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Abstract 
Memory forensics is a young but fast-growing area of research and a promis-
ing one for the field of computer forensics. The learned model is proposed to 
reside in an isolated core with strict communication restrictions to achieve 
incorruptibility as well as efficiency, therefore providing a probabilistic memo-
ry-level view of the system that is consistent with the user-level view. The 
lower level memory blocks are constructed using primary block sequences of 
varying sizes that are fed as input into Long-Short Term Memory (LSTM) 
models. Four configurations of the LSTM model are explored by adding bi- 
directionality as well as attention. Assembly level data from 50 Windows porta-
ble executable (PE) files are extracted, and basic blocks are constructed using 
the IDA Disassembler toolkit. The results show that longer primary block se-
quences result in richer LSTM hidden layer representations. The hidden states 
are fed as features into Max pooling layers or Attention layers, depending on 
the configuration being tested, and the final classification is performed using 
Logistic Regression with a single hidden layer. The bidirectional LSTM with 
Attention proved to be the best model, used on basic block sequences of size 
29. The differences between the model’s ROC curves indicate a strong re-
liance on the lower level, instructional features, as opposed to metadata or 
string features. 
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1. Introduction 

The recent explosion in Internet of Things (IoT), Big Data and social networking 
technologies has unintentionally led to an increasing rise in global cyber threats. 
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Isolated attacks that previously exploited common vulnerabilities across systems 
have now given way to “scan-based” attacks that identify and exploit system- 
specific vulnerabilities across networks. These networks of compromised nodes, 
commonly referred to as botnets, representing personal computers, cellphones, 
even fax machines [1], morph, divide and link malware components in a way 
that allows unhindered, undetected propagation at incredibly fast speeds. Not 
only is the process of identifying and stopping the malware complicated, but 
certain species such as spyware make it difficult even to suspect that there has 
been an attack. Zero-day attacks that target firmware or hardware level compo-
nents of a system mostly make it impossible to remove the malware, without 
complete disassembly of the motherboard [2]. The scope of malware and its de-
tection methods is prohibitively enormous so that this paper will be focusing on 
one crucial aspect: volatile memory analysis on personal computers. 

Memory forensics refers to the extraction and analysis of reliable volatile and 
non-volatile memory “dumps” in order to infer the state of a machine at a given 
time interval. It is preferred over the injection of higher-level APIs as the latter is 
prone to interference by malware, whereas the latest memory acquisition ap-
proaches have successfully been able to extract uncorrupt views of the system 
[3]. Analyzing memory blocks to reveal higher-level information has so far been 
in the realm of a handful of security experts as it requires extensive knowledge 
and expertise in the area and is difficult to automate in a data-agnostic fashion. 

Recent advances in machine learning and deep learning have generated a ple-
thora of new probabilistic approaches for malware detection, without the need 
for extensive expert analysis [4] [5] [6] [7]. Deep learning has achieved tre-
mendous results in several areas such as natural language processing, that were 
previously thought to need supplementary semantic or causal models [8] [9]. 
The significance of this research is to explore the application of deep learning to 
forensic memory analysis, such that the expertise required to analyze a system’s 
memory will, to an extent, be acquired by the system itself. 

The primary motivation for this work is to detect neural networks patterns in 
machine-level code that may directly link to the functionality of that code. Spe-
cifically, it was to find a direct mapping between lower-level machine/assembly 
code and the functional requirements of or expectations from an application, 
circumventing API calls and other higher-level functionality. The fact that the 
attention-based model outperformed the model using the max-pooling layer tells 
us that there are such patterns. The paper is organized as follows. In Section 2 
and Section 3 discuss the host-based intrusion detection related work relevant to 
this paper. Section 4 describes the data mining methodology. In Section 5, we 
describe four different models based on Long Short-Term Model (LSTM) with 
the description of each block. Section 6 discusses the performance analysis and 
results. That is Section 6-1 compares the data mining results obtained from four 
different block sizes against the four selected models. Section 7 and Section 8 
contain the conclusions and the future work. 
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2. Host-Based Intrusion Detection 

