
Journal of Information Security, 2020, 11, 103-120
https://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2020.112007 Apr. 26, 2020 103 Journal of Information Security

Malware Detection for Forensic Memory Using
Deep Recurrent Neural Networks

Ioannis Karamitsos1, Aishwarya Afzulpurkar1, Theodore B. Trafalis2

1Rochester Institute of Technology, Dubai, UAE
2University of Oklahoma, Norman, USA

Abstract
Memory forensics is a young but fast-growing area of research and a promis-
ing one for the field of computer forensics. The learned model is proposed to
reside in an isolated core with strict communication restrictions to achieve
incorruptibility as well as efficiency, therefore providing a probabilistic memo-
ry-level view of the system that is consistent with the user-level view. The
lower level memory blocks are constructed using primary block sequences of
varying sizes that are fed as input into Long-Short Term Memory (LSTM)
models. Four configurations of the LSTM model are explored by adding bi-
directionality as well as attention. Assembly level data from 50 Windows porta-
ble executable (PE) files are extracted, and basic blocks are constructed using
the IDA Disassembler toolkit. The results show that longer primary block se-
quences result in richer LSTM hidden layer representations. The hidden states
are fed as features into Max pooling layers or Attention layers, depending on
the configuration being tested, and the final classification is performed using
Logistic Regression with a single hidden layer. The bidirectional LSTM with
Attention proved to be the best model, used on basic block sequences of size
29. The differences between the model’s ROC curves indicate a strong re-
liance on the lower level, instructional features, as opposed to metadata or
string features.

Keywords
BiLSTM, Deep Learning, Forensic Memory, LSTM, RNN

1. Introduction

The recent explosion in Internet of Things (IoT), Big Data and social networking
technologies has unintentionally led to an increasing rise in global cyber threats.

How to cite this paper: Karamitsos, I.,
Afzulpurkar, A. and Trafalis, T.B. (2020)
Malware Detection for Forensic Memory
Using Deep Recurrent Neural Networks.
Journal of Information Security, 11, 103-120.
https://doi.org/10.4236/jis.2020.112007

Received: April 1, 2020
Accepted: April 23, 2020
Published: April 26, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2020.112007
https://www.scirp.org/
https://doi.org/10.4236/jis.2020.112007
http://creativecommons.org/licenses/by/4.0/

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 104 Journal of Information Security

Isolated attacks that previously exploited common vulnerabilities across systems
have now given way to “scan-based” attacks that identify and exploit system-
specific vulnerabilities across networks. These networks of compromised nodes,
commonly referred to as botnets, representing personal computers, cellphones,
even fax machines [1], morph, divide and link malware components in a way
that allows unhindered, undetected propagation at incredibly fast speeds. Not
only is the process of identifying and stopping the malware complicated, but
certain species such as spyware make it difficult even to suspect that there has
been an attack. Zero-day attacks that target firmware or hardware level compo-
nents of a system mostly make it impossible to remove the malware, without
complete disassembly of the motherboard [2]. The scope of malware and its de-
tection methods is prohibitively enormous so that this paper will be focusing on
one crucial aspect: volatile memory analysis on personal computers.

Memory forensics refers to the extraction and analysis of reliable volatile and
non-volatile memory “dumps” in order to infer the state of a machine at a given
time interval. It is preferred over the injection of higher-level APIs as the latter is
prone to interference by malware, whereas the latest memory acquisition ap-
proaches have successfully been able to extract uncorrupt views of the system
[3]. Analyzing memory blocks to reveal higher-level information has so far been
in the realm of a handful of security experts as it requires extensive knowledge
and expertise in the area and is difficult to automate in a data-agnostic fashion.

Recent advances in machine learning and deep learning have generated a ple-
thora of new probabilistic approaches for malware detection, without the need
for extensive expert analysis [4] [5] [6] [7]. Deep learning has achieved tre-
mendous results in several areas such as natural language processing, that were
previously thought to need supplementary semantic or causal models [8] [9].
The significance of this research is to explore the application of deep learning to
forensic memory analysis, such that the expertise required to analyze a system’s
memory will, to an extent, be acquired by the system itself.

The primary motivation for this work is to detect neural networks patterns in
machine-level code that may directly link to the functionality of that code. Spe-
cifically, it was to find a direct mapping between lower-level machine/assembly
code and the functional requirements of or expectations from an application,
circumventing API calls and other higher-level functionality. The fact that the
attention-based model outperformed the model using the max-pooling layer tells
us that there are such patterns. The paper is organized as follows. In Section 2
and Section 3 discuss the host-based intrusion detection related work relevant to
this paper. Section 4 describes the data mining methodology. In Section 5, we
describe four different models based on Long Short-Term Model (LSTM) with
the description of each block. Section 6 discusses the performance analysis and
results. That is Section 6-1 compares the data mining results obtained from four
different block sizes against the four selected models. Section 7 and Section 8
contain the conclusions and the future work.

