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Abstract 
In this paper, we conclude five kinds of methods for construction of the reg-
ular low-density parity matrix H and three kinds of methods for the con-
struction of irregular low-density parity-check matrix H. Through the analy-
sis of the code rate and parameters of these eight kinds of structures, we find that 
the construction of low-density parity-check matrix tends to be more flexible and 
the parameter variability is enhanced. We propose that the current develop-
ment cost should be lower with the progress of electronic technology and we 
need research on more practical Low-Density Parity-Check Codes (LDPC). 
Combined with the application of the quantum distribution key, we urgently 
need to explore the research direction of relevant theories and technologies of 
LDPC codes in other fields of quantum information in the future. 
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1. Introduction 

LDPC code is a forward error correction code, which was invented by Robert 
Gallager in his doctoral dissertation at MIT in the 1960s [1]. Although LDPC 
code is one of the most practical realizations of Shannon’s theory [2], with high 
computational complexity for forwarding error correction and highly structured 
algebraic block codes and convolutional codes, LDPC codes have been neglected 
for a long time. 

Until about 30 years after the LDPC code’s invention, MacKay and Neal in [3] 
proved that LDPC code has the performance of approaching the Shannon limit 
under the condition of combining iterative decoding based on belief pmpagation 
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[4]. After many researchers invented a new irregular LDPC code, which is called 
the new generalization of Gallager’s LDPC code, and its performance is better 
than the best turbo code with certain practical advantages. LDPC code has 
once again entered the seriousness of the world and stepped on the stage of 
history. 

In [5], T. J. Richardson et al. have also made great contributions to the devel-
opment of LDPC codes. Firstly, they propose a new coding algorithm, which 
greatly reduces the huge computational and storage requirements of randomly 
constructed LDPC codes. Secondly, they invent the density evolution theory, 
which can effectively analyze the decoding threshold of a large class of LDPC 
decoding algorithms. Simulation results show that this is a compact decoding 
threshold. Finally, they prove density evolution theory can also be used to guide 
the design of irregular LDPC codes to obtain the best performance possible. 

LDPC code has great application potential and will be widely used in deep space 
communication, optical fiber communication, satellite digital video (see [6] [7] 
[8]), digital watermark, magnetic/optical/holographic storage, mobile and fixed 
wireless communication, cable modulator/demodulator and digital subscriber 
line (for more details see [9] and [10]). 

LDPC code chips have been developed in the industry. Among them, the vec-
tor LDPC solution based on ASIC launched by Flarion, which is in the leading 
position, uses about 2.6 million gates, can support a maximum code length of 
50,000, a code rate of 0.9, and the maximum number of iterations is 10. The de-
coder can achieve a throughput of 10 Gbps. Its performance has been very close 
to the Shannon limit, and can meet the needs of most communication services at 
present. AHA and digital fountain have also launched their own coding and de-
coding solutions. 

A large number of qubits and gate operations on them are involved in most 
practical applications of quantum computing. There is also practical use of sin-
gle qubits. C. H. Bennett and G. Brassard in [11] give a surprisingly secure way of 
distributing a cryptographic key using a sequence of individual qubits called BB84 
protocol, which is already available commercially. Quantum Key Distribution 
(QKD) is a secure way of distributing an encryption and decryption key by making 
use of qubits. The sender and the receiver can detect a possible third party eave-
sdropping on their communication by comparing the sequence sent with that of 
the received one. LDPC codes have other many applications in QKD. We will 
give some examples in Section IV. 

In recent years, international theoretical research on LDPC has made impor-
tant progress. X. Zheng in [12] designed short-length LDPC codes with the aim 
to shorten the average distance between any two variable nodes. In [13], Chung 
et al. presented a block length (ten million bits) rate-LDPC code that achieves 
reliable performance—a bit error rate—on an additive white Gaussian noise 
channel with a signal-to-noise ratio within 0.04 dB of the Shannon limit. There 
are also many excellent researches on encoding (see [14] [15] [16]), decoding 
(see [17] [18]) and the rate of various LDPC codes (see [19] [20]). 
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In general, from the existing research, the construction of LDPC codes deter-
mines the efficiency of its application in various fields. Since LDPC codes have 
extremely important research significance in the coding field, most of the exist-
ing studies focus on a specific type of LDPC codes, and few comparative studies 
on the overall structure of LDPC codes. Therefore, this paper focuses on the con-
struction methods of LDPC codes and summarizes the mainstream construction 
methods in depth, so as to help researchers interested in this field to provide a 
more comprehensive and faster way. 

