
Journal of Information Security, 2024, 15, 378-409
https://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2024.153022 Jul. 29, 2024 378 Journal of Information Security

Incident Detection Based on Differential
Analysis

Mohammed Ali Elseddig1, Mohamed Mejri2

1Computer Science and Information Technology, Sudan University of Science and Technology, Khartoum, Sudan
2Computer Science Department, Laval University, Quebec, Canada

Abstract
Internet services and web-based applications play pivotal roles in various sen-
sitive domains, encompassing e-commerce, e-learning, e-healthcare, and
e-payment. However, safeguarding these services poses a significant chal-
lenge, as the need for robust security measures becomes increasingly impera-
tive. This paper presented an innovative method based on differential analys-
es to detect abrupt changes in network traffic characteristics. The core con-
cept revolves around identifying abrupt alterations in certain characteristics
such as input/output volume, the number of TCP connections, or DNS que-
ries—within the analyzed traffic. Initially, the traffic is segmented into dis-
tinct sequences of slices, followed by quantifying specific characteristics for
each slice. Subsequently, the distance between successive values of these
measured characteristics is computed and clustered to detect sudden changes.
To accomplish its objectives, the approach combined several techniques, in-
cluding propositional logic, distance metrics (e.g., Kullback-Leibler Diver-
gence), and clustering algorithms (e.g., K-means). When applied to two dis-
tinct datasets, the proposed approach demonstrates exceptional performance,
achieving detection rates of up to 100%.

Keywords
IDS, SOC, SIEM, KL-Divergence, K-Mean, Clustering Algorithms, Elbow
Method

1. Introduction

The 21st century has witnessed the profound impact of the Internet, emerging as
one of the most transformative inventions in our lives. Presently, the Internet
transcends numerous boundaries, revolutionizing the way we communicate,
engage in recreational activities, conduct work, shop, socialize, enjoy music and

How to cite this paper: Ali Elsiddig, M.
and Mejri, M. (2024) Incident Detection
Based on Differential Analysis. Journal of
Information Security, 15, 378-409.
https://doi.org/10.4236/jis.2024.153022

Received: May 29, 2024
Accepted: July 26, 2024
Published: July 29, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2024.153022
https://www.scirp.org/
https://doi.org/10.4236/jis.2024.153022
http://creativecommons.org/licenses/by/4.0/

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 379 Journal of Information Security

movies, order food, manage finances, extend birthday wishes to friends, and
more. The indispensability of these service applications is paramount for mod-
ern organizations, demanding uninterrupted availability and global accessibility
around the clock.

The exponential growth of sensitive services and web-based applications has
become a magnet for hackers seeking lucrative gains, technological secrets, in-
cluding vaccine-related information, or any competitive edge. This surge in val-
uable data has not only enticed criminal organizations globally but has also led
certain governmental entities to recruit exceptionally skilled security experts for
cyberattack operations.

The continuous expansion of both lawful and unlawful activities has led to an
exponential increase in the complexity and volume of Internet traffic. As a result,
network security administrators grapple with ever-evolving and intricate chal-
lenges, striving to swiftly impede malicious traffic. To combat this, they heavily
rely on a trio of key tools: Firewalls, SIEM (Security Information and Event
Management), and IDSs (Intrusion Detection Systems), which stand as primary
instruments for detecting and filtering suspicious traffic.

To scrutinize and identify potentially suspicious activities within network
traffic using IDSs, two primary detection methods prevail: signature-based and
anomaly-based detection. Signature-based or misuse detection methods employ
pattern-matching techniques to identify pre-known attacks. The primary ad-
vantage lies in their high accuracy, ensuring minimal false positives or negatives
when detecting previously recognized suspicious attacks. Anomaly-based detec-
tion methods necessitate an initial phase to comprehend normal traffic patterns,
employing techniques like machine learning, statistical analysis, or know-
ledge-based methodologies. Any significant deviation between observed traffic
and established norms is flagged as suspicious. The primary advantage lies in its
capability to effectively identify unknown suspicious attacks with commendable
accuracy.

The current state of the art presents a myriad of intriguing techniques (e.g.,
[1]-[4]) and tools that have notably bolstered network security by effectively de-
tecting and thwarting malicious traffic. Nevertheless, the challenge persists: cy-
berattacks persistently wreak havoc, inflicting substantial damage. Hence, any
novel contribution that mitigates the risks associated with network traffic would
be immensely valued.

This paper introduces a novel technique employing differential analysis to
discern suspicious network traffic. The approach initially segments traffic into
small-time slices, transforming each of them into a value in n . Subsequently,
it computes the divergence between neighboring slices to unveil abrupt changes
in traffic behavior. After that, clustering techniques are applied to abstracted in-
tervals to validate traffic homogeneity (a single class) or detect significant varia-
tions (multiple classes), indicating potential suspicious activities.

The approach we introduce is geared towards enhancing the efficiency of Se-
curity Information Event Management (SIEM) [5], an integral component of a

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 380 Journal of Information Security

Security Operations Center (SOC) [6]. A (SIEM), such as Wazuh [7], encapsu-
lates a suite of functionalities aimed at gathering, analyzing, and presenting in-
formation sourced from network and security devices. It essentially integrates
two vital components: Security Information Management (SIM) and Security
Event Management (SEM). SIM focuses on storing, analyzing, and reporting log
files, while SEM is responsible for real-time monitoring, event correlation, noti-
fications, and console views.

The rest of this paper is organized as follows. Section 2 delves into related
works within the field. Section 3 details the methodology of the approach. Sec-
tion 4 presents three case studies. Finally, concluding remarks are presented in
Section 5.

2. Related Work

The state of the art contains many valuable techniques that have significantly
contributed to the improvement of the security of network services and applica-
tions. Here, the study focuses on anomaly-based detection techniques and me-
thods that try to detect suspicious traffic based on IP packets information such
as IP address (layer 3 in the TCP/IP Model), TPC or UDP ports (layer 4) and
web application data (layer 5).

Najafabadi et al. proposed in [8] an anomaly detection mechanism for detect-
ing HTTP GET flood attacks. They used the Principal Component Analysis
(PCA)-subspace method on the browsing behavior instances extracted from
HTTP server’s logs in order to detect abnormal behaviors. They apply the ap-
proach to detect some DDoS and HTTP GET flood attacks. This approach used
the supervised machine learning techniques.

In [9], Betarte et al. proposed a method based on machine learning to enhance
the famous ModSecurity [10], a Web Application Firewall provided by OWASP,
by using one-class classification and n-gram techniques on three datasets. The
proposal method used the supervised machine learning techniques and provides
better detection and false positive rates than the original version of ModSecurity.

Wang et al. presented in [11] a new web anomaly detection method which
uses Frequent Closed Episode Rules Mining (FCERMining) algorithm to analyze
web logs and detect new unknown web attacks. The method used the supervised
machine learning techniques and has a detection rate of 96.67% and a false
alarm rate of 3.33% for detecting abnormal users.

In [12], Brontë et al., proposed an anomaly detection approach that uses the
cross-entropy technique to calculate three metrics: cross entropy parameters
(CEP), cross entropy value (CEV) and cross entropy data type (CET). These me-
trics aim to compare the deviation between learned request profiles and a new
web request. The cross-entropy approach performs better than Value Length
and Mahalanobis distance approach. This approach used the supervised machine
learning techniques, focused on detecting four types of web attacks: SQLI, XSS,
RFI, and DT and has a detection rate of 66.7%.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 381 Journal of Information Security

Ren et al. presented in [13] a method based on the bag of words (BOW) model
to extract features and efficiently detect web attacks with hidden Markov algo-
rithms. BOW has higher detection rate and lower false alarm rate when com-
pared with N-gram feature-extraction algorithms. This approach used the su-
pervised machine learning techniques to detecting SQL injection and cross-site
scripting attacks. The accuracy increased to 96%, but the false alarm rate still
remained low.