The success of machine learning algorithms applied to the problem of malware 
detection depends heavily on the quality of the extracted features. Traditional 
machine learning approaches are simplistic and cannot extract contextual in-
formation from raw data, so current research is moving towards employing deep 
learning pipelines to be able to propagate different representations of features, 
each layer of the pipeline ingesting a more contextually complex set of features. 
Malware detection can be performed by either analysing and abstracting the 
functionality of benign programs or doing so for malware. Having generated a 
hidden representation of benign programs, deviations from this representation, 
or anomalies, are then labelled as malware. Solely analyzing malicious programs 
allows one to gain an understanding of the general concepts used by malware 
and can generate a more substantial categorization for different types of mal-
ware. This allows analysts to create a bounding box around the general concepts 
exploited by malware. This is insightful because malware behavior can mimic 
behavior of benign apps to a large extent. Hence deviations from "normal beha-
vior” can be challenging to detect and understand the inner workings of specific 
categories of malware yields rich features that can be fed into a “benign program 
analysis” framework, in order to generate a combined pipeline of different in-
puts, different models and more accurate outputs. Using such combinations, 
throughout literature, has proven always to be more effective than focusing on a 
specific set of functionalities that span the system, but fail to branch out effectively. 

Features used in machine learning-based malware detection can be divided 
into three subcategories: 1) using a lower-level machine or assembly code and 2) 
using higher-level API calls, system logs, and events generated by applications 
and 3) combination of the two categories. 

2.1. Low-Level Machine or Assembly Code 

Low-level code used to be off-limits simply because of its nearly unreadable se-
mantics—the recent surge in lower level malware has pushed specialists to de-
velop tools that help with the readability and analysis of assembly code. 

An industry company Sophos [10] introduced Invincea which, it uses raw data 
without unpacking or filtering binaries to train and deploy a low resource model 
quickly. It uses PE import features, metadata information on PE files, and binary 
values of a two-dimensional byte entropy histogram that models a file’s distribu-
tion of bytes. The data is fed into multiple deep neural networks (DNN) models, 
using ReLU as activation function and high dropout rates. The insight found was 
that string values corresponding to metadata and aligning with higher-level se-
mantics override lower-level details. 

Raff et al. [11] introduce an approach of Byte n-grams, and it is a commonly 
used feature type in static analysis. It condenses information within files such 
every n-gram is a unique combination of n consecutive bytes. This feature type is 
easy to construct as it requires almost no knowledge of context. It was observed 
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that n-grams rely on and better generalize ASCII string information, or pre- 
defined data, rather than execution information contained in program code. 
N-grams can be constructed for program-level, language-specific bytes, opcode, 
or machine language bytes, or DLL and PE import information bytes. Similar 
accuracies and results were observed across multiple values of n and types of 
n-grams used along with regularized Elastic-Net models [11]. This reflects the 
fact that n-grams extract little abstract, contextual information beyond string 
values, compared to models run on hand-crafted features. 

Raff et al. [12] use the concept of KiloGrams, and it has reported positive re-
sults by increasing the size of n-thousand fold. The difference in accuracy and 
feature retention becomes significant at n = 64. The theory behind this was that 
at large n sizes, the top k most frequent features would start getting redundant, 
allowing for a higher number of features to be included—the concept of ap-
proaching a redundancy limit on features by increasing the value of n before 
adding more features and repeating the process is referred to as hashing stride. 
This shows the lack of effectiveness of machine learning for narrowly scoped 
tasks—training machine learning algorithms on chunks on data that appear with-
in the same spatial and temporal space results in less generalizability and worse 
results. 

