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Abstract 
Internet services and web-based applications play pivotal roles in various sen-
sitive domains, encompassing e-commerce, e-learning, e-healthcare, and 
e-payment. However, safeguarding these services poses a significant chal-
lenge, as the need for robust security measures becomes increasingly impera-
tive. This paper presented an innovative method based on differential analys-
es to detect abrupt changes in network traffic characteristics. The core con-
cept revolves around identifying abrupt alterations in certain characteristics 
such as input/output volume, the number of TCP connections, or DNS que-
ries—within the analyzed traffic. Initially, the traffic is segmented into dis-
tinct sequences of slices, followed by quantifying specific characteristics for 
each slice. Subsequently, the distance between successive values of these 
measured characteristics is computed and clustered to detect sudden changes. 
To accomplish its objectives, the approach combined several techniques, in-
cluding propositional logic, distance metrics (e.g., Kullback-Leibler Diver-
gence), and clustering algorithms (e.g., K-means). When applied to two dis-
tinct datasets, the proposed approach demonstrates exceptional performance, 
achieving detection rates of up to 100%. 
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1. Introduction 

The 21st century has witnessed the profound impact of the Internet, emerging as 
one of the most transformative inventions in our lives. Presently, the Internet 
transcends numerous boundaries, revolutionizing the way we communicate, 
engage in recreational activities, conduct work, shop, socialize, enjoy music and 
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movies, order food, manage finances, extend birthday wishes to friends, and 
more. The indispensability of these service applications is paramount for mod-
ern organizations, demanding uninterrupted availability and global accessibility 
around the clock. 

The exponential growth of sensitive services and web-based applications has 
become a magnet for hackers seeking lucrative gains, technological secrets, in-
cluding vaccine-related information, or any competitive edge. This surge in val-
uable data has not only enticed criminal organizations globally but has also led 
certain governmental entities to recruit exceptionally skilled security experts for 
cyberattack operations. 

The continuous expansion of both lawful and unlawful activities has led to an 
exponential increase in the complexity and volume of Internet traffic. As a result, 
network security administrators grapple with ever-evolving and intricate chal-
lenges, striving to swiftly impede malicious traffic. To combat this, they heavily 
rely on a trio of key tools: Firewalls, SIEM (Security Information and Event 
Management), and IDSs (Intrusion Detection Systems), which stand as primary 
instruments for detecting and filtering suspicious traffic. 

To scrutinize and identify potentially suspicious activities within network 
traffic using IDSs, two primary detection methods prevail: signature-based and 
anomaly-based detection. Signature-based or misuse detection methods employ 
pattern-matching techniques to identify pre-known attacks. The primary ad-
vantage lies in their high accuracy, ensuring minimal false positives or negatives 
when detecting previously recognized suspicious attacks. Anomaly-based detec-
tion methods necessitate an initial phase to comprehend normal traffic patterns, 
employing techniques like machine learning, statistical analysis, or know-
ledge-based methodologies. Any significant deviation between observed traffic 
and established norms is flagged as suspicious. The primary advantage lies in its 
capability to effectively identify unknown suspicious attacks with commendable 
accuracy. 

The current state of the art presents a myriad of intriguing techniques (e.g., 
[1]-[4]) and tools that have notably bolstered network security by effectively de-
tecting and thwarting malicious traffic. Nevertheless, the challenge persists: cy-
berattacks persistently wreak havoc, inflicting substantial damage. Hence, any 
novel contribution that mitigates the risks associated with network traffic would 
be immensely valued. 

This paper introduces a novel technique employing differential analysis to 
discern suspicious network traffic. The approach initially segments traffic into 
small-time slices, transforming each of them into a value in n . Subsequently, 
it computes the divergence between neighboring slices to unveil abrupt changes 
in traffic behavior. After that, clustering techniques are applied to abstracted in-
tervals to validate traffic homogeneity (a single class) or detect significant varia-
tions (multiple classes), indicating potential suspicious activities. 