In [14], Pukkawanna et al. proposed a method using port pair distribution
and Kullback-Leibler (KL) divergence to detect suspicious flows when the KL
divergence deviates from an adaptive 3-sigma rule-based threshold. This ap-
proach used the unsupervised machine learning techniques to detecting mimicry
attacks. The approach does not need any previous learning step.

Hounkpevi proposed in [15] a method using K-means, port pair distribution
and Kullback-Leibler (KL) algorithm that improves [14]. The approach com-
pares the traffic of current time intervals with the nearby ones by applying the
k-mean algorithm. Any significant divergence means that the current time in-
terval traffic is suspicion. This approach used the unsupervised machine learning
techniques to detecting mimicry attacks. The proposal approach seems more ef-
ficient than [14].

In [16], Munz et al. presented a novel Network Data Mining approach that
applies the K-means clustering algorithm to feature datasets extracted from flow
records. Training data containing unlabelled flow records are separated into
clusters of normal and anomalous traffic. This approach used the unsupervised
machine learning techniques to detecting Port scans and D/oS attacks. In this
approach there is a challenge to determine the optimum number of clusters.

Asselin et al. presented in [17] an anomaly detection model based on crawling
method and n-gram model that is effective in reducing the access to the log file
generated by the web servers. It has shown to be a good solution for web appli-
cations black-box analysis but it is not efficient for detecting attacks that use
cookie or post data. This approach used the unsupervised machine learning
techniques to detecting brute force, DDoS, Crawler Miss, High Load, Anomal-
ous Query attacks and has a detection rate of 95%.

Swarnkar and Hubballi described, in [18], a new method for payload-based
anomaly detection that learns normal behavior and detects deviations. The ap-
proach makes a frequency range of occurrences of n-grams from packets in
training phase and count the number of deviations from the range to detect
anomalies. The approach showed lower false positives and higher detection rate
when compared to Anagram methods.

Kang et al. [19] described a one-class classification method for improving in-
trusion detection performance for malicious attacks. Results scores were eva-
luated based on artificially generated instances in two-dimensional space. In the
detection phase, the approach based on simple logic, the center of the normal
patterns was determined at (0, 0), and two malicious class centers were at (1, 1)
and (−1, −1), respectively. Experimental results on simulated data show better

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 382 Journal of Information Security

performance.
Camacho et al. [20] developed a framework that used a PCA-based multiva-

riate statistical process control (MSPC) approach. The framework monitors both
the Q-statistic and D-statistic. Thereby, it was possible to establish control limits
in order to detect anomalies when they became consistently exceeded.

Yoshimura et al. [21] proposed a new model called DOC-IDS, which is an in-
trusion detection system based on Perera’s deep one-class classification. This
approach used the supervised machine learning techniques to detecting Mul-
ti-attacks and has a detection rate of 97%.

Zavrak et al. [22] proposed an intrusion detection and prevention architecture
called SAnDet which is based on an anomaly-based attack detection module that
uses the EncDecAD method to detect attacks. This approach used the semi-super-
vised machine learning techniques to detecting DoS and Portscan attacks and
has a detection rate of 99.3%.

The evaluation of the previous approaches according to cited criteria is illu-
strated by Table 1.

Table 1. Evaluation of the approaches.

Author Techniques Attacks types Target Learning types
Logic
rules

Training is
not required

Multi-
target

Detection
rate

Pukkawanna et
al. [14], 2015

Kullback-Leibler
(KL) Divergence

Mimicry attacks
TCP/

UDP-Ports
unsupervised

learning
× ✓ × 12.5%

Hounkpevi
[15], 2020

- Kullback-Leibler
(KL) Divergence.
- k-mean algorithm.

Mimicry attacks
TCP/

UDP-Ports
unsupervised

learning
× ✓ × 66.7%

Najafabadi et al.
[8], 2017

PCA (Principle
Component
Analysis)-Subspace
method

detecting HTTP
GET flood

attacks DDOS
HTTP.Url

supervised
learning

× × × -

Betarte et al.
[9], 2018

- one-class
classification
- n-gram

Multi attacks HTTP.Url
supervised

learning
× × × 90%

Wang et al.
[11], 2017

FCER (Frequent
Closed Episode
Rules) Mining
algorithm

Unknown web
attacks.

HTTP.Url
supervised

learning
× × × 96.67%

Bronte et al.
[12], 2016

Cross Entropy.
SQLI, XSS, RFI,

and DT.
HTTP.Url

supervised
learning

× × × 66.7%

Ren et al. [13],
2018

-Bag of words
(BOW) model
- Hidden Markov
algorithms.

SQL injection
and cross-site

scripting
HTTP.Url

supervised
learning

× × × 96%

Munz et al. [16],
2007

K-mean algorithm.
Port scans and
D/oS attacks.

TCP/
UDP-Ports

unsupervised
learning

× ✓ × -

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 383 Journal of Information Security

Continued

Asselin et al.
[17], 2016

black-box approach
(crawling based)
N-gram model.

brute force,
DDoS, Crawler

Miss, High Load,
Anomalous

Query

HTTP.Url
unsupervised

learning
× ✓ × 95%

Yoshimura
et al. [21], 2022

one-class
classification.

Multi attacks -
supervised

learning
× × × 97%

Zavrak et al.
[22], 2023

EncDecAD. LSTM. DoS Portscan -
semi-supervised

learning
× × × 99.3%

The existing approaches could be evaluated according to many criteria such

as:
● Attack Types: The different types of attacks detected by the approach
● Target: The fields of the IP packet that are analyzed by the approach to detect

suspicious behaviors such as IP address, HTTP.Url and TCP-UDP Port.
● Learning Types: If the approach uses any supervised or unsupervised ma-

chine learning techniques.
● Logic Rules: It is useful if the approach provides an expressive language such

as temporal logic to specify a rich variety of malicious traffics (fine-grained
specification).

● Training is not required: Most of existing approaches require a training step,
but some few others do not.

● Multi-Target: It is related to the ability of the approach to detect suspicious
traffic that requires the analysis of many fields in IP packets in the same time.

● Detection Rate: It gives the percentage of detected bad traffics.

3. Methodology

The detection of suspicious traffic is based on the following simple observation:
the nature of the traffic should not change suddenly. If this happens, it will be
suspicious. For example, there is no reason that the nature of the traffic between
the period P1 = [10 am - 10:30 am] will be so different from the period P2 = [10:30
am - 11 am]. However, distinctions might reasonably exist between daytime and
nighttime traffic patterns, as well as between traffic from different years.

Let : →  be a function such that ()y x=  measures a particular
feature related to the network traffic.(e.g., x is time and y is the number of pack-
ets coming from a specific country). Assume that the curve of  is as shown
by Figure 1, then it is clear that there exists a sudden variation from ()4f to
()5f which is suspicious.
More precisely, the traffic τ will be scattered to one or many sequences of or-

dered slices. On each of these slices, we apply a function  that measure some
of its features. After that, we compute the distance between successive values of
 as shown in Figure 2. The sudden changes of  appears, if there exist a
big deviations between the measured distances.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 384 Journal of Information Security

Figure 1. Sudden variation in traffic.

Figure 2. Looking for sudden variation in traffic.

The function F may not solely yield a singular real value within  ; instead,

its outputs could exist within n . For example, it might produce a complete
distribution that assesses various characteristics across analyzed slices of the
trace. In such scenarios, assessing the disparity between F values could involve
employing measures like KL-divergence or Euclidean distance.