Qiao et al. [13] attempts to detect function boundaries using raw binary file 
bytes as data. In general, it was assumed that analyzing return and call pointers 
as the only “features” would give one a reasonably good idea about function 
boundaries, but the paper shows that the accuracy of such manual analysis is 
about 70%. In contrast, a machine learning-based approach, which uses features 
that a manual analyst may deem irrelevant, increases it to 98% accuracy  

2.2. High-Level API Calls 

API calls cover a variety of functional spaces: registry, network sockets, and 
memory management. Combinations of inputs and corresponding outputs of 
the same API calls but in different parts of a sequence of execution are fed into 
several kinds of machine learning models to extract insights or predictive ca-
pacity. 

Temporal API [14] call information is harder to capture and is susceptible to 
more attacks—these features are usually modelled using Markov Chains with a 
prior understanding of the general movement of calls. What makes temporal in-
formation challenging to process and utilize the fact that most systems allow 
asynchronous processing of variable length API and system calls. This makes it 
necessary to preprocess temporal API call data using statistical analysis and in-
formation-theoretic techniques before being able to analyze it and gain insights. 
Usually, a combination of local and global calls is used for features. Local calls 
provide a large number of features within context. However, garbage collection 
and timing-based attacks can successfully evade local call analysis, by injecting 
code at the system call level. Global calls make more robust feature sets as they 
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take into account entire call streams across scopes, instead of individual calls 
that just locally branch out. 

Behavior API [15] call graphs have become a popular trend in the recent past. 
Heterogeneous information networks classify API calls using scope; for example, 
two calls in the same file would have a “meta-path” connecting them. Different 
meta-paths are used for different scopes, including function scope, package scope, 
code block, and invoke method. While theoretically sound, HINs fail to capture 
patterns outside of those that are already visible using standard, non-HIN tech-
niques [16]. This is because API calls are only as specific as the symbol table al-
lows them to be, and any changes made dynamically in the symbol table are never 
reflected in the higher-level calls during program execution. 

A right amount of machine learning effort has been put in with Android API 
calls, both in the context of dynamic and static analyses. DroidDolphin used 
Support Vector Machines (SVM) to build a model using thirteen API call fea-
tures and deployed the checking engine dynamically. CopperDroid used system 
calls, which are a level below application-based calls, and process communica-
tions (intra as well as inter) as features that were sandboxed and dynamically 
monitored by a virtual machine inspection framework. DroidMat used applica-
tions permissions and intention messages as additional input along with API 
calls as features for a k-NN classifier. DroidMiner [17] used an associative clas-
sifier using simple API calls, and many others have acquired similar but different 
results using the same features on different models such as Decision Trees and 
Regression-based algorithms. 

The general problem with using higher-level semantics is that it captures a 
higher level, abstract relationships that can remain intact even on a compro-
mised system. While this allows one to retain general contextual information 
over more extended periods, it does not keep track of lower-level changes that 
have a structure of their own. Malware that operates at the firmware level will 
almost always be able to evade systems that use API calls as features, hence the 
need for processing assembly code. 

3. Combination High-Level and Low-Level Data 

The danger in combining lower level and higher-level data is that lower-level 
data may be perceived by an abstraction engine to be too noisy and chaotic and 
might be inclined to ignore that data. It is essential to systematically ensure that 
higher-level features add value to the lower level ones, instead of overriding and 
diminishing them. 

Microsoft [18] using sequential models on the lower level, opcode sequences 
along with higher-level system logs. The two models tested were: RNNs which 
have proven their strength with handwriting and speech recognition, and ESNs, 
which are used extensively for chaotic systems. They show that RNNs failed to 
capture salient features and that Echo state network (ESN) models utilized all 
features more effectively and resulted in much better accuracy. The hidden states 

https://doi.org/10.4236/jis.2020.112007


I. Karamitsos et al. 
 

 

DOI: 10.4236/jis.2020.112007 108 Journal of Information Security 
 

of the recurrent models were fed into a temporal max-pooling layer, to detected 
reordered temporal patterns, and logistic regression was used afterwards for 
performing the final classification. Only half the hidden states were fed into the 
classifier (referred to as half-frame), to avoid overfitting and leaky units were 
used to increase long-term memory. 