The approach we introduce is geared towards enhancing the efficiency of Se-
curity Information Event Management (SIEM) [5], an integral component of a 
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Security Operations Center (SOC) [6]. A (SIEM), such as Wazuh [7], encapsu-
lates a suite of functionalities aimed at gathering, analyzing, and presenting in-
formation sourced from network and security devices. It essentially integrates 
two vital components: Security Information Management (SIM) and Security 
Event Management (SEM). SIM focuses on storing, analyzing, and reporting log 
files, while SEM is responsible for real-time monitoring, event correlation, noti-
fications, and console views. 

The rest of this paper is organized as follows. Section 2 delves into related 
works within the field. Section 3 details the methodology of the approach. Sec-
tion 4 presents three case studies. Finally, concluding remarks are presented in 
Section 5. 

2. Related Work  

The state of the art contains many valuable techniques that have significantly 
contributed to the improvement of the security of network services and applica-
tions. Here, the study focuses on anomaly-based detection techniques and me-
thods that try to detect suspicious traffic based on IP packets information such 
as IP address (layer 3 in the TCP/IP Model), TPC or UDP ports (layer 4) and 
web application data (layer 5). 

Najafabadi et al. proposed in [8] an anomaly detection mechanism for detect-
ing HTTP GET flood attacks. They used the Principal Component Analysis 
(PCA)-subspace method on the browsing behavior instances extracted from 
HTTP server’s logs in order to detect abnormal behaviors. They apply the ap-
proach to detect some DDoS and HTTP GET flood attacks. This approach used 
the supervised machine learning techniques. 

In [9], Betarte et al. proposed a method based on machine learning to enhance 
the famous ModSecurity [10], a Web Application Firewall provided by OWASP, 
by using one-class classification and n-gram techniques on three datasets. The 
proposal method used the supervised machine learning techniques and provides 
better detection and false positive rates than the original version of ModSecurity. 

Wang et al. presented in [11] a new web anomaly detection method which 
uses Frequent Closed Episode Rules Mining (FCERMining) algorithm to analyze 
web logs and detect new unknown web attacks. The method used the supervised 
machine learning techniques and has a detection rate of 96.67% and a false 
alarm rate of 3.33% for detecting abnormal users. 

In [12], Brontë et al., proposed an anomaly detection approach that uses the 
cross-entropy technique to calculate three metrics: cross entropy parameters 
(CEP), cross entropy value (CEV) and cross entropy data type (CET). These me-
trics aim to compare the deviation between learned request profiles and a new 
web request. The cross-entropy approach performs better than Value Length 
and Mahalanobis distance approach. This approach used the supervised machine 
learning techniques, focused on detecting four types of web attacks: SQLI, XSS, 
RFI, and DT and has a detection rate of 66.7%. 
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Ren et al. presented in [13] a method based on the bag of words (BOW) model 
to extract features and efficiently detect web attacks with hidden Markov algo-
rithms. BOW has higher detection rate and lower false alarm rate when com-
pared with N-gram feature-extraction algorithms. This approach used the su-
pervised machine learning techniques to detecting SQL injection and cross-site 
scripting attacks. The accuracy increased to 96%, but the false alarm rate still 
remained low. 

In [14], Pukkawanna et al. proposed a method using port pair distribution 
and Kullback-Leibler (KL) divergence to detect suspicious flows when the KL 
divergence deviates from an adaptive 3-sigma rule-based threshold. This ap-
proach used the unsupervised machine learning techniques to detecting mimicry 
attacks. The approach does not need any previous learning step. 

Hounkpevi proposed in [15] a method using K-means, port pair distribution 
and Kullback-Leibler (KL) algorithm that improves [14]. The approach com-
pares the traffic of current time intervals with the nearby ones by applying the 
k-mean algorithm. Any significant divergence means that the current time in-
terval traffic is suspicion. This approach used the unsupervised machine learning 
techniques to detecting mimicry attacks. The proposal approach seems more ef-
ficient than [14]. 

In [16], Munz et al. presented a novel Network Data Mining approach that 
applies the K-means clustering algorithm to feature datasets extracted from flow 
records. Training data containing unlabelled flow records are separated into 
clusters of normal and anomalous traffic. This approach used the unsupervised 
machine learning techniques to detecting Port scans and D/oS attacks. In this 
approach there is a challenge to determine the optimum number of clusters. 