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 105 Journal of Information Security

2. Host-Based Intrusion Detection

The success of machine learning algorithms applied to the problem of malware
detection depends heavily on the quality of the extracted features. Traditional
machine learning approaches are simplistic and cannot extract contextual in-
formation from raw data, so current research is moving towards employing deep
learning pipelines to be able to propagate different representations of features,
each layer of the pipeline ingesting a more contextually complex set of features.
Malware detection can be performed by either analysing and abstracting the
functionality of benign programs or doing so for malware. Having generated a
hidden representation of benign programs, deviations from this representation,
or anomalies, are then labelled as malware. Solely analyzing malicious programs
allows one to gain an understanding of the general concepts used by malware
and can generate a more substantial categorization for different types of mal-
ware. This allows analysts to create a bounding box around the general concepts
exploited by malware. This is insightful because malware behavior can mimic
behavior of benign apps to a large extent. Hence deviations from "normal beha-
vior” can be challenging to detect and understand the inner workings of specific
categories of malware yields rich features that can be fed into a “benign program
analysis” framework, in order to generate a combined pipeline of different in-
puts, different models and more accurate outputs. Using such combinations,
throughout literature, has proven always to be more effective than focusing on a
specific set of functionalities that span the system, but fail to branch out effectively.

Features used in machine learning-based malware detection can be divided
into three subcategories: 1) using a lower-level machine or assembly code and 2)
using higher-level API calls, system logs, and events generated by applications
and 3) combination of the two categories.

2.1. Low-Level Machine or Assembly Code

Low-level code used to be off-limits simply because of its nearly unreadable se-
mantics—the recent surge in lower level malware has pushed specialists to de-
velop tools that help with the readability and analysis of assembly code.

An industry company Sophos [10] introduced Invincea which, it uses raw data
without unpacking or filtering binaries to train and deploy a low resource model
quickly. It uses PE import features, metadata information on PE files, and binary
values of a two-dimensional byte entropy histogram that models a file’s distribu-
tion of bytes. The data is fed into multiple deep neural networks (DNN) models,
using ReLU as activation function and high dropout rates. The insight found was
that string values corresponding to metadata and aligning with higher-level se-
mantics override lower-level details.

Raff et al. [11] introduce an approach of Byte n-grams, and it is a commonly
used feature type in static analysis. It condenses information within files such
every n-gram is a unique combination of n consecutive bytes. This feature type is
easy to construct as it requires almost no knowledge of context. It was observed

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 106 Journal of Information Security

that n-grams rely on and better generalize ASCII string information, or pre-
defined data, rather than execution information contained in program code.
N-grams can be constructed for program-level, language-specific bytes, opcode,
or machine language bytes, or DLL and PE import information bytes. Similar
accuracies and results were observed across multiple values of n and types of
n-grams used along with regularized Elastic-Net models [11]. This reflects the
fact that n-grams extract little abstract, contextual information beyond string
values, compared to models run on hand-crafted features.

Raff et al. [12] use the concept of KiloGrams, and it has reported positive re-
sults by increasing the size of n-thousand fold. The difference in accuracy and
feature retention becomes significant at n = 64. The theory behind this was that
at large n sizes, the top k most frequent features would start getting redundant,
allowing for a higher number of features to be included—the concept of ap-
proaching a redundancy limit on features by increasing the value of n before
adding more features and repeating the process is referred to as hashing stride.
This shows the lack of effectiveness of machine learning for narrowly scoped
tasks—training machine learning algorithms on chunks on data that appear with-
in the same spatial and temporal space results in less generalizability and worse
results.

Qiao et al. [13] attempts to detect function boundaries using raw binary file
bytes as data. In general, it was assumed that analyzing return and call pointers
as the only “features” would give one a reasonably good idea about function
boundaries, but the paper shows that the accuracy of such manual analysis is
about 70%. In contrast, a machine learning-based approach, which uses features
that a manual analyst may deem irrelevant, increases it to 98% accuracy

2.2. High-Level API Calls

API calls cover a variety of functional spaces: registry, network sockets, and
memory management. Combinations of inputs and corresponding outputs of
the same API calls but in different parts of a sequence of execution are fed into
several kinds of machine learning models to extract insights or predictive ca-
pacity.

Temporal API [14] call information is harder to capture and is susceptible to
more attacks—these features are usually modelled using Markov Chains with a
prior understanding of the general movement of calls. What makes temporal in-
formation challenging to process and utilize the fact that most systems allow
asynchronous processing of variable length API and system calls. This makes it
necessary to preprocess temporal API call data using statistical analysis and in-
formation-theoretic techniques before being able to analyze it and gain insights.
Usually, a combination of local and global calls is used for features. Local calls
provide a large number of features within context. However, garbage collection
and timing-based attacks can successfully evade local call analysis, by injecting
code at the system call level. Global calls make more robust feature sets as they

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 107 Journal of Information Security

take into account entire call streams across scopes, instead of individual calls
that just locally branch out.