Athiwaratkun et al. [19] present several different training models and confi-
gurations, including Character level CNNs, RNNs, LSTM/GRU models and At-
tention models. In this study, a number of 75,000 Windows PE files were used, 
which were equally split between malicious and benign files were trained, vali-
dated and tested. The LSTM model with temporal max-pooling outperformed 
the Char-CNN, GRU, Attention-based ones as well as all previously tested mod-
els, i.e. RNN/ESN. 

Apart from HIN models, the above literature presented machine learning 
models based on file-based data, i.e. performed classification on files rather than 
smaller or larger chunks and allowed a human analyst to narrow down the 
problem using patterns in infected files. This strategy may not always work be-
cause a) malware can be disseminated across entire suites of files affecting 
critical and wide-ranging functionality or b) changes to single files can be too 
subtle for even a rule-based checking engine to detect them. This is evidently 
in practice already as malware is increasingly exploiting techniques such as re-
turn-oriented programming (ROP), Just-in-time compilation (JIT) and con-
cept drift. 

DeepCheck [20] uses CFI checking using a deep learning model. CFI retains 
lower-level branches, so it is fundamentally stronger but can be inefficient: up-
dates in programs can completely change CFGs, which requires modifying run-
time libraries or binary files themselves—often not recommended because of 
security loopholes in doing so and the possibility of unexpected program execu-
tion. DeepCheck [20] requires no such modifications because it uses an external 
framework based on predictions generated by the machine learning engine. It 
uses lower-level details, i.e. the Intel Processor Trace, logging branches taken 
and not taken, as well as application binary code. This study provided good ac-
curacy scores, and it showed that a multi-layered deep NN architecture is per-
formed better than using a single and large NN for malware detection. 

Kernel Object Detection using Deep RNNs [21] presents the graph approach. 
A graph is constructed from linked and adjacent lower level memory blocks and 
fed into a graph neural network as features, from which kernel objects were 
identified. The high classification accuracy of the model was dependent on the 
fact that kernel objects are represented in memory in a probabilistically determi-
nistic way. Although subject to high amounts of feature preprocessing, the mod-
el in this study presents a good benchmark for further tests of similar nature. 

4. Methodology 

Before presenting the different proposed configurations in the next section, we 
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first describe the dataset used in this study. 

4.1. Data Collection 

The raw data used for this paper came from memory dumps of single processes 
running on a Windows OS—this includes loaded modules, including both stati-
cally and dynamically linked libraries. Assembly code for portable executable 
(PE) 50 files on Windows format was gathered using IDA Dissasembler [22] in-
cluding code for application files such as Google Chrome, Notepad, Command 
Prompt, and kernel files such as NTOSkrnl and NSLOOKUP. Our dataset is 
further randomly splitted into three datasets a ratio of 60:20:20 for the training, 
validation and testing sets. 

The need to train for several epochs and also using a larger dataset would 
mean possibly training on a more massive cluster of GPUs, like those available 
on the cloud. The models for this study were trained and tested locally, on a 
Core i7 laptop to test for resource consumption patterns. It took over 48 hours 
to run each model configuration without “hot start” configured. Training mod-
els on the cloud would have resulted in superior performance, and access to 
more binaries may have resulted in better accuracies, comparable to previous li-
terature. 

Ten types of malware published online, including Trojans, Rootkits, zero-day 
attacks, that operate both on the host as well as a network were downloaded. All 
malware samples affected the kernel and RPC call functionality. So out of the 50 
portable executables (PE) files used, 38 of them were affected by running the 
malware samples. Both the benign version as well as malicious versions of the 
files were used. For this study, a total of 88 sample PE files were used for data. 