Basic Principles and the LDPC Code Related Terminology 

Definition 1.1 A q-ary linear code C is a linear subspace of n
qF . If C has di-

mension k then C is called a [ ],n k  code. 
Definition 1.2 A generator matrix G for a linear code C is a k by n matrix for 

which the rows are a basis of C. 
Remark 1.1  
1) If G is a generator matrix for C, then { }| kC aG a Q= ∈ . 
2) If ( )kG I P= , where kI  is the k by k identity matrix, we shall say G is in 

standard form. Then the first k symbols of a codeword are called information 
symbols. These can be chosen arbitrarily and then the remaining symbols, which 
are called parity check symbols, are determined. 

Definition 1.3 For a linear code n
qC F⊂ , let 

{ }| , 0C y x C x y⊥ = ∈ ∀ ∈  =  
. 

A generator matrix H for C⊥  is called a parity check matrix of C. 
In other words, if a matrix H is a parity check matrix of C, then 
Definition 1.4 LDPC code is a linear error correction code that has a parity 

check matrix H, which is sparse, i.e., with less nonzero elements in each row and 
column [1]. 

LDPC codes can be categorized into regular and irregular LDPC codes. 
T 0x C xH∀ ∈ ⇔ =  

Definition 1.5 Let C is a LDPC code, if the parity check matrix ( )n k kH − ×  has 
the same number cn  of ones in each column and the same number rw  of ones 
in each row, we call C is a regular LDPC, write as ( ),c rn n . If LDPC code’s length 
is n, it can be denoted as ( ), ,c rn w w . 

Definition 1.6 Let C is a LDPC code, if the parity check matrix ( )n k kH − ×  has 
the different number cn  of ones in each column and the same number rw  of 
ones in each row, we call C is an irregular LDPC. 

The original Gallager codes [4] are regular binary LDPC codes. The size of H 
is usually very large, but the density of nonzero element is very low. 

Definition 1.7 
Let { }1 2, , , CC c c c= 

, { }1 2, , , VV v v v= 
 and E are the sets of check nodes, 

variable nodes, and edges, respectively. The (small) bipartite graph ( ),G V C E=   
is called an LDPC figure. For every check node C∈ , we denote by Cd  its edge 
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degree. Similarly, we write Vd  for the edge degree of a variable node V∈ . 
A Tanner graph is generated from a figure G by a lifting (“copy-and-permute”) 

operation specified by a lifting parameter L (for more details see [3] [21] [22] 
[23]). The design rate of the derived LDPC code is independent of L and given 
by 1GR C V= − . 

The following sections of this paper will introduce the structure and optimiza-
tion of parity check matrix H for LDPC, some applications of LDPC in QKD, 
and the prediction of the development trend of LDPC codes in the future. 

2. Construction of Parity Check Matrix H 

In this section, we show the constructions for various LDPC codes. Since 
LDPC code is completely specified by its parity-check matrix, an ensemble of 
LDPC code usually is defined in terms of an ensemble of the parity-check 
matrix. 

2.1. Construction of H for Regular LDPC 

1) Gallager Method for Random Construction of H for LDPC 
In RG Gallager’s method [24], the transpose of regular ( ), ,c rn w w  parity 

check matrix H has the form 
T T T T

1 2, , ,
cwH H H H =                       (2.1) 

The matrix 1H  has n columns and rn w  rows. The 1H  contains a single 1 
in each column and contains 1 s in its i row from column ( )1 1ri w− +  to col-
umn riw . Permuting randomly the columns of 1H  with equal probability, the 
matrices 2H  to 

cwH  are obtained. 
Example 2.1. The parity check matrix for [20, 3, 4] code constructed by Gal-

lager [25] is given as elements 2a = , 5b =  are chosen from GF (31); then 
( ) 5o a = , ( ) 3o b = , and the parity-check matrix is given by 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

H =

15 20

0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ×

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2.2) 
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2) Algebraic Construction of H for LDPC [1] 
The construction of the parity check matrix H using algebraic construction as 

follows [26] [27]. Consider an identity matrix aI  where ( )( )1 1c ra w w> − −  and 
obtain the following matrix by cyclically shifting the rows of the identity matrix 

aI  one position to the right. 