Behavior API [15] call graphs have become a popular trend in the recent past.
Heterogeneous information networks classify API calls using scope; for example,
two calls in the same file would have a “meta-path” connecting them. Different
meta-paths are used for different scopes, including function scope, package scope,
code block, and invoke method. While theoretically sound, HINs fail to capture
patterns outside of those that are already visible using standard, non-HIN tech-
niques [16]. This is because API calls are only as specific as the symbol table al-
lows them to be, and any changes made dynamically in the symbol table are never
reflected in the higher-level calls during program execution.

A right amount of machine learning effort has been put in with Android API
calls, both in the context of dynamic and static analyses. DroidDolphin used
Support Vector Machines (SVM) to build a model using thirteen API call fea-
tures and deployed the checking engine dynamically. CopperDroid used system
calls, which are a level below application-based calls, and process communica-
tions (intra as well as inter) as features that were sandboxed and dynamically
monitored by a virtual machine inspection framework. DroidMat used applica-
tions permissions and intention messages as additional input along with API
calls as features for a k-NN classifier. DroidMiner [17] used an associative clas-
sifier using simple API calls, and many others have acquired similar but different
results using the same features on different models such as Decision Trees and
Regression-based algorithms.

The general problem with using higher-level semantics is that it captures a
higher level, abstract relationships that can remain intact even on a compro-
mised system. While this allows one to retain general contextual information
over more extended periods, it does not keep track of lower-level changes that
have a structure of their own. Malware that operates at the firmware level will
almost always be able to evade systems that use API calls as features, hence the
need for processing assembly code.

3. Combination High-Level and Low-Level Data

The danger in combining lower level and higher-level data is that lower-level
data may be perceived by an abstraction engine to be too noisy and chaotic and
might be inclined to ignore that data. It is essential to systematically ensure that
higher-level features add value to the lower level ones, instead of overriding and
diminishing them.

Microsoft [18] using sequential models on the lower level, opcode sequences
along with higher-level system logs. The two models tested were: RNNs which
have proven their strength with handwriting and speech recognition, and ESNs,
which are used extensively for chaotic systems. They show that RNNs failed to
capture salient features and that Echo state network (ESN) models utilized all
features more effectively and resulted in much better accuracy. The hidden states

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 108 Journal of Information Security

of the recurrent models were fed into a temporal max-pooling layer, to detected
reordered temporal patterns, and logistic regression was used afterwards for
performing the final classification. Only half the hidden states were fed into the
classifier (referred to as half-frame), to avoid overfitting and leaky units were
used to increase long-term memory.

Athiwaratkun et al. [19] present several different training models and confi-
gurations, including Character level CNNs, RNNs, LSTM/GRU models and At-
tention models. In this study, a number of 75,000 Windows PE files were used,
which were equally split between malicious and benign files were trained, vali-
dated and tested. The LSTM model with temporal max-pooling outperformed
the Char-CNN, GRU, Attention-based ones as well as all previously tested mod-
els, i.e. RNN/ESN.

Apart from HIN models, the above literature presented machine learning
models based on file-based data, i.e. performed classification on files rather than
smaller or larger chunks and allowed a human analyst to narrow down the
problem using patterns in infected files. This strategy may not always work be-
cause a) malware can be disseminated across entire suites of files affecting
critical and wide-ranging functionality or b) changes to single files can be too
subtle for even a rule-based checking engine to detect them. This is evidently
in practice already as malware is increasingly exploiting techniques such as re-
turn-oriented programming (ROP), Just-in-time compilation (JIT) and con-
cept drift.

DeepCheck [20] uses CFI checking using a deep learning model. CFI retains
lower-level branches, so it is fundamentally stronger but can be inefficient: up-
dates in programs can completely change CFGs, which requires modifying run-
time libraries or binary files themselves—often not recommended because of
security loopholes in doing so and the possibility of unexpected program execu-
tion. DeepCheck [20] requires no such modifications because it uses an external
framework based on predictions generated by the machine learning engine. It
uses lower-level details, i.e. the Intel Processor Trace, logging branches taken
and not taken, as well as application binary code. This study provided good ac-
curacy scores, and it showed that a multi-layered deep NN architecture is per-
formed better than using a single and large NN for malware detection.

Kernel Object Detection using Deep RNNs [21] presents the graph approach.
A graph is constructed from linked and adjacent lower level memory blocks and
fed into a graph neural network as features, from which kernel objects were
identified. The high classification accuracy of the model was dependent on the
fact that kernel objects are represented in memory in a probabilistically determi-
nistic way. Although subject to high amounts of feature preprocessing, the mod-
el in this study presents a good benchmark for further tests of similar nature.

4. Methodology

Before presenting the different proposed configurations in the next section, we

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 109 Journal of Information Security

first describe the dataset used in this study.