In Figure 1 within each block, a single call and a single jump exist, which 
 

 
Figure 1. IDA’s graphical representation f basic blocks in chrome.exe. 
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are the two indirect blocks, which point to other direct blocks (the green arrow 
for the call path, the red for jumps). The opcode is the string on the left, i.e. xor, 
mov, and function boundaries are conservatively assumed to be at call locations 
that do not revert to the block they stemmed from. 

A script was written to read IDA’s Basic block Extraction utility and modify 
the structure of the data, so it resembled a 3-D matrix. Keras TF APIs [23] was 
used to build the model, train, validate and test the data on a single laptop with 
Core i7. The reason for not porting the model to the cloud was because of the 
small number of files analyzed, as the creation of long short-term memory 
(LSTM)-consumable input was not purely automated. Differences in IDA’s in-
terpretation of file headers and data variables required some amount of manual 
analysis and crafting of features, though not as much as required by a purely 
manual feature base. 

4.2. Data Processing 

The input type for long short-term memory (LSTM) is a three-dimensional ma-
trix, the axes representing the sequence length, timesteps, and batch size. Four 
basic block sequence configurations (i.e. direct-indirect-direct is a configuration 
of size 3) were tested: 

1) a chain of direct and indirect blocks of size 5. 
2) a chain of direct and indirect blocks of size 9. 
3) a chain of direct and indirect blocks of size 19. 
4) a chain of direct and indirect blocks of size 29. 
The reason for choosing basic blocks instead of whole functions as datum was 

that there are almost always more basic blocks than functions. Indirect calls are 
prime sites for exploitation and considering whole functions with multiple indi-
rect calls as one chunk risked leaving out important contextual information 
about the general nature of indirect calls, i.e. a pattern of appearance. Condi-
tionals, loops, jumps, calls are all indirect edges connecting basic blocks, which 
consist of a determined sequence of executions. This also made feature extrac-
tion easier as extrapolating function boundaries would have required another 
machine learning model to be run as a preprocessing step. 

The purpose here is to assign an execution order to an incoming stream of 
execution events. Execution events can be defined in terms of basic blocks, 
which are transformed into block embeddings. Our goal is to identify an original 
short-term order of execution and possibly a general, app-wide, broad long-
er-term order, without a need for order in intermediate block sequence orderings. 
This is because intermediate orderings often contain exponential state spaces that 
are hard to manage, as opposed to short-term and long-term orderings. 

5. Models under Study 

The base model chosen for this paper is the long short-term memory (LSTM) 
model as it is excellent at retaining more extended periods of information and 
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has been probably more accurate than other sequence-based models previously 
tested in the literature. The LSTM model has also been used in natural language 
processing (NLP), for sentence parsing and document classification. The hie-
rarchy of words to sentences and paragraphs to documents is similar to the hie-
rarchy of basic blocks to short, intermediate and longer-term sequences. The 
regular recurrent neural networks (RNN) has a limited capacity to remember 
word probabilities beyond the phrase level and the LSTM enhances its capacity 
by remembering bursts of short-term sequences on a longer-term. This makes 
the LSTM better able to predict the next words in sentences and paragraphs, but 
not in entire documents. In this study, four different model configurations are 
tested: 

Model 1) Pure LSTM with temporal max pooling and Logistic regression for 
classification 

Model 2) Pure LSTM with attention layer and logistic regression for classifica-
tion 

Model 3) Bidirectional LSTM with temporal max pooling and Logistic regres-
sion for classification 

Model 4) Bidirectional LSTM with attention layer and logistic regression for 
classification 

In the following Figure 2 the four models are depicted. 
In all four configurations, the LSTM predicts the next-in-sequence basic 

block. Instructions within the basic block are features of the x-axis, basic sequen-
tial blocks populate the y-axis, each row ending at a maximum of N basic blocks 
(one of 5, 9, 19, and 29). 