Furthermore, in determining whether the variation between successive F val-
ues exhibits abrupt changes or unacceptable deviations, clustering analysis could
be valuable. If the resultant clusters surpass one in number, and the expectation
dictates smooth change in traffic distributions across successive slices, we con-
clude that the analyzed traffic is suspicious.

In the subsequent sections, we elaborate on and formalize all of these analyses.
To maintain simplicity in presenting the approach, we concentrate solely on

network traffic. However, it’s important to note that the same concept can be
extended to analyze any type of log file.

3.1. Preliminary Notations

In order to articulate the definition of suspicious traffic formal and more suc-
cinctly, it’s essential to establish a set of initial notations.

We assume that network traffic is represented by a sequence of stamped IP
packets or messages where each one of them is a structure that contains a header
and a payload. We suppose that we have access to any field (e.g., IP addresses,

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 385 Journal of Information Security

ports and protocols) to any non-encrypted header of the network protocols (e.g.,
IP, TCP and UDP) inside an intercepted traffic.

Definition 1 (Messages). We denote by  the set of messages that could
be found in the network traffic.
● nf : we use nf to range over the possible fields in messages of  . Exam-

ples of nf are given in Table 2.
● @ nm f : if m is a message and nf is an attribute, we denote by @ nm f the

value of nf in m.

Table 2. Examples of attributes.

Field Name

Stamped messages are called events and are defined as follows:
Definition 2 (Events). We denote by  , the set of the possible events built

from  as follows:

:: ,
::

e t m
t time
m

=

=
∈

● @ ne f : we denote by @ ne f the value of nf in e. It is defined as follows:
, @Tt m t= and , @ @n nt m f m f= , if Tnf ≠ .

A sequence of stamped events forms a trace.
Definition 3 (Trace). A trace τ over  is defined using the following BNF

grammar:
:: | | .e e

e
τ τ=
∈



where  is the empty trace. The “.” represents the chronological order, i.e., if e
appears before e' in a trace τ, then necessarily e happened at a previous time than
e'.

We introduce the following propositional logic allowing to verify whether an
event in a trace respects some conditions. The main purpose of this language is
to define specific patterns of messages we are looking for within the trace, such
as message having a given source or destination IP addresses or ports.

Definition 4 (Propositional Event Logic). Let nf be a field name and v be
a value, we introduce the Propositional Event Logic (PEL) as follows:

, :: true | false | | | |
: | | | | |

np q f op v p q p q p
op

= ∨ ∧ ¬

= = ≠ ≤ ≥ < >

An event e respects a proposition p, and we say that () truep e = , if one of the

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 386 Journal of Information Security

following conditions holds:

()
()() ()
()() () ()
()() () ()
()() () ?

true true

 @ n n

e

p e p e

p q e p e q e

p q e p e q e

f op v e e f op v

=

¬ = ¬

∨ = ∨

∧ = ∧

=

For instance, to know if (TCP.DestPort = 80)(e), we check if (e@TCP.DestPort)
= ? 80.

3.2. Trace Slicing

This step requires meticulous attention to ensure the approach’s effectiveness is
maximized. It’s important to decompose the trace into one or multiple se-
quences of slices characterized by smooth variations. The end user must have a
clear understanding of their activity’s nature to identify instances where sudden
changes should not occur. Below, we provide some illustrative examples:
● Significant and sudden fluctuations in traffic volume are often indicative of

potential Denial of Service (DoS) attacks. To detect this activity, it’s appro-
priate to divide the traffic trace τ into successive discrete slices, denoted as

1, , nτ τ , each representing a predefined time window, such as 10 minutes.
● The previous analysis will be more precise and efficient if we separate the

traffic of different IP addresses. Also input traffic can be separated from
output. Sudden variation in input traffic can be du to DoS attack but varia-
tion of output traffic can be generated by a malware (e.g. botnet) activity.
Therefore this kind of separation allow us either to know the IP address in
the suspicious traffic as well as the nature of the attack.

● Input and output traffic of different IP address can be further separated into
traffics related to different IP protocols and TCP ports.

● The previous divisions can be further refined as we will show in the case
study section. For instance, we can separate the traffic of different days of the
weak. By doing so, we assume that traffic related to successive Monday
should not present a sudden change.

The forthcoming definition introduces a slicing function designed to partition
a trace, catering to diverse scenarios and requirements.

Definition 5 (Slicing). Let p be a propositional formula in PEL and τ be a
trace in  . We inductively introduce a slicing function ()p τ as follows:

()

() ()
()

() () ()

::

if false
::

if true

. :: .

p

p

p p p

p e
e

e p e

e eτ τ

=

 ==  =
=

  




  

Let 1, , np p denote propositions. We extend the selection function to oper-
ate on sets of sequences of propositions as follows:

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 387 Journal of Information Security

{ } () () (){ }
() () ()

11

11

, ,

, ,

, ,

, ,
nn

nn

p pp p

p pp p

τ τ τ

τ τ τ

=

=









  

  

If ()p i is a proposition that depends on i, we use the notation () ,

end

sart jmp
p i

as an abbreviation of

() () (), , ,p start p start jmp p start n jmp+ + ∗

where n is the natural number such that n jmp end∗ ≤ and ()1n jmp+ ∗ . For
instance:

● () 8

1,2
p i is same as () () () ()1 , 3 , 5 , 7p p p p , and

● () ()() 60

0,10
T 10.00. T 10.00. 10

j
j j

=
≥ ∧ ≤ + is same as 1 6, ,p p

, where:

()()
()()
()()
()()
()()
()()

1

2

3

4

5

6

T 10.00.00 T 10.00.10

T 10.00.10 T 10.00.20

T 10.00.20 T 10.00.30

T 10.00.30 T 10.00.40

T 10.00.40 T 10.00.50

T 10.00.50 T 10.00.60

p

p

p

p

p

p

= ≥ ∧ ≤

= > ∧ ≤

= > ∧ ≤

= > ∧ ≤

= > ∧ ≤

= > ∧ ≤

Example 1 (Selection). Let τ be the trace containing the traffic captured be-
tween 10:00:000 and 10:00:052 focusing on IP.Prot as shown by Table 3.

Table 3. Captured traffic.

Let () ()() 60

0,10
T 10.00. T 10.00. 10

j
j jϕ

=
= ≥ ∧ ≤ + . When slicing τ using φ, we

compute ()Sϕ τ , resulting in the sequence 1 6, ,τ τ
, as illustrated in Table 4.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 388 Journal of Information Security

Table 4. Sliced captured traffic.

3.3. Feature Measuring

Each slice, derived from the preceding step, undergoes transformation into an
element in n (1n ≥) by quantifying certain characteristics through a prede-
fined function F. For simplicity, we concentrate on a class of functions F that
produce distributions by tallying events adhering to specified conditions, as de-
lineated in the following definition:

Definition 6 (Feature Measuring Function). Let q be a propositional for-
mula in PEL and τ be a trace in  . We introduce a slicing function ()q τ
inductively as follows:

()

() ()
()

() () ()

:: 0

0 if false
::

1 if true

. ::

q

q

q q q

q e
e

q e

e eτ τ

=

 ==  =
= +

 



  

Broadly speaking, ()q τ returns the number of packets in τ that satisfy the
property q.

We also extend the selection function to operate on both a sequence of propo-
sitions 1, , nq q and a set of traces as follows:

() () ()

() () ()
11 , ,

1 1

, ,

, ,
nn q qq q

q n q q n

τ τ τ

τ τ τ τ

=

=





 

  

  

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 389 Journal of Information Security

{ }() () (){ }1 1, ,q n q q nτ τ τ τ=   

Example 2. Let’s examine the trace provided in Example 1. Let

1 2 3 4, , ,q q q qψ = such that ()1 IP.Prot 1q = = , ()2 IP.Prot 6q = = ,

()3 IP.Prot 17q = = and () () ()4 IP.Prot 1 IP.Prot 6 IP.Prot 17q = ≠ ∧ ≠ ∧ ≠ , then
when applying the function ψ to the slices 1 6, ,τ τ as depicted in Table 4,
the resulting outcomes are as illustrated in Table 5.