4.1. Data Collection

The raw data used for this paper came from memory dumps of single processes
running on a Windows OS—this includes loaded modules, including both stati-
cally and dynamically linked libraries. Assembly code for portable executable
(PE) 50 files on Windows format was gathered using IDA Dissasembler [22] in-
cluding code for application files such as Google Chrome, Notepad, Command
Prompt, and kernel files such as NTOSkrnl and NSLOOKUP. Our dataset is
further randomly splitted into three datasets a ratio of 60:20:20 for the training,
validation and testing sets.

The need to train for several epochs and also using a larger dataset would
mean possibly training on a more massive cluster of GPUs, like those available
on the cloud. The models for this study were trained and tested locally, on a
Core i7 laptop to test for resource consumption patterns. It took over 48 hours
to run each model configuration without “hot start” configured. Training mod-
els on the cloud would have resulted in superior performance, and access to
more binaries may have resulted in better accuracies, comparable to previous li-
terature.

Ten types of malware published online, including Trojans, Rootkits, zero-day
attacks, that operate both on the host as well as a network were downloaded. All
malware samples affected the kernel and RPC call functionality. So out of the 50
portable executables (PE) files used, 38 of them were affected by running the
malware samples. Both the benign version as well as malicious versions of the
files were used. For this study, a total of 88 sample PE files were used for data.

In Figure 1 within each block, a single call and a single jump exist, which

Figure 1. IDA’s graphical representation f basic blocks in chrome.exe.

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 110 Journal of Information Security

are the two indirect blocks, which point to other direct blocks (the green arrow
for the call path, the red for jumps). The opcode is the string on the left, i.e. xor,
mov, and function boundaries are conservatively assumed to be at call locations
that do not revert to the block they stemmed from.

A script was written to read IDA’s Basic block Extraction utility and modify
the structure of the data, so it resembled a 3-D matrix. Keras TF APIs [23] was
used to build the model, train, validate and test the data on a single laptop with
Core i7. The reason for not porting the model to the cloud was because of the
small number of files analyzed, as the creation of long short-term memory
(LSTM)-consumable input was not purely automated. Differences in IDA’s in-
terpretation of file headers and data variables required some amount of manual
analysis and crafting of features, though not as much as required by a purely
manual feature base.

4.2. Data Processing

The input type for long short-term memory (LSTM) is a three-dimensional ma-
trix, the axes representing the sequence length, timesteps, and batch size. Four
basic block sequence configurations (i.e. direct-indirect-direct is a configuration
of size 3) were tested:

1) a chain of direct and indirect blocks of size 5.
2) a chain of direct and indirect blocks of size 9.
3) a chain of direct and indirect blocks of size 19.
4) a chain of direct and indirect blocks of size 29.
The reason for choosing basic blocks instead of whole functions as datum was

that there are almost always more basic blocks than functions. Indirect calls are
prime sites for exploitation and considering whole functions with multiple indi-
rect calls as one chunk risked leaving out important contextual information
about the general nature of indirect calls, i.e. a pattern of appearance. Condi-
tionals, loops, jumps, calls are all indirect edges connecting basic blocks, which
consist of a determined sequence of executions. This also made feature extrac-
tion easier as extrapolating function boundaries would have required another
machine learning model to be run as a preprocessing step.

The purpose here is to assign an execution order to an incoming stream of
execution events. Execution events can be defined in terms of basic blocks,
which are transformed into block embeddings. Our goal is to identify an original
short-term order of execution and possibly a general, app-wide, broad long-
er-term order, without a need for order in intermediate block sequence orderings.
This is because intermediate orderings often contain exponential state spaces that
are hard to manage, as opposed to short-term and long-term orderings.

5. Models under Study

The base model chosen for this paper is the long short-term memory (LSTM)
model as it is excellent at retaining more extended periods of information and

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 111 Journal of Information Security

has been probably more accurate than other sequence-based models previously
tested in the literature. The LSTM model has also been used in natural language
processing (NLP), for sentence parsing and document classification. The hie-
rarchy of words to sentences and paragraphs to documents is similar to the hie-
rarchy of basic blocks to short, intermediate and longer-term sequences. The
regular recurrent neural networks (RNN) has a limited capacity to remember
word probabilities beyond the phrase level and the LSTM enhances its capacity
by remembering bursts of short-term sequences on a longer-term. This makes
the LSTM better able to predict the next words in sentences and paragraphs, but
not in entire documents. In this study, four different model configurations are
tested:

Model 1) Pure LSTM with temporal max pooling and Logistic regression for
classification

Model 2) Pure LSTM with attention layer and logistic regression for classifica-
tion

Model 3) Bidirectional LSTM with temporal max pooling and Logistic regres-
sion for classification

Model 4) Bidirectional LSTM with attention layer and logistic regression for
classification

In the following Figure 2 the four models are depicted.
In all four configurations, the LSTM predicts the next-in-sequence basic

block. Instructions within the basic block are features of the x-axis, basic sequen-
tial blocks populate the y-axis, each row ending at a maximum of N basic blocks
(one of 5, 9, 19, and 29).