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 1
0 0 0 0 1
1 0 0 0 0

A

 
 
 
 

=  
 
 
  
 













                  (2.3) 

Defining 0 aA I= , the parity check matrix H can be constructed as 

( )

( )

( ) ( ) ( )( )

0 0 0 0

10 1 2

2 10 2 4

1 2 1 1 10

r

r

c c c r

w

w

w w w w

A A A A

A A A A
H A A A A

A A A A

−

−

− − − −

 
 
 
 =  
 
 
 
 







    



          (2.4) 

The constructed H matrix has cw a  rows and rw a  columns, and it is of a 
regular [ ], ,r c rw a w w  having the same number of rw  ones in each row and the 
same number of cw  ones in each column. It is four-cycle free construction. The 
algebraic LDPC codes are easier for decoding than random codes. For interme-
diate n, well-designed algebraic codes yield a low bit error ratio (see [28] [29]). 

Example 2.2. Construct H matrix with 3cw =  and 4rw =  using algebraic 
construction method. 

Since ( )( )1 1c rw w− − , then 

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

A

 
 
 
 
 

=  
 
 
 
 
 

,                 (2.5) 

then 
0 0 0 0

0 1 2 3

0 2 4 6

A A A A
H A A A A

A A A A

 
 

=  
 
 

,                   (2.6) 

R. M. Tanner [30] et al. also give a construction of H for quasi-cyclic (QC) 
LDPC. They use the structure of multiplicative groups in the set of integers 
modulo to “place” circulant matrices within a parity-check matrix so as to form 
regular QC LDPC block codes with a variety of block lengths and rates. For 
prime, the integers form a field under addition and multiplication the Galois 
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Field GF (m). The nonzero elements of GF (m) form a cyclic multiplicative group. 
Let a and b be two nonzero elements with orders ( )o a k=  and ( )o b j= , re-
spectively. Then a matrix H can be formed as shown in the following: 

2 1

2 1

1 1 2 1 1 1

1 k

k

j j j k j

a a a

b ab a b a b

b ab a b a b

I I I I

I I I I
H

I I I I

−

−

− − − − −

 
 
 

=  
 
 
 





    



,            (2.7) 

where xI  is an m m×  identity matrix with rows cyclically shifted to the left by 
x positions. The resulting binary parity-check matrix is of size jm km× , which  

means the associated code has a rate 1 jR
k

≥ − . By construction, every column  

of contains ones and every row contains ones, and so represents a regular LDPC 
code. (Hakimi et al. in [31] has proposed the graph-theoretic error-correcting 
codes for the case 2j = .) 

Example 2.3. A [155, 20, 64] QC code (m = 31) [5]. 
Elements 2a = , 5b =  are chosen from ( )31GF ; then ( ) 5o a = , ( ) 3o b = , 

and the parity-check matrix is given by 

( )

1 2 4 8 16

5 10 20 9 18

25 19 7 14 28 93 155

I I I I I
H I I I I I

I I I I I
×

 
 =  
 
 

,             (2.8) 

where xI  is an 31 31×  identity matrix with rows cyclically shifted to the left 
by x positions. 

For nonprime m, the set of nonnegative integers less than m and relatively 
prime to m, m

∗
 , forms a multiplicative group. In general, m

∗
  has order 

( )
| , is prime

11
p m p

m m
p

φ
 

= − 
 

∏ ,                  (2.9) 

i.e. the Euler “phi” function. 
Example 2.4. A [104, 30] QC code (m = 26) [30]. 
Elements 5a = , 9b =  are chosen from 26

∗
 ; then ( ) 4o a = , ( ) 3o b = , 

and the parity-check matrix is given by 

( )

1 5 25 21

9 19 17 7

3 15 23 11 78 104

I I I I
H I I I I

I I I I
×

 
 =  
 
 

,               (2.10) 

where xI  is an 26 26×  identity matrix with rows cyclically shifted to the left 
by x positions. 