Asselin et al. presented in [17] an anomaly detection model based on crawling 
method and n-gram model that is effective in reducing the access to the log file 
generated by the web servers. It has shown to be a good solution for web appli-
cations black-box analysis but it is not efficient for detecting attacks that use 
cookie or post data. This approach used the unsupervised machine learning 
techniques to detecting brute force, DDoS, Crawler Miss, High Load, Anomal-
ous Query attacks and has a detection rate of 95%. 

Swarnkar and Hubballi described, in [18], a new method for payload-based 
anomaly detection that learns normal behavior and detects deviations. The ap-
proach makes a frequency range of occurrences of n-grams from packets in 
training phase and count the number of deviations from the range to detect 
anomalies. The approach showed lower false positives and higher detection rate 
when compared to Anagram methods. 

Kang et al. [19] described a one-class classification method for improving in-
trusion detection performance for malicious attacks. Results scores were eva-
luated based on artificially generated instances in two-dimensional space. In the 
detection phase, the approach based on simple logic, the center of the normal 
patterns was determined at (0, 0), and two malicious class centers were at (1, 1) 
and (−1, −1), respectively. Experimental results on simulated data show better 
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performance. 
Camacho et al. [20] developed a framework that used a PCA-based multiva-

riate statistical process control (MSPC) approach. The framework monitors both 
the Q-statistic and D-statistic. Thereby, it was possible to establish control limits 
in order to detect anomalies when they became consistently exceeded. 

Yoshimura et al. [21] proposed a new model called DOC-IDS, which is an in-
trusion detection system based on Perera’s deep one-class classification. This 
approach used the supervised machine learning techniques to detecting Mul-
ti-attacks and has a detection rate of 97%. 

Zavrak et al. [22] proposed an intrusion detection and prevention architecture 
called SAnDet which is based on an anomaly-based attack detection module that 
uses the EncDecAD method to detect attacks. This approach used the semi-super- 
vised machine learning techniques to detecting DoS and Portscan attacks and 
has a detection rate of 99.3%.  

The evaluation of the previous approaches according to cited criteria is illu-
strated by Table 1.  

 
Table 1. Evaluation of the approaches. 

Author Techniques Attacks types Target Learning types 
Logic 
rules 

Training is 
not required 

Multi- 
target 

Detection 
rate 

Pukkawanna et 
al. [14], 2015 

Kullback-Leibler 
(KL) Divergence 

Mimicry attacks 
TCP/ 

UDP-Ports 
unsupervised 

learning 
× ✓ × 12.5% 

Hounkpevi 
[15], 2020 

- Kullback-Leibler 
(KL) Divergence. 
- k-mean algorithm. 

Mimicry attacks 
TCP/ 

UDP-Ports 
unsupervised 

learning 
× ✓ × 66.7% 

Najafabadi et al. 
[8], 2017 

PCA (Principle 
Component  
Analysis)-Subspace 
method 

detecting HTTP 
GET flood  

attacks DDOS 
HTTP.Url 

supervised 
learning 

× × × - 

Betarte et al. 
[9], 2018 

- one-class  
classification 
- n-gram 

Multi attacks HTTP.Url 
supervised 

learning 
× × × 90% 

Wang et al. 
[11], 2017 

FCER (Frequent 
Closed Episode 
Rules) Mining 
algorithm 

Unknown web 
attacks. 

HTTP.Url 
supervised 

learning 
× × × 96.67% 

Bronte et al. 
[12], 2016 

Cross Entropy. 
SQLI, XSS, RFI, 

and DT. 
HTTP.Url 

supervised 
learning 

× × × 66.7% 

Ren et al. [13], 
2018 

-Bag of words 
(BOW) model 
- Hidden Markov 
algorithms. 

SQL injection 
and cross-site 

scripting 
HTTP.Url 

supervised 
learning 

× × × 96% 

Munz et al. [16], 
2007 

K-mean algorithm. 
Port scans and 
D/oS attacks. 

TCP/ 
UDP-Ports 

unsupervised 
learning 

× ✓ × - 
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Continued 

Asselin et al. 
[17], 2016 

black-box approach 
(crawling based) 
N-gram model. 

brute force, 
DDoS, Crawler 

Miss, High Load, 
Anomalous 

Query 

HTTP.Url 
unsupervised 

learning 
× ✓ × 95% 

Yoshimura  
et al. [21], 2022 

one-class  
classification. 