5.1. Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) concept are proposed firstly by Hochreiter

Figure 2. Four different models under study.

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 112 Journal of Information Security

and Schmidhuber [25] to overcome gradient vanish. LSTM is a variant of the
Recurrent Neural Network (RNN) with two important differences. LSTM uses a
cell state 𝑐𝑐𝑡𝑡 which serves as explicit memory and for the hidden states com-
puted four interactions that give the network the ability to remember or forget
specific information about the preceding element of sequence. The main idea is
to introduce an adaptive gating mechanism, which decides the degree to which
LSTM units keep the previous state and memorize the extracted features of the
current data input. Typically, a LSTM-based recurrent neural network unit con-
sists of four components: one input gate it with corresponding weight matrix

, , ,xi hi ci iW W W b ; one forget gate tf with corresponding weight matrix
, , ,xf hf cf fW W W b ; one output gate ot with corresponding weight matrix
, , ,xo ho co oW W W b , all of those gates are set to generate some degrees, using the

current input xi, the state 1ih − that was generated by the previous step, and cur-
rent state of this cell 1ic − for the decisions whether to take the inputs, that for-
get the memory stored before, and output the state generated latter. The four
layers are presented in the following equations:

()1 1t xi t hi t ci t ii W x W h W c bσ − −= + + + (1)

()1 1t xf t hf t cf t ff W x W h W c bσ − −= + + + (2)

()1 1tanht xc t hc t cc t cg W x W h W c b− −= + + + (3)

1t t t t tc i g f c −= + (4)

()1 1t xo t ho t co t oo W x W h W c bσ − −= + + + (5)

()tanht t th o c= (6)

Hence, the current cell state ct will be generated by calculating the weighted
sum using the previous cell state and current information generated by the cell
[27].

5.2. Bidirectional Long Short Term Memory (BLSTM)

Bidirectional LSTM networks extend the unidirectional LSTM networks by in-
troducing a second layer, where the hidden to hidden communication flow is in
opposite order. The model is able to exploit information both from the past and
the future. In the following Figure 3 a bidirectional LSTM configuration is de-
picted.

5.3. Attention

Attentive neural networks have recently demonstrated success in a wide range of
tasks ranging from questions answering, machine translations, speech recogni-
tion, to image captioning [24] [26]. Bahdanau et al. [24] proposed a new atten-
tion mechanism to align the input and output sentences in the context of neural
machine translation. In this work, we adapt their attention mechanism for the
models 2 and 4 as an alternative to the temporal max pooling proposed by Pas-
canu et al. [18]. While temporal max pooling chooses the maximum hidden

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 113 Journal of Information Security

Figure 3. BiLSTM model with activation function.

units across all of the hidden vectors in the sequence, the attention mechanism
instead first learns the attention score for each time step and then compute the
temporal average of all hidden vectors. The attention mechanism generates a
vector hatt of length D where:

1
0h hTatt t t

t a−

=
= ∑ (7)

and the attention scores at are calculated from a dense network with ht as an
input. The final vector representation is used as the input to the logistic regres-
sion classifier.

5.4. Max Polling

Once the LSTM has run, its hidden states are passed in as input to the temporal
max-pooling layer. This layer acts as an aggregator and makes sure that blocks
belonging to the same row entries in the data matrix can be reordered (taking
into account execution optimizations and lower-level resource handling). The
temporal max-pooling layer outputs single feature vectors corresponding to the
basic blocks within individual modules of individual files. The reason for divid-
ing files into modules was because the malware used for this study it targets only
a subsection of functionality within entire files, and we get labels for the specific
functionality being targeted by each malware specimen. Let ht be hidden vec-
tors generated from a recurrent neural network for time steps 0, , 1t T= ⋅⋅⋅ −
where each file event sequence is divided into subsequences of length T. Tem-
poral max pooling generates a vector hmax, where max

0, 1max t
i t T ih h∈ −= for index

0, , 1i D= ⋅⋅⋅ − , and D is the dimension of ht .

5.5. Logistic Regression Classification

In this study, we use a logistic regression classifier. Once the max-pooling layer
outputs embeddings for the modules, a supervised logistic regression classifica-
tion is performed to obtain the final classification. For this study, the logistic re-
gression classification is done module-wise and not file-wise.

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 114 Journal of Information Security

6. Performance Analysis

In this section, we evaluate the proposed configurations. In the following Table
1, we show the statistics of the row lengths, in terms of instruction size. The
number of sequences denotes the total number of vertical entries in the LSTM
input matrix or the number of rows. Each row contains instruction sequences of
varying sizes, corresponding to the fixed number of basic blocks the instructions.

Table 1. Data statistics.

Block Size 5 9 19 29

No of sequences 51,768 28,760 13,623 8925

Maximum instruction size 78 124 254 306

Minimum Instruction size 11 57 97 110

Mean instruction size 33 88 152 201

Median instruction size 34 88 159 204

For block sizes 5 and 9, the block sequence ordering was retained the way it

appeared within programs as the block size is small enough to generate enough
randomness. For block sizes 19 and 29, the block sequence was randomized for
half the data and retained the way it was for the other half. This configuration
generated the best and most consistent results.