3) Construction of H for Rugular Spatially Coupled (SC) LDPC. 
E. Ram and Y. Cassuto in [32] give an ( ),l r -regular SC-LDPC protograph, 

which is constructed by coupling together a number of ( ),l r -regular proto-
graphs and truncating the resulting chain. This coupling operation introduces a 
convolutional structure to the code, which can be visualized through the matrix 
representation of the protograph. Let ( ),1 l rH =  be an all-ones base matrix 
representing an ( ),l r -regular LDPC protograph, and let ( ) 0

T
rH τ =

 be binary  
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matrices such that 
0

T

rH H
τ =

= ∑  (in this paper, we consider only binary H  

matrices). Coupling a limitless number of copies of H amounts to diagonally 
placing copies of ( )0 1; ; ; TH H H  (‘;’ represents vertical concatenation) as fol-
lows: 

0

1 0

1

T

T

H
H H

H
H

H

 
 
 
 
 
 
 
 
 



 

 





.                    (2.11) 

By truncating the above infinite matrix at some width, and removing all-zero 
rows, a spatially coupled LDPC protograph is constructed. Compared with the 
code set corresponding to the basic matrix H, this truncation leads to a small 
number of terminating check nodes (to a lower extent), which leads to a decrease 
in the design rate and an increase in the decoding threshold. However, with the 
increase of the coupling chain length, the design rate of the coupling prototype 
graph converges to the design rate of the underlying code set, and its belief 
propagation threshold shows a phenomenon called threshold saturation [31], so 
it converges to the maximum a posteriori probability threshold of the underlying 
code set. 

Example 2.5. A spatially coupled ( )3,6  protograph with 18 variable nodes. 
The protograph is generated by 

0

1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1

H
 
 =  
 
 

,                   (2.12) 

and 3 6
1 01B B×= − . The design rate of the coupled protograph is 0.389R = , and 

the belief propagation threshold is 0.512 (for more details see [33] [34]). 

2.2. Construction of H for Irregular LDPC 

1) Construction of H for Irrugular QC LDPC. 
R. M. Tanner, D. Sridhara, A. Sridharan, et al. in [30] choose a regular ( ),j k  

parity check matrix H at first. Then for 0 3i j≤ ≤ − , they replace the last 
( )1j i− −  circulant submatricess in the row of circulant submatrices with all-zero 
matrices. The modified parity-check matrix H  is as follows: 

1

1 1

3 1 3 3 1 3 3 3

2 1 2 2 1 2 3 2 2 2 1 2

1 1 1 1

1 0 0 0 0
0 0 0

0 0

k j k j

k j k j k j

j k j j k j j k j j k j

j k j j k j j k j j k j k j k j

j k j j k j j

a a

b a b a b a b

b a b a b a b a b

b a b a b a b a b a b a b

b a b a b a

I I I
I I I I

I I I I I
I I I I I I I
I I I I

− − −

− − − − +

− − − − − − − + − − −

− − − − − − − + − − − − − − −

− − − − − −

 

 

        

 

 

 1 1 3 1 2 1 1 1k j j k j k j k jb a b a b a b
I I I− + − − − − − − −

 
 
 
 
 
 
 
 
 
 

(2.13) 

where 0 is the m m×  all-zero matrix and the LDPC code is now irregular. The 
irregular codes are still QC, and hence their parity check matrices can be de-
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scribed efficiently and they can be used to generate LDPC convolutional codes 
(see Section II-B in [30]). 

Example 2.6. A [155, 63] irregular QC code [30]. 
Consider the [155, 64, 20] QC code of Example 3.1. This irregular LDPC code 

with parity-check matrix given by 

( )

1 2 4

5 10 20 9 18

25 19 7 14 28 93 155

0 0I I I
H I I I I I

I I I I I
×

 
 =  
 
 

,               (2.14) 

where xI  is an 31 31×  identity matrix with rows cyclically shifted to the left 
by x positions and 0 is the 31 31×  all-zero matrix (for more details also can see 
[35] [36] [37] [38]). 