5.1. Long Short Term Memory (LSTM) 

Long Short Term Memory (LSTM) concept are proposed firstly by Hochreiter  
 

 
Figure 2. Four different models under study. 
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and Schmidhuber [25] to overcome gradient vanish. LSTM is a variant of the 
Recurrent Neural Network (RNN) with two important differences. LSTM uses a 
cell state 𝑐𝑐𝑡𝑡  which serves as explicit memory and for the hidden states com-
puted four interactions that give the network the ability to remember or forget 
specific information about the preceding element of sequence. The main idea is 
to introduce an adaptive gating mechanism, which decides the degree to which 
LSTM units keep the previous state and memorize the extracted features of the 
current data input. Typically, a LSTM-based recurrent neural network unit con-
sists of four components: one input gate it with corresponding weight matrix

, , ,xi hi ci iW W W b ; one forget gate tf  with corresponding weight matrix  
, , ,xf hf cf fW W W b ; one output gate ot with corresponding weight matrix  
, , ,xo ho co oW W W b , all of those gates are set to generate some degrees, using the 

current input xi, the state 1ih −  that was generated by the previous step, and cur-
rent state of this cell 1ic −  for the decisions whether to take the inputs, that for-
get the memory stored before, and output the state generated latter. The four 
layers are presented in the following equations: 

( )1 1t xi t hi t ci t ii W x W h W c bσ − −= + + +                 (1) 

( )1 1t xf t hf t cf t ff W x W h W c bσ − −= + + +                (2) 

( )1 1tanht xc t hc t cc t cg W x W h W c b− −= + + +                (3) 

1t t t t tc i g f c −= +                         (4) 

( )1 1t xo t ho t co t oo W x W h W c bσ − −= + + +                 (5) 

( )tanht t th o c=                         (6) 

Hence, the current cell state ct will be generated by calculating the weighted 
sum using the previous cell state and current information generated by the cell 
[27]. 

5.2. Bidirectional Long Short Term Memory (BLSTM) 

Bidirectional LSTM networks extend the unidirectional LSTM networks by in-
troducing a second layer, where the hidden to hidden communication flow is in 
opposite order. The model is able to exploit information both from the past and 
the future. In the following Figure 3 a bidirectional LSTM configuration is de-
picted. 

5.3. Attention 

Attentive neural networks have recently demonstrated success in a wide range of 
tasks ranging from questions answering, machine translations, speech recogni-
tion, to image captioning [24] [26]. Bahdanau et al. [24] proposed a new atten-
tion mechanism to align the input and output sentences in the context of neural 
machine translation. In this work, we adapt their attention mechanism for the 
models 2 and 4 as an alternative to the temporal max pooling proposed by Pas-
canu et al. [18]. While temporal max pooling chooses the maximum hidden  
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Figure 3. BiLSTM model with activation function. 

 
units across all of the hidden vectors in the sequence, the attention mechanism 
instead first learns the attention score for each time step and then compute the 
temporal average of all hidden vectors. The attention mechanism generates a 
vector hatt  of length D where: 

1
0h hTatt t t

t a−

=
= ∑                         (7) 

and the attention scores at are calculated from a dense network with ht  as an 
input. The final vector representation is used as the input to the logistic regres-
sion classifier. 

5.4. Max Polling 

Once the LSTM has run, its hidden states are passed in as input to the temporal 
max-pooling layer. This layer acts as an aggregator and makes sure that blocks 
belonging to the same row entries in the data matrix can be reordered (taking 
into account execution optimizations and lower-level resource handling). The 
temporal max-pooling layer outputs single feature vectors corresponding to the 
basic blocks within individual modules of individual files. The reason for divid-
ing files into modules was because the malware used for this study it targets only 
a subsection of functionality within entire files, and we get labels for the specific 
functionality being targeted by each malware specimen. Let ht  be hidden vec-
tors generated from a recurrent neural network for time steps 0, , 1t T= ⋅⋅⋅ −
where each file event sequence is divided into subsequences of length T. Tem-
poral max pooling generates a vector hmax, where max

0, 1max t
i t T ih h∈ −=  for index 

0, , 1i D= ⋅⋅⋅ − , and D is the dimension of ht . 