Multi attacks - 
supervised 

learning 
× × × 97% 

Zavrak et al. 
[22], 2023 

EncDecAD. LSTM. DoS Portscan - 
semi-supervised 

learning 
× × × 99.3% 

 
The existing approaches could be evaluated according to many criteria such 

as:  
● Attack Types: The different types of attacks detected by the approach  
● Target: The fields of the IP packet that are analyzed by the approach to detect 

suspicious behaviors such as IP address, HTTP.Url and TCP-UDP Port.  
● Learning Types: If the approach uses any supervised or unsupervised ma-

chine learning techniques.  
● Logic Rules: It is useful if the approach provides an expressive language such 

as temporal logic to specify a rich variety of malicious traffics (fine-grained 
specification).  

● Training is not required: Most of existing approaches require a training step, 
but some few others do not.  

● Multi-Target: It is related to the ability of the approach to detect suspicious 
traffic that requires the analysis of many fields in IP packets in the same time.  

● Detection Rate: It gives the percentage of detected bad traffics.  

3. Methodology  

The detection of suspicious traffic is based on the following simple observation: 
the nature of the traffic should not change suddenly. If this happens, it will be 
suspicious. For example, there is no reason that the nature of the traffic between 
the period P1 = [10 am - 10:30 am] will be so different from the period P2 = [10:30 
am - 11 am]. However, distinctions might reasonably exist between daytime and 
nighttime traffic patterns, as well as between traffic from different years. 

Let : →   be a function such that ( )y x=   measures a particular 
feature related to the network traffic.(e.g., x is time and y is the number of pack-
ets coming from a specific country). Assume that the curve of   is as shown 
by Figure 1, then it is clear that there exists a sudden variation from ( )4f  to 
( )5f  which is suspicious. 
More precisely, the traffic τ will be scattered to one or many sequences of or-

dered slices. On each of these slices, we apply a function   that measure some 
of its features. After that, we compute the distance between successive values of 
  as shown in Figure 2. The sudden changes of   appears, if there exist a 
big deviations between the measured distances. 
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Figure 1. Sudden variation in traffic. 

 

 
Figure 2. Looking for sudden variation in traffic. 

 
The function F may not solely yield a singular real value within  ; instead, 

its outputs could exist within n . For example, it might produce a complete 
distribution that assesses various characteristics across analyzed slices of the 
trace. In such scenarios, assessing the disparity between F values could involve 
employing measures like KL-divergence or Euclidean distance. 

Furthermore, in determining whether the variation between successive F val-
ues exhibits abrupt changes or unacceptable deviations, clustering analysis could 
be valuable. If the resultant clusters surpass one in number, and the expectation 
dictates smooth change in traffic distributions across successive slices, we con-
clude that the analyzed traffic is suspicious. 

In the subsequent sections, we elaborate on and formalize all of these analyses. 
To maintain simplicity in presenting the approach, we concentrate solely on 

network traffic. However, it’s important to note that the same concept can be 
extended to analyze any type of log file. 

3.1. Preliminary Notations 

In order to articulate the definition of suspicious traffic formal and more suc-
cinctly, it’s essential to establish a set of initial notations. 

We assume that network traffic is represented by a sequence of stamped IP 
packets or messages where each one of them is a structure that contains a header 
and a payload. We suppose that we have access to any field (e.g., IP addresses, 
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ports and protocols) to any non-encrypted header of the network protocols (e.g., 
IP, TCP and UDP) inside an intercepted traffic. 

Definition 1 (Messages). We denote by   the set of messages that could 
be found in the network traffic.  
● nf : we use nf  to range over the possible fields in messages of  . Exam-

ples of nf  are given in Table 2.  
● @ nm f : if m is a message and nf  is an attribute, we denote by @ nm f  the 

value of nf  in m.  
 

Table 2. Examples of attributes. 

Field Name 

 
 

Stamped messages are called events and are defined as follows:  
Definition 2 (Events). We denote by  , the set of the possible events built 

from   as follows: 

:: ,
::

e t m
t time
m

=

=
∈

 

● @ ne f : we denote by @ ne f  the value of nf  in e. It is defined as follows: 
, @Tt m t=  and , @ @n nt m f m f= , if Tnf ≠ . 