2) Construction of LDPC Convolutional Codes 
R. M. Tanner et al. in [30] proved an LDPC convolutional code can be con-

structedy by replicating the constraint structure of the QC LDPC block code to 
infinity. They gave the specific construction process as follows. 

Each circulant in the parity-check matrix of a QC block code can be specified 
by a unique polynomial; the polynomial represents the entries in the first col-
umn of the circulant matrix. For example, a circulant matrix whose first column is 
[ ]T111010  is represented by the polynomial 2 41 D D D+ + + . Thus, the jm km×  
binary parity-check matrix of a regular LDPC code obtained from the construc-
tion described above can be expressed in polynomial form (with indeterminate 
D) to obtain j k×  matrix 

( )

( )

2 1

2 1

1 1 2 1 1 1

k

k

j j j k j

a a a

b ab a b a b

b ab a b a b
j k

D D D D

D D D DH D

D D D D

−

−

− − − − −

×

 
 
 

=  
 
  
 





    



.        (2.15) 

The rate of the LDPC convolutional codes obtained from the QC codes was 

1 jR
k

= − . 

Example 2.7. A rate 2
5

 LDPC convolutional code. 

From the [155, 64, 20] QC code in Example 2.1, a rate 2
5

 convolutional 

code with parity-check and generator matrices given by 

( )
( )

2 4 8 16

5 10 20 9 18
2 5

D D D D D
H D

D D D D D ×

 
=  
 

.            (2.16) 

3) Construction of IrRugular SC LDPC. 
H. Esfahanizadeh, E. Ram and Y. Cassuto in [39] propose two protograph 

constructions for local codes of a SC-LDPC code with sub-block locality and pa-
rameters Lγ , κ , and ν , where [ ]0, 1ν κ∈ −  is the number of zero circulants 
per local code. 
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For integers l, k, and i such that 0 i l≤ < , let ( ), ;Q l k i  and ( ),S l k  be 
l k×  matrices, such that 

( )
,

0,
, ;

1,otherwises t

s i
Q l k i

=
=   


                (2.17) 

( ) [ )
,

0, 0, , 1
,

1,otherwises t

s k t k s
S l k

 ∈ = − −=    
.            (2.18) 

Let ( )1 ,l k  be an all-one matrix and ( )0 ,l k  be an all-zero matrix with size 
l k× , and let La bν γ= +  with integers a, b such that 0 Lb γ≤ < . The balanced 
and unbalanced local code constructions are represented by the protograph ma-
trices Bβ  and UB , respectively, and defined as follows: 

( ) ( ) ( ) ( )( )1 , , , , , ; 1 , , , ;0L L L L LB S b Q a Q aβ γ κ ν γ γ γ γ= − −  ,   (2.19) 

( ) ( )( )1 , , , ;0U L LB Qγ κ ν γ ν= − ,              (2.20) 

where the vertical dashed lines represent the horizontal concatenation of 
sub-matrices. Bβ  and UB  are both Lγ ν×  matrices with ν  zero entries; 
in Bβ , zeros are uniformly distributed among the rows, while in UB , all zeros 
are in the first row. 

Example 2.8. Let 3Lγ = , 13κ = , 10ν = . Then, 

1 1 1 0 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0 0 0 1 1 1
1 1 1 1 0 0 0 1 1 1 1 1 1

Bβ

 
 =  
 
 

,       (2.21) 

1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

UB
 
 =  
 
 

.       (2.22) 

3. LDPC’s Application in QKD 

Currently, there are two mainstream schemes for QKD research, namely, dis-
crete-variable QKD (DV-QKD) and continuous variable QKD (CV-QKD) (see 
[40]). In DV-QKD systems, the polarization or phase of a single-photon state is 
encoded by key information, whereas in CV-QKD systems, the amplitude and 
phase quadrature of quantum states are encoded. 