Table 5. Quantification of slices using  .

()ϕ τ ()iψ τ

1τ 1,3,1,0

2τ 1, 2, 2,0

3τ 0,3, 2,0

4τ 0,0,0,5

5τ 0, 2,1,1

6τ 2,0,0,0

For instance, ()1 1,3,1,0ψ τ = indicates that in slice 1τ , there is 1 packet

with IP.Prot = 1, 3 packets with IP.Prot = 6, 1 packet with IP.Prot = 17, and 0
packets with other IP.Prot values.

The distributions of these slices serve as inputs to algorithms like KL-Divergence,
enabling the measurement of traffic divergence across distinct slices. However,
in cases where certain events are absent during observation, their frequencies
register as zero, posing a challenge for computing KL-Divergence and potentially
leading to division by zero errors. To address this issue, we must either explore
alternative divergence techniques or slightly adjust the data distribution through
methods such as smoothing. The following definition illustrates one of the
well-known smoothing techniques.

Definition 7 (Laplace Smoothing). Let 1, , nv v v= 
 be a sequence of real

numbers. We denote by ()k vπ the k-Laplace Smoothing Distribution (k-LSD)
of a trace and we define it as follows:

() 1

1 1

, ,k n
n

ii
n

ii

k vk vv
k v k v

π
= =

++
=

+ +∑ ∑


We augment the function  with Laplace smoothing as follows:
Definition 8 (Feature Measuring Function with Smoothing). We denote by

ˆ
p , the smoothed version of p achieved through the application of the

smoothing function 1π . More formally:
1ˆ

p pπ=  

Example 3. By applying 1π to column 2 of Table 5, we obtain ()ˆ
iψ τ as

shown by column 3 of Table 6.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 390 Journal of Information Security

Table 6. Quantification and smoothing of slices using ̂ .

()ϕ τ ()iψ τ ()ˆ
iψ τ

1τ 1,3,1,0 1 1 1 3 1 1 1 0 1 2 1 1, , , , , ,
1 5 1 5 1 5 1 5 3 3 3 6
+ + + +

=
+ + + +

2τ 1, 2, 2,0 1 1 1 2 1 2 1 0 1 1 1 1, , , , , ,
1 5 1 5 1 5 1 5 3 2 2 6
+ + + +

=
+ + + +

3τ 0,3, 2,0 1 0 1 3 1 2 1 0 1 2 1 1, , , , , ,
1 5 1 5 1 5 1 5 6 6 2 6
+ + + +

=
+ + + +

4τ 0,0,0,5 1 0 1 0 1 0 1 5 1 1 1, , , , , ,1
1 5 1 5 1 5 1 5 6 6 6
+ + + +

=
+ + + +

5τ 0, 2,1,1 1 0 1 2 1 1 1 1 1 1 1 1, , , , , ,
1 5 1 5 1 5 1 5 6 2 3 3
+ + + +

=
+ + + +

6τ 2,0,0,0 1 2 1 0 1 0 1 0 1 1 1 1, , , , , ,
1 5 1 5 1 5 1 5 2 6 6 6
+ + + +

=
+ + + +

When detecting suspicious activities within traffic data, it can be advanta-

geous to prioritize specific positions within the values returned by ̂ in n .
For instance, if ̂ yields ()1, , nv v

 where each iv represents traffic origi-
nating from a specific country, these values might be weighted according to the
respective country’s reputation in cyberattacks, assigning greater weight to
countries with negative reputations. Presently, there’s a lack of a systematic ap-
proach to guide end users in determining these weight values. However, we be-
lieve that fine-tuning these weights based on intuition could enhance detection
capabilities.

The subsequent definition formalizes the concept of weights.
Definition 9 (Weighting Function ω). We denote by ω a weighting function

that accepts weights in ()n+ , a tuple in n , and returns a probability distri-
bution, i.e.: () []: 0,1

n nnω + × →  .
Let 1, , mV V be in n). We extend ω to a set { }1, , mV V

 and a sequences

1, , mV V
 of tuples as follows:

{ }() () (){ }
() () ()

1 1

1 1

, , , ,

, , , ,
m m

m m

V V V V

V V V V

ω ω ω

ω ω ω

=

=

 

 

The following definition provides an example of ω.
Definition 10. (Product Scalar Weighting Function) We define the scalar

product weighting function, abbreviated as spw, as follows:

() []

() 1 1

spw : 0,1

wwspw w, , ,
w. w.

n nn

n nvvv
v v

+ × →

××
= 

 

where .w u is the scalar product of the tow vectors w and u, i.e.:

1
w. w

n

i i
i

u v
=

= ×∑

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 391 Journal of Information Security

We extend the function ̂ by incorporating a weighting function as follows:
Definition 11 (Feature Measuring Function with Smoothing and Weight-

ing). Let ω a weighting function. In the sequel, we denote by ,
ˆ

p ω , the weighted
version of ˆ

p using the weighting function ω. More precisely:

,
ˆ ˆ

p pω ω=  

and for any trace τ and a weight vector w, we have:

() ()(),
ˆ ˆw, w,p pω τ ω τ= 

Example 4. Let’s examine the trace provided in Example 3. Suppose we aim to
prioritize packets containing ports not in 1, 6, 17. As an example, we apply the
weighting function spwω = with weights w 0.2,0.2,0.2,0.4= . The results
are illustrated in Table 7.

Table 7. Slice distribution.

()ϕ τ ()iψ τ ()ˆ
iψ τ (),

ˆ , iwψ ω τ

1τ 1,3,1,0 1 2 1 1, , ,
3 3 3 6

 0.2,0.4,0.2,0.2

2τ 1, 2, 2,0 1 1 1 1, , ,
3 2 2 6

 0.2,0.3,0.3,0.2

3τ 0,3, 2,0 1 2 1 1, , ,
6 6 2 6

 0.1,0.4,0.3,0.2

4τ 0,0,0,5 1 1 1, , ,1
6 6 6

 0.067,0.067,0.67,0.8

5τ 0, 2,1,1 1 1 1 1, , ,
6 2 3 3

 0.1,0.3,0.2,0.4

6τ 2,0,0,0 1 1 1 1, , ,
2 6 6 6

 0.429,0.143,0.143,0.286

3.4. Divergence Measuring

After abstracting and transforming the traffic into smoothed distributions, the
next step involves measuring the divergence between adjacent slices within each
sequence. To achieve this, we employ a divergence function such as the KL-Div-
ergence.

Definition 12 (Divergence Function). A divergence measuring function,
denoted by Δ, can be any function with the following signature:

[] []: 0,1 0,1n n∆ × → .
Examples of divergence measuring functions are given in Table 8.

Table 8. Examples of divergence functions.

Divergence

Δ ::= KL-Divergence [23] | Cosine [24] |TF-IDF [25] |…

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 392 Journal of Information Security

Notice that, since the KL-Divergence, usually denoted by KLD , between two
distributions ()1, , nP p p= 

 and ()1, , nQ q q= 
 is not commutative (i.e.,

() ()|| ||KL KLD P Q D Q P≠ as shown by Equations (1) and (2)), we can consider

() () () (), , || ||KL KLP Q KL P Q D P Q D Q P∆ = = + as the divergence value.

 () 2
1

|| log
n

i
KL i

i i

pD P Q p
q=

 
= ×  

 
∑ (1)

 () 2
1

|| log
n

i
KL i

i i

qD Q P q
p=

 
= ×  

 
∑ (2)

Example 5. We apply the KL-Divergence to the trace of Example 4. The result
is shown by Table 9.