5.5. Logistic Regression Classification 

In this study, we use a logistic regression classifier. Once the max-pooling layer 
outputs embeddings for the modules, a supervised logistic regression classifica-
tion is performed to obtain the final classification. For this study, the logistic re-
gression classification is done module-wise and not file-wise. 
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6. Performance Analysis 

In this section, we evaluate the proposed configurations. In the following Table 
1, we show the statistics of the row lengths, in terms of instruction size. The 
number of sequences denotes the total number of vertical entries in the LSTM 
input matrix or the number of rows. Each row contains instruction sequences of 
varying sizes, corresponding to the fixed number of basic blocks the instructions. 
 
Table 1. Data statistics. 

Block Size 5 9 19 29 

No of sequences 51,768 28,760 13,623 8925 

Maximum instruction size 78 124 254 306 

Minimum Instruction size 11 57 97 110 

Mean instruction size 33 88 152 201 

Median instruction size 34 88 159 204 

 
For block sizes 5 and 9, the block sequence ordering was retained the way it 

appeared within programs as the block size is small enough to generate enough 
randomness. For block sizes 19 and 29, the block sequence was randomized for 
half the data and retained the way it was for the other half. This configuration 
generated the best and most consistent results. 

Intermediate results are omitted in this paper since it took more than 30 runs 
per model to achieve optimal accuracy. The process involved readjustment of 
weights, fine-tuning of the model and addition of optimizations and regulariza-
tions, as well as dropouts. The final LSTM configuration used for all 16 combi-
nations of data and models was: Epochs = 50, Num_steps = 30, Batch_size = 20, 
Hidden_size = 500, Dropout = 0.3. The softmax activation function was used for 
the LSTM final layer, and LeakyReLU was used for intermediate layers, includ-
ing the recurrent layers. The advantage of LeakyReLU over ReLU is that it 
maintains state in a stickier manner by allowing a small gradient when an LSTM 
unit is not active. Bias weight regularization was not helpful, but input weight 
elastic regularization (L1L2 = 0.01) showed significant improvement for the 
models. The logistic regression model included a single hidden unit, which per-
formed better than multiple hidden units and used the ReLU activation function. 

Results 

In this section, we compare the receiver operating characteristic (ROC) curves for 
the different configurations. We first evaluate different block sizes for the configu-
ration of pure LSTM with temporal max pooling and logistic regression for classi-
fication. In Figure 4, block size of 29 and 19 are the two best performing configu-
rations. For the false positive rate (FPRs) greater than 0.70%, the block size of 29 
performs best. Block size 29 and 19 offers similar true positive rates (TPRs). 

In Figure 5, the true positive rate (TPR) block size of 19 has slightly 1% lower  

https://doi.org/10.4236/jis.2020.112007


I. Karamitsos et al. 
 

 

DOI: 10.4236/jis.2020.112007 115 Journal of Information Security 
 

 
Figure 4. ROC curves for the Pure LSTM with temporal max pooling and logistic regres-
sion for classification. The largest block size 29 is performed best, and the smallest block 
size = 5 is performed worst. 

 

 
Figure 5. ROC curves for the Pure LSTM with attention and logistic regression for classi-
fication. The largest block size 29 is performed best, and the smallest block size = 5 is 
performed worst. 

 
performance than the block size of 29. An alternate configuration was tried by 
feeding a combination of LSTM outputs generated by data of block sizes 29 and 
19 into a standard temporal max pooling layer. 

The performance of the bidirectional LSTM with temporal max pooling and 
logistic regression classification is depicted in Figure 6. 

The ROC curves are more tightly clustered for FPRs greater than 0.80% for a 
block size of 29, 19 and 9. 

