −  as 
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the result of decryption. We have 

( ) ( )( )
( ) ( )( )

( )( )

1 T 1 T T

T1 T T

1 T .

F c S u F P a F v S u

F A S E a F v S Aa

F E a F v

− −

−

−

− = + −

= + + −

= +
 

We need to calculate the probability of decryption error for this cryptosystem, 
namely, the probability of ( )( )1 TF E a F v v− + ≠ . The following theorem 2 gives 
a more precise upper bound estimation than [2] for this probability, which is 
proved in [7]. 

Theorem 2: Suppose q t> , we have the following inequality of the probabil-
ity of decryption error 

( )( ){ } ( )
1 T 6Pr 2 1 .

2 1
q tF E a F v v l

tq mr rα
−

  − + ≠ ≤ −Φ   +  

π
     (3.3) 

Here Φ  is the cumulative distribution function of the standard normal dis-

tribution, i.e. ( )
2

21 e d
2

t
x

x t
−

−∞
=

π
Φ ∫ . 

The upper bound could be as closed as 0 if we choose α  small enough. It 
means that the probability of decryption error for the LWE cryptosystem could 
be made very small with an appropriate setting of parameters. 

We could also estimate the probability of decryption error for the LWE cryp-
tosystem when the noise matrix ( )ij m l

E E
×

=  is chosen independently from a 
general common variable, rather than Gauss distribution. By central limit theo-
rem [16], general disturbances could be approximated as Gaussian disturbances. 
We have the following theorem 3 which is proved in [7]. 

Theorem 3: q t> , ( )ij m l
E E

×
= , each element ijE  is selected independently 

from a common random variable of mean 0 and standard deviation β . For any 
0δ > , we can find positive integer m, such that the following inequality of the 

probability of decryption error holds, 

( )( ){ } ( )
1 T 3Pr 2 1 .

2 1
q tF E a F v v l l

t mr r
δ

β
−

  − + ≠ ≤ −Φ +   +  
    (3.4) 

Here Φ  is the cumulative distribution function of the standard normal dis-

tribution, i.e. ( )
2

21 e d
2

t
x

x t
−

−∞
=

π
Φ ∫ . 

This probability could also be closed to 0 if we choose the parameter mβ  
and δ  small enough. Therefore the probability of decryption error of the LWE 
cryptosystem for general disturbance could be made very small, which leads to 
high security. 

5. Conclusion 

In this work, we introduce the LWE cryptosystem of Regev, and give a detailed 
proof for the security of LWE public key cryptosystem by Regev. We also intro-
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duce general LWE cryptosystem presented by Regev in order to encrypt multiple 
bits of plaintext and improve the efficiency signally. For not only independent 
identical Gaussian disturbances but also any general independent identical dis-
turbances, we give a more accurate estimation probability of decryption error of 
general LWE cryptosystem. The upper bound probability could be closed to 0 if 
we choose applicable parameters, which means that the probability of decryption 
error for general LWE cryptosystem could be sufficiently small. So we verify that 
the LWE public key cryptosystem could have high security. 
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