Table 9. Slice distribution.

()ϕ τ ()iψ τ (),
ˆ ,i iu wψ ω τ=  ()1,i iPKL u u + ()1 ,i iPKL u u+ ()1,i iKL u u +

1τ 1,3,1,0 1 0.2,0.4,0.2,0.2u = 0.049 0.51 1

2τ 1, 2, 2,0 2 0.2,0.3,0.3,0.2u = 0.0755 0.066 0.142

3τ 0,3, 2,0 3 0.1,0.4,0.3,0.2u = 1.3435 1.2440 2.597

4τ 0,0,0,5 4 0.067,0.067,0.67,0.8u = 0.5107 0.6265 1.137

5τ 0, 2,1,1 5 0.1,0.3,0.2,0.4u = 0.4024 0.5388 0.941

6τ 2,0,0,0 6 0.429,0.143,0.143,0.286u = - - -

3.5. Divergence Clustering

After quantifying the divergence between successive slices of traces, the next step
is to ascertain if significant abrupt changes have occurred. To accomplish this,
we estimate the number of clusters generated by the divergence values. If this
count exceeds one, we infer that the trace contains suspicious traffic.

Definition 13 (Clustering). Let : 2 true,falsen → be a clustering algo-
rithm that estimates the optimal number of clusters N associated with a dataset
in 2 . It returns true if the number N n≥ , indicating that the threshold for
suspicious activity has been surpassed, and false otherwise.

We are particularly interested in 2 . When 2 returns true, it indicates that
the traffic is considered suspicious. Examples of the 2 function are provided
in Table 10.

Table 10. Examples of clustering functions.

Clustering

2 ::= HC [26] | KM [27] | EM [28] |…

Example 6. Let’s apply the K-means algorithm with the Elbow Method to

compute 2 on the trace from the previous example, as illustrated in Table 11.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 393 Journal of Information Security

Table 11. K-means results.

Cluster 1 Cluster 2

0.100, 0.142, 0.941, 1.137 2.587

3.6. Suspicious Traffic Detection

Now, we have all the necessary ingredients to define a suspicious traffic.
Definition 14 (Suspicious Traffic)

● Let τ be a trace.
● Let 1, , np pϕ = 

 be a n sequences of propositions.
● Let 1, , mq qψ = 

 be a m sequences of propositions.
● Let 1w w , , wn= 

 be a weight vector in n .
● Let [] []: 0,1 0,1n n∆ × → be a divergence measuring function such as

KL-Divergence.
● Let { }2 : 2 true,false→ be a clustering algorithm that estimated the best

number of clusters N related to the set of data in 2 and returns true if
2N ≥ , false otherwise.

We define ()
2

,
, , , ,wSuspiciousσ ω τ ϕ ψ∆  , a generic function designed to detect

suspicious traffic within an analyzed trace τ, as follows:

() ()()()()2, 2 ,
ˆ, , ,w w,Suspiciousω ψ ω ϕτ ϕ ψ τ∆ = ∆   

The Suspicious function integrates various analyses, conducted in the se-
quence depicted in Figure 3, and returns true if the traffic is deemed suspicious,
and false otherwise. It requires three functions, ω, Δ, and 2 , as well as four pa-
rameters: τ, w, φ, and ψ.

Figure 3. Steps involved in detecting suspicious traffic.

Example 7. Let’s apply the Suspicious function to the trace provided in Ex-

ample 1 to ascertain if there exists a sudden change. Based on the results shown
in Table 11, where 2 generates more than one cluster, we deduce that:

()
2, , , ,w trueSuspiciousω τ ϕ ψ∆ =

The suspicious traffic is triggered on slice 3τ .

4. Case Study

In this section, we present three cases of detecting suspicious activities using two
distinct datasets comprising real traffic. The first case involves detecting suspi-
cious activities based on daily patterns in the dataset from [29]. The second and
third cases utilize the UNSW-NB15 dataset [30] to detect suspicious traffic by
analyzing TCP and DNS traffic, respectively.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 394 Journal of Information Security

4.1. Detecting Suspicious Activities Based on Days of the Week

An example of an interesting dataset with a real traffic is available at [29]. It
contains 21,000 rows and covers the traffics related to 10 workstations with local
IP addresses over a period of three months. Half of these local IP addresses were
hacked at some point during this period and became members of different bot-
nets and generated abnormal traffic.

A screenshot of a part of the dataset is shown in Figure 4, where:
● date: yyyy-mm-dd (from 2006-07-01 through 2006-09-30);
● l_ipn: local IP address (coded as an integer from 0-9);
● r_asn: remote ASN (an integer which identifies the remote Autonomous

System Network);
● f: flows (number of connections during the corresponding day).

Figure 4. A part of the dataset provided by [29].

We try to detect the infected computer based on the following assumption for

each workstation of the network: the nature of traffic may vary across different
days of the week. For instance, weekend traffic could differ significantly from

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 395 Journal of Information Security

that of weekdays. However, when we consider a specific day, such as Monday,
there is no compelling reason for it to undergo substantial changes from one
week to another. This implies that Monday’s traffic should remain relatively
consistent across all weeks. A similar pattern is expected for other days of the
week, such as Tuesday, Wednesday, and so forth.

Based on the assumption, we proceed as follows: we segregate the traffic asso-
ciated with each workstation and day of the week into distinct files. With ten
workstations and seven days a week, this results in a total of 70 files. Subse-
quently, each of these files undergoes analysis to identify any abrupt changes.

Here are the values of the parameters required used within the function
GSuspicious allowing to detect suspect traffic.
● τ (trace): the dataset available at [29].
● The trace is scattered into various slices, each exclusively comprising traffic

linked to a specific IP address and a designated day of the week. To illustrate,
for IP address 0, distinct slices are allocated for Mondays, Tuesdays, and so
forth. Similar slices are build for IP addresses 1 to 9. By doing this division,
we are implicitly making the assumption that for any IP address, the traffic of
different Mondays should be quite similar and this should be the same for the
other days of the week. More formally, the slicing will be based on the fol-
lowing set of propositions:

{ },
1 9
0 6

i j
i
j

pϕ
≤ ≤
≤ ≤

=


where

() (), , 7
.

N
i j j j

p IP i date dd j
+

= = ∧ =

and 21000N = represents the number of events in the trace.
● Let () ()1 1 , , n nq v q vψ = = = where 1, , nv v are the different values

that appears in the column r_asn presented in ascending order.
● () ()1w w , ,w 1, ,1n= = 

. This captures the fact that each element of the
partition has the same weight.

● Δ is the KL-Divergence.
● Let 2 is the composition of K-means and Elbow Methods. The K-means

do the clustering and the Elbow Methods estimate the best number of clus-
ters.

All these fixed parameters will be the input of our Suspicious function to con-
clude whether the traffic is suspicious or not. This function proceed as follows:
● After applying the function ϕ to the dataset, we obtain a separate file for

each IP address and each day of the week. For instance, for IP address 0 and
Monday, we generate a file that will be analyzed independently for suspicious
traffic. This file aggregates traffic not only from a single Monday but from
multiple Mondays, and our objective is to detect any sudden changes in the
distribution of traffic from one Monday to another. We repeat this process
for the other days of the week and for the remaining IP addresses.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 396 Journal of Information Security

● The traffic from each IP address and each day of the week undergoes trans-
formation through the function ψ , resulting in a point in n , where each
dimension represents the number of connections related to every r_asn, and
n is the total number of r_asn.

● Thanks to the function Δ, we quantify the divergence between every two
successive Mondays for each IP address, and we repeat this process for the
other days of the week as well.