The result was almost identical to the result produced by running just the data 
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with block size 29. Again, this was probably a result of greater randomness in 
smaller basic block sequences, which the model considered to be noise. So, 
the features of data with basic block size 19 consistently vanished, and the bi- 
directionality possibly enforced this phenomenon. Simply put, the smaller the 
block size, the greater randomness there is in the data, and the worse the per-
formance. 

Figure 7 depicts the performance for the bidirectional LSTM with attention  
 

 
Figure 6. ROC curves for the bidirectional LSTM with temporal max pooling and logistic 
regression for classification. The largest block size 29 is performed best, and the smallest 
block size = 5 is performed worst. 

 

 
Figure 7. ROC curves for the bidirectional LSTM with attention and logistic regression 
for classification. The largest block size 29 is performed best and the smallest block size = 
5 is performed worst. 
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and logistic regression classification. 
Adding attention to the model affected results more positively than bi-direc- 

tionality performed. It is possible that specific instruction sequences across basic 
blocks inherently reflected bi-directionality, by literally showing up in reverse 
order within the blocks. Specifically, the addition of attention increased the true 
positive rate faster than the false positive rate, and the flat-lined past the 0.3 
false-positive rate mark. The same flat-lining can be observed for configuration 
depicted in the previous Figure.4, pure LSTM model. For the other two models, 
there is a steady increase in the false positive rate, as the true positives increase. 

We can also observe that the changes in performance between models more 
obviously affected the model runs using larger block sizes. The difference in 
performance for data using a basic block of size 5 was almost negligible. 

The ROC curves generated for the test data are slightly worse than those gen-
erated for the training data. Without LeakyReLU, dropout and regularization, 
the variance between the two was even higher. While these configuration changes 
lessened variance, they did decrease the overall result. It is expected that using a 
larger dataset of PE files can resolve this issue in the future. 

From the figures, we see that using basic blocks of size 29 yielded the best re-
sults, and as block size shortened, model performance deteriorated. This is true 
across all four model configurations, and while the relative accuracies changed 
slightly, the general trends remained the same. The best model configuration was 
the bidirectional LSTM with Attention, and this model also took the longest time 
to run. The bidirectional LSTM concatenates output from running the time steps 
in both forward and backward order. The attention mechanism, with an in-built 
temporal max-pooling layer, is a better aggregator than the pure temporal max- 
pooling layer that we layered onto the model externally. If the model were pick-
ing metadata or string features for each of the PE modules, the attention-based 
models and the temporal max pooling-based models would have yielded similar 
results. This would have meant that lower-level data was again being reduced 
down to noise. However, the fact that attention improved the model perfor-
mance tells us that lower level features are being used, which shows an inherent 
pattern exists even within lower-level machine code. This may be due to the sig-
nificant variance in PE files chosen to be part of the dataset—any similarity be-
tween basic block sequences within widely differing files is picked up, and espe-
cially so for the longer primary block sequences. 

7. Conclusion 

Overall, the findings of this paper are positive and reflect a general trend that by 
using larger sequences of basic blocks as inputs to the sequential models results 
in a more robust hidden representation. The addition of attention and bi-direc- 
tionality to the core LSTM model significantly enhanced accuracy and results, 
even when using a relatively small dataset. The results achieved are in synchro-
nization with results shown by previous work on similar topics, and while accu-
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racies for this study could have been better. Overall, using neighboring basic 
blocks as data to a sequential predictive model such as LSTM works well for ge-
nerating relevant context for program executions. Complicated pointer arith-
metic and vague rule-based checks can be traded for efficient, external, probabil-
istic checks that supplemented static and dynamic analysis methods. 

8. Future Work 

In the future, we plan to utilize the same concept of neighboring basic blocks, 
but for longer sequences, i.e. using document classification techniques. We would 
use results from this study, such as hidden LSTM states and max-pooling em-
beddings, as features for this next step. Hopefully, we will be able to test the 
same concepts on a larger sample of files, both benign and malicious. 
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