In typical DV-QKD protocols as, e.g. the Bennett-Brassard 1984 (BB84) pro-
tocol [11], the raw key is bit-wise encoded for the quantum communication. Hence, 
standard binary codes, which are highly efficient and have a large throughput, can 
be used for information reconciliation (for more details see [41] [42] [43] [44] 
[45]). Based on the belief propagation decoding of LDPC codes over Galois 
fields of the form GF (2q) (see [46] [47] [48]), C. Pacher, J. Martinez-Mateo, J. 
Duhme et al. give an information reconciliation method for continuous-variable 
quantum key distribution with Gaussian modulation that is based on non-binary 
LDPC codes in [49] (for more details see [50] [51] [52] [53] [54]). 

The CV-QKD system offers good application prospects for the implementa-
tion of classical telecom components, which attracting considerable researcher’s 
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attention. Research activities have primarily focused on extending the transmis-
sion distance and improving secret key rate between two parties in the CV-QKD 
systems. For example, N. Hosseinidehaj and R. Malaney in [55] investigate the 
role played by the Gaussian CV states as compared to non-Gaussian states. They 
find that beam-wandering induced atmospheric losses results in QKD performance 
levels that are in general quite different from those found in fixed-attenuation chan-
nels. Their findings show that the nature of the atmospheric channel can have a 
large impact on the QKD performance. Y. Shen et al. give an on-chip conti-
nuous-variable quantum key distribution (CV-QKD) system, which is integrated 
using silicon photonics fabrication process and demonstrates the capability of 
transceiving Gaussian-modulated coherent states and homodyne detection in 
[56]. 

MET-LDPC codes (see [10] [57]) exhibiting low rates combined with the re-
verse multidimensional reconciliation scheme can achieve excellent correction 
performance in the CV-QKD system. The signal-to-noise ratio (SNR) of an opt-
ical quantum channel is low in such a long distance transmission, thus requiring 
a low code rate and long code block length. For example, when the SNR is less 
than 15 dB, the code rate is less than 0.02 and the block length has an order of 
106 [58]. However, designing a parity-check matrix with good performance is 
complex, and it is extremely complicated to design all matrices for different 
SNRs [59]. Therefore, to improve the reconciliation efficiency, the system 
must change the modulation variance at Alice’s side to ensure the receiving va-
riables achieve the target SNR. The frame error rate and post-processing speed 
must also be considered in the practical application of the CV-QKD system (see 
[60] [61]). Multiple interactions and decoding steps of Alice and Bob in the in-
formation reconciliation step will increase system delay. In [59], C. Zhou, X. Y. 
Wang, Z. G. Zhang, et al. introduce Raptor-like LDPC codes into the conti-
nuous-variable quantum key distribution system, exhibiting both the rate com-
patible property of the Raptor code and capacity-approaching performance 
of Multi-Edge Type Low-Density Parity-Check (MET-LDPC) codes. 

4. Potential Future Research Directions 

N. Bonello, S. Chen, and L. Hanzo in [62] have offered a glimpse of six decades 
of research pertaining to LDPC codes as well as the more recent efforts concen-
trated on rateless coding. Ten years later, based on the improvement of LDPC 
code construction in recent ten years, this paper gives the following predictions: 
 With the progress of electronic technology, the implementation of traditional 

LDPC code is no longer a difficult problem. However, due to the complexity 
of LDPC code structure, the current cost is still high, which limits its practi-
cability. Therefore, how to simplify the algebraic structure of check matrix 
and how to improve coding and decoding algorithms are still the focus of fu-
ture research (for more details can see [63]). 

 Many cryptologists have given many different versions of LDPC code in the 
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research of the theory and application of quantum key distribution (like 
[64]). It can be seen that LDPC code still plays an indispensable and impor-
tant role in the quantum era. Therefore, the application of LDPC code in the 
efficient implementation of quantum key distribution and other fields of 
quantum information is also an important field of future research. 

5. Conclusion 

In this study, we give the most mainstream and classical construction methods 
of regular LDPC and irregular LDPC, give examples of construction to make the 
construction methods more specific and easy to understand, and give our views 
on future research trends, hoping to promote the research in this field. 
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