● Using the function 2 (composition of the K-means and the Elbow Me-
thod), we estimate the number of clusters generated by the previous steps.

● If we observe two or more clusters for any analyzed sequence, we infer that
the traffic is suspicious.

Below, we present the results obtained from the Elbow Method corresponding
to the different days and IP addresses.

1) Monday: Based on the analysis of Monday traffic depicted in Figure 5, we
identify five non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious ma-
chines (0, 1, 2, 4, and 8).

Figure 5. Elbow results for every Monday.

2) Tuesday: Based on the analysis of Tuesday traffic depicted in Figure 6, we

identify five non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious ma-
chines (0, 1, 2, 4, and 8).

3) Wednesday: Based on the analysis of Wednesday traffic shown in Figure 7,
we observe five non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious
machines (0, 1, 2, 4, and 8).

4) Thursday: According to the analysis depicted in Figure 8, we identify five
non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious machines (0, 1, 2,
4, and 8) on Thursday.

5) Friday: Based on the analysis presented in Figure 9, we observe five
non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious machines (0, 1, 2,
4, and 8) on Friday.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 397 Journal of Information Security

Figure 6. Elbow results for every Tuesday.

Figure 7. Elbow results for every Wednesday.

Figure 8. Elbow results for every Thursday.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 398 Journal of Information Security

Figure 9. Elbow results for every Friday.

6) Saturday: According to the analysis shown in Figure 10, we can identify

five non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious machines (0,
1, 2, 4, and 8) on Saturday.

Figure 10. Elbow results for every Saturday.

7) Sunday: Based on the analysis presented in Figure 11, we observed five

non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious machines (0, 1, 2,
4, and 8) on Sunday.

Here are the conclusions extracted from Figures 5-11:
● There are five clear elbows showing that the number of clusters related to the

traffics of the machines l_ipn values 0, 1, 2, 4, and 8 is greater than one and
then they are the origins of the suspicious traffics shown in Table 12.

● There are five machines l_ipn values 3, 5, 6, 7, and 9 with no elbow, meaning
that the number of their clusters is one, then they are not associated with any
suspicious traffic showed in Table 12.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 399 Journal of Information Security

Figure 11. Elbow results for every Sunday.

Table 12. Detecting suspicious traffic based on days of the week.

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Unsuspicious 3, 5, 6, 7, 9 3, 5, 6, 7, 9 3, 5, 6, 7, 9 3, 5, 6, 7, 9 3, 5, 6, 7, 9 3, 5, 6.7, 9 3, 5, 6, 7, 9

Suspicious 0, 1, 2, 4, 8 0, 1, 2, 4, 8 0, 1, 2, 4, 8 0, 1, 2, 4, 8 0, 1, 2, 4, 8 0, 1, 2, 4, 8 0, 1, 2, 4, 8

Total Suspicious 0, 1, 2, 4, 8

● The confusion matrix for our approach:

 Predicted

 Negative Positive

Actual Negative True Negative (TN) False Negative (FN)

 Positive False Positive (FP) True Positive (TP)

Our approach predicted that 5/10 local IPs are botnets. Actually, only 5/10 lo-

cal IPs are real botnets. Therefore:

 Predicted

 Negative Positive Total

Actual Negative 5 0 5

 Positive 0 5 5

 Total 5 5 10

It follows that:

● TP TN 10 100%
TP TN FP FN

Accurac
10

y +
= =

+
=

+ +
.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 400 Journal of Information Security

● TP 5 100%
TP FP

Precisi n
5

o = ==
+

.

● TP 5 100%
TP FN

R call
5

e = =
+

= .

● False Negative (FN) = 0%.
● False Positive (FP) = 0%.
● Performance: Our code was executed on a Ubuntu virtual machine with a 2.3

GHz Intel Core i9 processor, equipped with 2 cores and 4GB of RAM. The
total execution time to process the entire dataset, consisting of 21,000 rows
covering 10 workstations over a three-month period, was approximately 51.7
seconds.

4.2. Detecting Suspicious Activities Based on DNS and HTTP
Traffic

The UNSW-NB15 dataset [30] was generated using the IXIA PerfectStorm tool.
It encompasses nine categories of modern attack types and incorporates realistic
behaviors of normal traffic. Comprising 49 features across various categories,
some of them are illustrated in Figure 12. Utilized as an attack tool, IXIA dis-
patches both benign and malicious traffic to different network nodes. A segment
of certain fields from this traffic is demonstrated in Table 13.

Figure 12. UNSW-NB15: example of features.

The network contains three sub networks as shown by Figure 13.
1) Sub network1 (server1): contains nodes with source IP addresses from

59.166.0.0 to 59.166.0.9.
2) Sub network2 (Server2): contains nodes with source IP addresses from

175.45.176.0 to 175.45.176.3.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 401 Journal of Information Security

Table 13. UNSW-NB15 samples.

Figure 13. UNSW-NB15 network.

3) Sub network3 (Server3): contains nodes with source IP addresses from

149.171.126.0 to 149.171.126.19.
Subnetwork 1 (servers1) and subnetwork 3 (server3) are configured to exhibit

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 402 Journal of Information Security

normal traffic patterns, whereas subnetwork 2 (server2) is associated with ab-
normal or malicious activities.

We employ our approach across various source IP addresses within all sub-
networks. Our assumption is that the nature of the outbound traffic should not
undergo sudden changes.

4.2.1. Detecting Suspicious Activities Based on DNS Traffic
Below are the values of the required parameters used within the Suspicious func-
tion for detecting suspicious traffic:
● τ (trace): it is the dataset available at [30].
● Let

() ()1IP.SourceAdd , , IP.SourceAdd nips ipsϕ = = =

where { }1, , nips ips
 are the different IP source addresses appearing in τ.

UDP.SourcePort

● Let
() ()
() ()

1IP.DestAdd UDP.DestPort , ,

IP.DestAdd UDP.DestPortn

ipd DNS

ipd DNS

ψ = = ∧ =

= ∧ =



, where

{ }1, , nipd ipd
 are the different IP destination addresses appearing in τ.

● () ()1w w , , w 1, ,1n= = 
.

● Δ is the KL-Divergence.
● Let 2 is the composition of K-means and Elbow Methods. The K-means

do the clustering and the Elbow Methods estimate the best number of clusters.
Below, we present the results obtained from the Elbow Method corresponding

to the different subnetworks (servers).
1) Sub network1 (Server1): the Source IP addresses from 59.166.0.0 to 59.166.0.9:

shown in Figure 14.

Figure 14. Elbow results for sub network1 (server1) based on DNS services.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 403 Journal of Information Security

2) Sub network2 (Server2): Source IP addresses from 175.45.176.0 to
175.45.176.3: shown in Figure 15.

Figure 15. Elbow results for sub network2 (server2) based on DNS services.

3) Sub network3 (Server3): Source IP addresses from 149.171.126.0 to

149.171.126.19: shown in Figure 16.

Figure 16. Elbow results for sub network3 (server3) based on DNS services.

From Figure 14, the maximum distortion value for subnetwork 1 (server1) is

above 8. In Figure 15, the maximum distortion value for subnetwork 2 (server2)
exceeds 80. Meanwhile, in Figure 16, the maximum distortion value for sub-
network 3 (server3) is above 70, but for only one IP address, whereas more than
20 IP addresses have a distortion value of zero.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 404 Journal of Information Security

Based on these findings, our approach predicts that subnetwork 2 (server2) is
suspicious, as it exhibits abnormal or malicious activities in the network traffic.
Therefore:

 Predicted

 Negative Positive Total

Actual Negative 2 0 2

 Positive 0 1 1

 Total 2 1 3

It follows that:

● TP TN 3 100%
T

Accu
P TN FP FN

racy
3

+
= =

+ + +
= .