A sequence of stamped events forms a trace.  
Definition 3 (Trace). A trace τ over   is defined using the following BNF 

grammar: 
::  |  | .e e

e
τ τ=
∈



 

where   is the empty trace. The “.” represents the chronological order, i.e., if e 
appears before e' in a trace τ, then necessarily e happened at a previous time than 
e'. 

We introduce the following propositional logic allowing to verify whether an 
event in a trace respects some conditions. The main purpose of this language is 
to define specific patterns of messages we are looking for within the trace, such 
as message having a given source or destination IP addresses or ports.  

Definition 4 (Propositional Event Logic). Let nf  be a field name and v be 
a value, we introduce the Propositional Event Logic (PEL) as follows: 

, :: true | false |    |  |  | 
:  |  |  |  |  | 

np q f op v p q p q p
op

= ∨ ∧ ¬

= = ≠ ≤ ≥ < >
 

An event e respects a proposition p, and we say that ( ) truep e = , if one of the 
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following conditions holds: 

( )
( )( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ?

true true

  @   n n

e

p e p e

p q e p e q e

p q e p e q e

f op v e e f op v

=

¬ = ¬

∨ = ∨

∧ = ∧

=

 

For instance, to know if (TCP.DestPort = 80)(e), we check if (e@TCP.DestPort) 
= ? 80. 

3.2. Trace Slicing 

This step requires meticulous attention to ensure the approach’s effectiveness is 
maximized. It’s important to decompose the trace into one or multiple se-
quences of slices characterized by smooth variations. The end user must have a 
clear understanding of their activity’s nature to identify instances where sudden 
changes should not occur. Below, we provide some illustrative examples: 
● Significant and sudden fluctuations in traffic volume are often indicative of 

potential Denial of Service (DoS) attacks. To detect this activity, it’s appro-
priate to divide the traffic trace τ into successive discrete slices, denoted as 

1, , nτ τ , each representing a predefined time window, such as 10 minutes. 
● The previous analysis will be more precise and efficient if we separate the 

traffic of different IP addresses. Also input traffic can be separated from 
output. Sudden variation in input traffic can be du to DoS attack but varia-
tion of output traffic can be generated by a malware (e.g. botnet) activity. 
Therefore this kind of separation allow us either to know the IP address in 
the suspicious traffic as well as the nature of the attack. 

● Input and output traffic of different IP address can be further separated into 
traffics related to different IP protocols and TCP ports. 

● The previous divisions can be further refined as we will show in the case 
study section. For instance, we can separate the traffic of different days of the 
weak. By doing so, we assume that traffic related to successive Monday 
should not present a sudden change.  

The forthcoming definition introduces a slicing function designed to partition 
a trace, catering to diverse scenarios and requirements. 

Definition 5 (Slicing). Let p be a propositional formula in PEL and τ be a 
trace in  . We inductively introduce a slicing function ( )p τ  as follows:  

( )

( ) ( )
( )

( ) ( ) ( )

::

if false
::

if true

. :: .

p

p

p p p

p e
e

e p e

e eτ τ

=

 ==  =
=

  




  

 

Let 1, , np p  denote propositions. We extend the selection function to oper-
ate on sets of sequences of propositions as follows:  
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{ } ( ) ( ) ( ){ }
( ) ( ) ( )

11

11

, ,

, ,

, ,

, ,
nn

nn

p pp p

p pp p

τ τ τ

τ τ τ

=

=









  

  
 

If ( )p i  is a proposition that depends on i, we use the notation ( ) ,

end

sart jmp
p i  

as an abbreviation of  

( ) ( ) ( ), , ,p start p start jmp p start n jmp+ + ∗  

where n is the natural number such that n jmp end∗ ≤  and ( )1n jmp+ ∗ . For 
instance:  

● ( ) 8

1,2
p i  is same as ( ) ( ) ( ) ( )1 , 3 , 5 , 7p p p p , and  

● ( ) ( )( ) 60

0,10
T 10.00. T 10.00. 10

j
j j

=
≥ ∧ ≤ +  is same as 1 6, ,p p

, where:  