Intermediate results are omitted in this paper since it took more than 30 runs
per model to achieve optimal accuracy. The process involved readjustment of
weights, fine-tuning of the model and addition of optimizations and regulariza-
tions, as well as dropouts. The final LSTM configuration used for all 16 combi-
nations of data and models was: Epochs = 50, Num_steps = 30, Batch_size = 20,
Hidden_size = 500, Dropout = 0.3. The softmax activation function was used for
the LSTM final layer, and LeakyReLU was used for intermediate layers, includ-
ing the recurrent layers. The advantage of LeakyReLU over ReLU is that it
maintains state in a stickier manner by allowing a small gradient when an LSTM
unit is not active. Bias weight regularization was not helpful, but input weight
elastic regularization (L1L2 = 0.01) showed significant improvement for the
models. The logistic regression model included a single hidden unit, which per-
formed better than multiple hidden units and used the ReLU activation function.

Results

In this section, we compare the receiver operating characteristic (ROC) curves for
the different configurations. We first evaluate different block sizes for the configu-
ration of pure LSTM with temporal max pooling and logistic regression for classi-
fication. In Figure 4, block size of 29 and 19 are the two best performing configu-
rations. For the false positive rate (FPRs) greater than 0.70%, the block size of 29
performs best. Block size 29 and 19 offers similar true positive rates (TPRs).

In Figure 5, the true positive rate (TPR) block size of 19 has slightly 1% lower

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 115 Journal of Information Security

Figure 4. ROC curves for the Pure LSTM with temporal max pooling and logistic regres-
sion for classification. The largest block size 29 is performed best, and the smallest block
size = 5 is performed worst.

Figure 5. ROC curves for the Pure LSTM with attention and logistic regression for classi-
fication. The largest block size 29 is performed best, and the smallest block size = 5 is
performed worst.

performance than the block size of 29. An alternate configuration was tried by
feeding a combination of LSTM outputs generated by data of block sizes 29 and
19 into a standard temporal max pooling layer.

The performance of the bidirectional LSTM with temporal max pooling and
logistic regression classification is depicted in Figure 6.

The ROC curves are more tightly clustered for FPRs greater than 0.80% for a
block size of 29, 19 and 9.

The result was almost identical to the result produced by running just the data

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 116 Journal of Information Security

with block size 29. Again, this was probably a result of greater randomness in
smaller basic block sequences, which the model considered to be noise. So,
the features of data with basic block size 19 consistently vanished, and the bi-
directionality possibly enforced this phenomenon. Simply put, the smaller the
block size, the greater randomness there is in the data, and the worse the per-
formance.

Figure 7 depicts the performance for the bidirectional LSTM with attention

Figure 6. ROC curves for the bidirectional LSTM with temporal max pooling and logistic
regression for classification. The largest block size 29 is performed best, and the smallest
block size = 5 is performed worst.

Figure 7. ROC curves for the bidirectional LSTM with attention and logistic regression
for classification. The largest block size 29 is performed best and the smallest block size =
5 is performed worst.

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 117 Journal of Information Security

and logistic regression classification.
Adding attention to the model affected results more positively than bi-direc-

tionality performed. It is possible that specific instruction sequences across basic
blocks inherently reflected bi-directionality, by literally showing up in reverse
order within the blocks. Specifically, the addition of attention increased the true
positive rate faster than the false positive rate, and the flat-lined past the 0.3
false-positive rate mark. The same flat-lining can be observed for configuration
depicted in the previous Figure.4, pure LSTM model. For the other two models,
there is a steady increase in the false positive rate, as the true positives increase.

We can also observe that the changes in performance between models more
obviously affected the model runs using larger block sizes. The difference in
performance for data using a basic block of size 5 was almost negligible.

The ROC curves generated for the test data are slightly worse than those gen-
erated for the training data. Without LeakyReLU, dropout and regularization,
the variance between the two was even higher. While these configuration changes
lessened variance, they did decrease the overall result. It is expected that using a
larger dataset of PE files can resolve this issue in the future.

From the figures, we see that using basic blocks of size 29 yielded the best re-
sults, and as block size shortened, model performance deteriorated. This is true
across all four model configurations, and while the relative accuracies changed
slightly, the general trends remained the same. The best model configuration was
the bidirectional LSTM with Attention, and this model also took the longest time
to run. The bidirectional LSTM concatenates output from running the time steps
in both forward and backward order. The attention mechanism, with an in-built
temporal max-pooling layer, is a better aggregator than the pure temporal max-
pooling layer that we layered onto the model externally. If the model were pick-
ing metadata or string features for each of the PE modules, the attention-based
models and the temporal max pooling-based models would have yielded similar
results. This would have meant that lower-level data was again being reduced
down to noise. However, the fact that attention improved the model perfor-
mance tells us that lower level features are being used, which shows an inherent
pattern exists even within lower-level machine code. This may be due to the sig-
nificant variance in PE files chosen to be part of the dataset—any similarity be-
tween basic block sequences within widely differing files is picked up, and espe-
cially so for the longer primary block sequences.