● TP 1 100%
TP FP

Precisi n
1

o = ==
+

.

● TP 1 100%
TP FN

R call
1

e = =
+

= .

● False Negative (FN) = 0%.
● False Positive (FP) = 0%.

4.2.2. Detecting Suspicious Activities Based on HTTP Traffic
Below are the values of the required parameters used within the Suspicious func-
tion for detecting suspicious traffic:
● τ (trace): it is the dataset available at [30].
● Let

() ()1IP.SourceAdd , , IP.SourceAdd nips ipsϕ = = =

where { }1, , nips ips
 are the different IP source addresses appearing in τ.

UDP.SourcePort

● Let
() ()
() ()

1. . , ,

. .n

IP DestAdd ipd TCP DestPort HTTP

IP DestAdd ipd TCP DestPort HTTP

ψ = = ∧ =

= ∧ =



, where

{ }1, , nipd ipd
 are the different IP destination addresses appearing in τ.

● () ()1w w , , w 1, ,1n= = 
.

● Δ is the KL-Divergence.
● Let 2 is the composition of K-means and Elbow Methods.

Below, we present the results obtained from the Elbow Method for different
subnetworks (servers).

1) Sub network1 (Server1): IP source addresses from 59.166.0.0 to 59.166.0.9
shown in Figure 17.

2) Sub network2 (Server2): IP source addresses from 175.45.176.0 to
175.45.176.3 shown in Figure 18.

3) Sub network3 (Server3): IP source addresses from 149.171.126.0 to
149.171.126.19 shown in Figure 19.

From Figure 17, the maximum distortion value for subnetwork 1 (server1) is

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 405 Journal of Information Security

above 4. In Figure 18, the maximum distortion value for subnetwork 2 (server2)
exceeds 2. Meanwhile, in Figure 19, the maximum distortion value for subnet-
work 3 (server3) is above 0.008, but only for one IP address, while more than 20
IP addresses have a distortion value of zero.

Based on these findings, our approach predicts that subnetworks 1 (server1)
and 2 (server2) are suspicious, as they exhibit abnormal or malicious activities in
the network traffic. Therefore:

Figure 17. Elbow results for sub network1 (server1) based on HTTP services.

Figure 18. Elbow results for sub network2 (server2) based on HTTP services.

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 406 Journal of Information Security

Figure 19. Elbow Results for sub network3 (server3) based on HTTP services.

 Predicted

 Negative Positive Total

Actual Negative 1 1 2

 Positive 0 1 1

 Total 1 2 3

It follows that:

● TP TN 2 67%
TP TN F

Accura
P F

c
3

y
N

+
= =

+ + +
= .

● TP 1 100%
TP FP

Precisi n
1

o = ==
+

.

● TP 1 50%
TP F

Re a l
N

c l
2

= ==
+

.

● False Negative (FN) = 0%.

● False Positive (FP) 1 33.33%
3

= = .

4.3. Discussion

Table 14. Evaluation of the proposed approaches.

Techniques Attacks types Target Learning types Logic rules
Training is

not required
Multi-target

Detection
rate

-Kullback-Leibler
(KL) Divergence.
-Cosine Similarity
-TF-IDF
-k-mean algorithm.

suspicious attacks
for different target

IP-Addresses
TCP/UDP-Ports

HTTP.Url
others

unsupervised
learning

✓ ✓ ✓ 100%

https://doi.org/10.4236/jis.2024.153022

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 407 Journal of Information Security

Table 14 resumes the main features of the proposed approach. Although it has
shown the best detection rate (100%), our experimental dataset remains small
and we need to apply it on further representative datasets to have better preci-
sion on this parameter and other metrics.

5. Conclusions

This paper introduces a promising new technique for incident detection, leve-
raging differential analysis. Initially, the traffic undergoes dispersion via a slicing
function ϕ , partitioning it into sequences of slices based on propositional log-
ical formulas φ, which are specified by the end-user. Subsequently, each slice
undergoes transformation through a measuring function ψ , mapping it to a
point in n by quantifying select characteristics defined by the end-user via a
formula ψ. following this, the distances between successive values returned by

ψ , associated with the same sequence, are evaluated using a designated func-
tion Δ (e.g., KL-Divergence). Lastly, employing a clustering technique (e.g.,
K-means), the values produced by Δ are clustered, and the number of clusters is
estimated. If any sequence yields more than one cluster, it indicates suspicious
activity.

The experimental results demonstrate significant promise, with a 100% accu-
racy achieved across both datasets used in the experiments. However, it’s essen-
tial to note that this level of accuracy may not be guaranteed with other datasets
and is contingent upon the parameters selected for analysis, such as φ and ψ.

In addition to its remarkable efficiency, the approach exhibits versatility in
tackling a wide array of attacks spanning various activities, including those tar-
geting networks, operating systems, and applications. Notably, it operates with-
out necessitating any learning step or data.

Looking ahead, our future endeavors entail applying this methodology to di-
verse datasets encompassing log files that capture a spectrum of activities across
networks, operating systems, and applications. Furthermore, we aspire to inte-
grate this approach into an open-source Security Information and Event Man-
agement (SIEM) tool like Wazuh, thereby extending its accessibility and practi-
cality within cybersecurity frameworks.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Khraisat, A., Gondal, I., Vamplew, P. and Kamruzzaman, J. (2019) Survey of Intru-

sion Detection Systems: Techniques, Datasets and Challenges. Cybersecurity, 2, Ar-
ticle No. 20. https://doi.org/10.1186/s42400-019-0038-7

[2] Sureda Riera, T., Bermejo Higuera, J., Bermejo Higuera, J., Martínez Herraiz, J. and
Sicilia Montalvo, J. (2020) Prevention and Fighting against Web Attacks through
Anomaly Detection Technology. A Systematic Review. Sustainability, 12, Article

https://doi.org/10.4236/jis.2024.153022
https://doi.org/10.1186/s42400-019-0038-7

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 408 Journal of Information Security

4945. https://doi.org/10.3390/su12124945

[3] Aldwairi, M., Abu-Dalo, A.M. and Jarrah, M. (2017) Pattern Matching of Signa-
ture-Based IDS Using Myers Algorithm under Mapreduce Framework. EURASIP
Journal on Information Security, 2017, Article No. 7.
https://doi.org/10.1186/s13635-017-0062-7

[4] Li, W., Tug, S., Meng, W. and Wang, Y. (2019) Designing Collaborative Block-
chained Signature-Based Intrusion Detection in IoT Environments. Future Genera-
tion Computer Systems, 96, 481-489. https://doi.org/10.1016/j.future.2019.02.064

[5] Detken, K., Rix, T., Kleiner, C., Hellmann, B. and Renners, L. (2015) SIEM Ap-
proach for a Higher Level of IT Security in Enterprise Networks. 2015 IEEE 8th In-
ternational Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), Warsaw, 24-26 September 2015,
322-327. https://doi.org/10.1109/idaacs.2015.7340752

[6] Madani, A., Rezayi, S. and Gharaee, H. (2011) Log Management Comprehensive
Architecture in Security Operation Center (SOC). 2011 International Conference on
Computational Aspects of Social Networks (CASoN), Salamanca, 19-21 October
2011, 284-289. https://doi.org/10.1109/cason.2011.6085959

[7] (2023) The Wazuh Manual.
https://documentation.wazuh.com/current/user-manual/index.html

[8] Najafabadi, M.M., Khoshgoftaar, T.M., Calvert, C. and Kemp, C. (2017) User Beha-
vior Anomaly Detection for Application Layer DDoS Attacks. 2017 IEEE Interna-
tional Conference on Information Reuse and Integration (IRI), San Diego, 4-6 Au-
gust 2017, 154-161. https://doi.org/10.1109/iri.2017.44

[9] Betarte, G., Giménez, E., Martínez, R. and Pardo, Á. (2018) Machine Learn-
ing-Assisted Virtual Patching of Web Applications. arXiv: 1803.05529.

[10] Owasp.org (2021) OWASP ModSecurity Core Rule Set.
https://owasp.org/www-project-modsecurity-core-rule-set/

[11] Wang, L., Cao, S., Wan, L. and Wang, F. (2017) Web Anomaly Detection Based on
Frequent Closed Episode Rules. 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney,
1-4 August 2017, 967-972.
https://doi.org/10.1109/trustcom/bigdatase/icess.2017.338

[12] Bronte, R., Shahriar, H. and Haddad, H. (2016) Information Theoretic Anomaly
Detection Framework for Web Application. 2016 IEEE 40th Annual Computer Soft-
ware and Applications Conference (COMPSAC), Atlanta, 10-14 June 2016, 394-399.
https://doi.org/10.1109/compsac.2016.139

[13] Ren, X., Hu, Y., Kuang, W. and Souleymanou, M.B. (2018) A Web Attack Detection
Technology Based on Bag of Words and Hidden Markov Model. 2018 IEEE 15th
International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Cheng-
du, 9-12 October 2018, 526-531. https://doi.org/10.1109/mass.2018.00081

[14] Pukkawanna, S., Kadobayashi, Y. and Yamaguchi, S. (2015) Network-based Mimi-
cry Anomaly Detection Using Divergence Measures. 2015 International Symposium
on Networks, Computers and Communications (ISNCC), Yasmine Hammamet,
13-15 May 2015, 1-7. https://doi.org/10.1109/isncc.2015.7238570

[15] Clement, A. (2020) On Network-Based Mimicry Anomaly Detection Using Diver-
gence Measures and Machine Learning. Master’s Thesis, AIMS Senegal.

[16] Münz, G., Li, S. and Carle, G. (2007) Traffic Anomaly Detection Using K-Means
Clustering. GI/ITG Workshop MMBnet.

[17] Asselin, E., Aguilar-Melchor, C. and Jakllari, G. (2016) Anomaly Detection for Web

https://doi.org/10.4236/jis.2024.153022
https://doi.org/10.3390/su12124945
https://doi.org/10.1186/s13635-017-0062-7
https://doi.org/10.1016/j.future.2019.02.064
https://doi.org/10.1109/idaacs.2015.7340752
https://doi.org/10.1109/cason.2011.6085959
https://doi.org/10.1109/iri.2017.44
https://owasp.org/www-project-modsecurity-core-rule-set/
https://doi.org/10.1109/trustcom/bigdatase/icess.2017.338
https://doi.org/10.1109/compsac.2016.139
https://doi.org/10.1109/mass.2018.00081
https://doi.org/10.1109/isncc.2015.7238570

M. Ali Elsiddig, M. Mejri

DOI: 10.4236/jis.2024.153022 409 Journal of Information Security

Server Log Reduction: A Simple yet Efficient Crawling Based Approach. 2016 IEEE
Conference on Communications and Network Security (CNS), Philadelphia, 17-19
October 2016, 586-590. https://doi.org/10.1109/cns.2016.7860553

[18] Swarnkar, M. and Hubballi, N. (2015) Rangegram: A Novel Payload Based Anomaly
Detection Technique against Web Traffic. 2015 IEEE International Conference on
Advanced Networks and Telecommuncations Systems (ANTS), Kolkata, 15-18 De-
cember 2015, 1-6. https://doi.org/10.1109/ants.2015.7413635

[19] Kang, I., Jeong, M.K. and Kong, D. (2012) A Differentiated One-Class Classification
Method with Applications to Intrusion Detection. Expert Systems with Applica-
tions, 39, 3899-3905. https://doi.org/10.1016/j.eswa.2011.06.033

[20] Camacho, J., Pérez-Villegas, A., García-Teodoro, P. and Maciá-Fernández, G. (2016)
PCA-Based Multivariate Statistical Network Monitoring for Anomaly Detection.
Computers & Security, 59, 118-137. https://doi.org/10.1016/j.cose.2016.02.008

[21] Yoshimura, N., Kuzuno, H., Shiraishi, Y. and Morii, M. (2022) DOC-IDS: A Deep
Learning-Based Method for Feature Extraction and Anomaly Detection in Network
Traffic. Sensors, 22, Article 4405. https://doi.org/10.3390/s22124405

[22] Zavrak, S. and Iskefiyeli, M. (2023) Flow-Based Intrusion Detection on Soft-
ware-Defined Networks: A Multivariate Time Series Anomaly Detection Approach.
Neural Computing and Applications, 35, 12175-12193.

[23] Joyce, J.M. (2011) Kullback-Leibler Divergence. In: Lovric, M., Ed., International
Encyclopedia of Statistical Science, Springer, 720-722.
https://doi.org/10.1007/978-3-642-04898-2_327

[24] Li, B. and Han, L. (2013) Distance Weighted Cosine Similarity Measure for Text
Classification. In: Yin, H., et al., Eds., Intelligent Data Engineering and Automated
Learning—IDEAL 2013, Springer, 611-618.
https://doi.org/10.1007/978-3-642-41278-3_74

[25] Sammut, C., and Webb, G. (2010) TF-IDF. In: Sammut, C. and Webb, G.I., Eds.,
Encyclopedia of Machine Learning, Springer, 986-987.
https://doi.org/10.1007/978-0-387-30164-8_832

[26] Keogh, E., Lonardi, S. and Ratanamahatana, C.A. (2004) Towards Parameter-Free
Data Mining. Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Seattle, 22-25 August 2004, 206-215.
https://doi.org/10.1145/1014052.1014077

[27] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R. and Wu,
A.Y. (2002) An Efficient K-Means Clustering Algorithm: Analysis and Implementa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 881-892.
https://doi.org/10.1109/tpami.2002.1017616

[28] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum Likelihood from
Incomplete Data via the em Algorithm. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 39, 1-22.
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

[29] Crawford, C. Computer Network Traffic.
https://www.kaggle.com/datasets/crawford/computer-network-traffic

[30] Moustafa, N. and Slay, J. (2015) UNSW-NB15: A Comprehensive Data Set for Net-
work Intrusion Detection Systems (UNSW-NB15 Network Data Set). 2015 Military
Communications and Information Systems Conference (MilCIS), Canberra, 10-12
November 2015, 1-6. https://doi.org/10.1109/milcis.2015.7348942

https://doi.org/10.4236/jis.2024.153022
https://doi.org/10.1109/cns.2016.7860553
https://doi.org/10.1109/ants.2015.7413635
https://doi.org/10.1016/j.eswa.2011.06.033
https://doi.org/10.1016/j.cose.2016.02.008
https://doi.org/10.3390/s22124405
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-41278-3_74
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1145/1014052.1014077
https://doi.org/10.1109/tpami.2002.1017616
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://www.kaggle.com/datasets/crawford/computer-network-traffic
https://doi.org/10.1109/milcis.2015.7348942

	Incident Detection Based on Differential Analysis
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Preliminary Notations
	3.2. Trace Slicing
	3.3. Feature Measuring
	3.4. Divergence Measuring
	3.5. Divergence Clustering
	3.6. Suspicious Traffic Detection

	4. Case Study
	4.1. Detecting Suspicious Activities Based on Days of the Week
	4.2. Detecting Suspicious Activities Based on DNS and HTTP Traffic
	4.2.1. Detecting Suspicious Activities Based on DNS Traffic
	4.2.2. Detecting Suspicious Activities Based on HTTP Traffic

	4.3. Discussion

	5. Conclusions
	Conflicts of Interest
	References