7. Conclusion

Overall, the findings of this paper are positive and reflect a general trend that by
using larger sequences of basic blocks as inputs to the sequential models results
in a more robust hidden representation. The addition of attention and bi-direc-
tionality to the core LSTM model significantly enhanced accuracy and results,
even when using a relatively small dataset. The results achieved are in synchro-
nization with results shown by previous work on similar topics, and while accu-

https://doi.org/10.4236/jis.2020.112007

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 118 Journal of Information Security

racies for this study could have been better. Overall, using neighboring basic
blocks as data to a sequential predictive model such as LSTM works well for ge-
nerating relevant context for program executions. Complicated pointer arith-
metic and vague rule-based checks can be traded for efficient, external, probabil-
istic checks that supplemented static and dynamic analysis methods.

8. Future Work

In the future, we plan to utilize the same concept of neighboring basic blocks,
but for longer sequences, i.e. using document classification techniques. We would
use results from this study, such as hidden LSTM states and max-pooling em-
beddings, as features for this next step. Hopefully, we will be able to test the
same concepts on a larger sample of files, both benign and malicious.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Baldwin, R. (2018) If You’re Still Using a Fax Machine for “Security” Think Again.

Engadget. http://www.engadget.com/2018/08/20/fax-machine-hack

[2] Stüttgen, J. (2015) Acquisition and Analysis of Compromised Firmware Using Mem-
ory Forensics. Digital Investigation, 12, S50-S60.
https://doi.org/10.1016/j.diin.2015.01.010

[3] Stüttgen, J. and Cohen, M. (2013) Anti-Forensic Resilient Memory Acquisition. Digi-
tal Investigation, 10, 105-115. https://doi.org/10.1016/j.diin.2013.06.012

[4] Sukhbaatar, S., Weston, J. and Fergus, R. (2015) End-to-End Memory Networks. In:
Advances in Neural Information Processing Systems, The MIT Press, Cambridge,
2431-2439.

[5] Yang, X., Lo, D., Xia, X., Zhang, Y. and Sun, J. (2015) Deep Learning for Just-in-Time
Defect Prediction. IEEE International Conference on Software Quality, Reliability
and Security, Vancouver, 3-5 August 2015, 17-26.
https://doi.org/10.1109/QRS.2015.14

[6] Shin, E., Song, D. and Moazzezi, R. (2015) Recognizing Functions in Binaries with
Neural Networks. Usenix Conference on Security Symposium, 611-626.

[7] Zhang, Z. (2001) HIDE: A Hierarchical Network Intrusion Detection System Using
Statistical Preprocessing and Neural Network Classification. Proc. IEEE Workshop
on Information Assurance and Security, West Point, 5-6 June 2001, 85-90.

[8] Krueger, D., Maharaj, T., Kramar, J., Pezeshki, M., Ballas, N., Ke, N.R., Goyal, A.,
Bengio, Y., Larochelle, H. and Courville, A. (2016) Zoneout: Regularizing RNNS by
Randomly Preserving Hidden Activations.

[9] Sutskever, I., Martens, J., Dahl, G. and Hinton, G. (2013) On the Importance of Initia-
lization and Momentum in Deep Learning. International Conference on Machine
Learning, 1139-1147.

[10] “Invincea.” Invincea: A Sophos Company.
http://www.sophos.com/en-us/lp/invincea.aspx

[11] Raff, E., Zak, R., Cox, R., Sylvester, J., Yacci, P., Ward, R., Tracy, A., McLean, M.

https://doi.org/10.4236/jis.2020.112007
http://www.engadget.com/2018/08/20/fax-machine-hack
https://doi.org/10.1016/j.diin.2015.01.010
https://doi.org/10.1016/j.diin.2013.06.012
https://doi.org/10.1109/QRS.2015.14
http://www.sophos.com/en-us/lp/invincea.aspx

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 119 Journal of Information Security

and Nicholas, C. (2016) An Investigation of Byte n-Gram Features for Malware
Classification. Journal of Computer Virology and Hacking Techniques, 14, 1-20.
https://doi.org/10.1007/s11416-016-0283-1

[12] Raff, E., Fleming, W., Zak, R., Anderson, H., Finlayson, B. and Nicholas, C. (2019)
KiloGrams: Very Large N-Grams for Malware Classification.

[13] Qiao, R. and Sekar, R. (2017) Function Interface Analysis: A Principled Approach
for Function Recognition in COTS Binaries. 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Denver, 26-29 June 2017.
https://doi.org/10.1109/DSN.2017.29

[14] Hou, S., Saas, A., Chen, L., Ye, Y. and Bourlai, T. (2017) Deep Neural Networks for
Automatic Android Malware Detection. Proceedings of the 2017 IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis and Mining 2017
ASONAM 17, Sydney, 31 July-3 August 2017, 803-810.
https://doi.org/10.1145/3110025.3116211

[15] Xiao, F., Lin, Z., Sun, Y. and Ma, Y. (2019) Malware Detection Based on Deep
Learning of Behavior Graphs. Mathematical Problems in Engineering, 2019, Article
ID: 819539. https://doi.org/10.1155/2019/8195395

[16] Zhang, D.K., et al. (2018) MetaGraph2Vec: Complex Semantic Path Augmented
Heterogeneous Network Embedding. In: Advances in Knowledge Discovery and
Data Mining, Springer, Berlin, 196-208.
https://doi.org/10.1007/978-3-319-93037-4_16

[17] Faraz, A., Haider, H., Shafiq, M.Z. and Farooq, M. (2009) Using Spatio-Temporal
Information in API Calls with Machine Learning Algorithms for Malware Detec-
tion. Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence,
Chicago, 9 November 2009, 55-62. https://doi.org/10.1145/1654988.1655003

[18] Pascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M. and Thomas, A. (2015)
Malware Classification with Recurrent Networks. Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, Brisbane, 19-24 April
2015, 1916-1920. https://doi.org/10.1109/ICASSP.2015.7178304

[19] Athiwaratkun, B. and Stokes, J.W. (2017) Malware Classification with LSTM and
GRU Language Models and a Character-Level CNN. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, 5-9 March 2017.
https://doi.org/10.1109/ICASSP.2017.7952603

[20] Zhang, J. and Chen, W. (2019) DeepCheck, a Non-Intrusive Control-Flow Integrity
Checking Based on Deep Learning. https://arxiv.org/pdf/1905.01858.pdf

[21] Song, W., Yin, H., Liu, C. and Song, D. (2018) DeepMem: Learning Graph Neural
Network Models for Fast and Robust Memory Forensic Analysis. ACM SIGSAC
Conference on Computer and Communications Security, Toronto, January 2018,
606-618. https://doi.org/10.1145/3243734.3243813

[22] “Hex Rays.” Hex Rays. http://www.hex-rays.com/products/ida

[23] Keras Development Team (2016) Keras: Deep Learning Library for Theano and
Tensorflow. https://keras.io/

[24] Bahdanau, D., Cho, K.H. and Bengio, Y. (2014) Neural Machine Translation by
Jointly Learning to Align and Translate. ICLR 2015.
https://arxiv.org/pdf/1409.0473.pdf

[25] Hochreither, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural
Computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

[26] Xu, Y., Mou, L., Li, G., Chen, Y., Peng, H. and Jin, Z. (2016) Classifying Relations

https://doi.org/10.4236/jis.2020.112007
https://doi.org/10.1007/s11416-016-0283-1
https://doi.org/10.1109/DSN.2017.29
https://doi.org/10.1145/3110025.3116211
https://doi.org/10.1155/2019/8195395
https://doi.org/10.1007/978-3-319-93037-4_16
https://doi.org/10.1145/1654988.1655003
https://doi.org/10.1109/ICASSP.2015.7178304
https://doi.org/10.1109/ICASSP.2017.7952603
https://arxiv.org/pdf/1905.01858.pdf
https://doi.org/10.1145/3243734.3243813
http://www.hex-rays.com/products/ida
https://keras.io/
https://arxiv.org/pdf/1409.0473.pdf
https://doi.org/10.1162/neco.1997.9.8.1735

I. Karamitsos et al.

DOI: 10.4236/jis.2020.112007 120 Journal of Information Security

via Long Short Term Memory Networks along Shortest Dependency Path.
https://doi.org/10.18653/v1/D15-1206
https://arxiv.org/pdf/1508.03720

[27] Graves, A. (2013) Generating with Recurrent Neural Networks.
https://arxiv.org/pdf/1308.0850.pdf

https://doi.org/10.4236/jis.2020.112007
https://doi.org/10.18653/v1/D15-1206
https://arxiv.org/pdf/1508.03720
https://arxiv.org/pdf/1308.0850.pdf

	Malware Detection for Forensic Memory Using Deep Recurrent Neural Networks
	Abstract
	Keywords
	1. Introduction
	2. Host-Based Intrusion Detection
	2.1. Low-Level Machine or Assembly Code
	2.2. High-Level API Calls

	3. Combination High-Level and Low-Level Data
	4. Methodology
	4.1. Data Collection
	4.2. Data Processing

	5. Models under Study
	5.1. Long Short Term Memory (LSTM)
	5.2. Bidirectional Long Short Term Memory (BLSTM)
	5.3. Attention
	5.4. Max Polling
	5.5. Logistic Regression Classification

	6. Performance Analysis
	Results

	7. Conclusion
	8. Future Work
	Conflicts of Interest
	References