( )( )
( )( )
( )( )
( )( )
( )( )
( )( )

1

2

3

4

5

6

T 10.00.00 T 10.00.10

T 10.00.10 T 10.00.20

T 10.00.20 T 10.00.30

T 10.00.30 T 10.00.40

T 10.00.40 T 10.00.50

T 10.00.50 T 10.00.60

p

p

p

p

p

p

= ≥ ∧ ≤

= > ∧ ≤

= > ∧ ≤

= > ∧ ≤

= > ∧ ≤

= > ∧ ≤

 

Example 1 (Selection). Let τ be the trace containing the traffic captured be-
tween 10:00:000 and 10:00:052 focusing on IP.Prot as shown by Table 3.  

 
Table 3. Captured traffic.  

 
 

Let ( ) ( )( ) 60

0,10
T 10.00. T 10.00. 10

j
j jϕ

=
= ≥ ∧ ≤ + . When slicing τ using φ, we 

compute ( )Sϕ τ , resulting in the sequence 1 6, ,τ τ
, as illustrated in Table 4. 
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Table 4. Sliced captured traffic.  

 

3.3. Feature Measuring 

Each slice, derived from the preceding step, undergoes transformation into an 
element in n  ( 1n ≥ ) by quantifying certain characteristics through a prede-
fined function F. For simplicity, we concentrate on a class of functions F that 
produce distributions by tallying events adhering to specified conditions, as de-
lineated in the following definition: 

Definition 6 (Feature Measuring Function). Let q be a propositional for-
mula in PEL and τ be a trace in  . We introduce a slicing function ( )q τ  
inductively as follows:  

( )

( ) ( )
( )

( ) ( ) ( )

:: 0

0 if false
::

1 if true

. ::

q

q

q q q

q e
e

q e

e eτ τ

=

 ==  =
= +

 



  

 

Broadly speaking, ( )q τ  returns the number of packets in τ that satisfy the 
property q. 

We also extend the selection function to operate on both a sequence of propo-
sitions 1, , nq q  and a set of traces as follows:  

( ) ( ) ( )

( ) ( ) ( )
11 , ,

1 1

, ,

, ,
nn q qq q

q n q q n

τ τ τ

τ τ τ τ

=

=





 

  

  
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{ }( ) ( ) ( ){ }1 1, ,q n q q nτ τ τ τ=     

Example 2. Let’s examine the trace provided in Example 1. Let  

1 2 3 4, , ,q q q qψ =  such that ( )1 IP.Prot 1q = = , ( )2 IP.Prot 6q = = ,  

( )3 IP.Prot 17q = =  and ( ) ( ) ( )4 IP.Prot 1 IP.Prot 6 IP.Prot 17q = ≠ ∧ ≠ ∧ ≠ , then 
when applying the function ψ  to the slices 1 6, ,τ τ  as depicted in Table 4, 
the resulting outcomes are as illustrated in Table 5. 

 
Table 5. Quantification of slices using  . 

( )ϕ τ  ( )iψ τ  

1τ  1,3,1,0  

2τ  1, 2, 2,0  

3τ  0,3, 2,0  

4τ  0,0,0,5  

5τ  0, 2,1,1  

6τ  2,0,0,0  

 
For instance, ( )1 1,3,1,0ψ τ =  indicates that in slice 1τ , there is 1 packet 

with IP.Prot = 1, 3 packets with IP.Prot = 6, 1 packet with IP.Prot = 17, and 0 
packets with other IP.Prot values.  

The distributions of these slices serve as inputs to algorithms like KL-Divergence, 
enabling the measurement of traffic divergence across distinct slices. However, 
in cases where certain events are absent during observation, their frequencies 
register as zero, posing a challenge for computing KL-Divergence and potentially 
leading to division by zero errors. To address this issue, we must either explore 
alternative divergence techniques or slightly adjust the data distribution through 
methods such as smoothing. The following definition illustrates one of the 
well-known smoothing techniques. 

Definition 7 (Laplace Smoothing). Let 1, , nv v v= 
 be a sequence of real 

numbers. We denote by ( )k vπ  the k-Laplace Smoothing Distribution (k-LSD) 
of a trace and we define it as follows: 

( ) 1

1 1

, ,k n
n

ii
n

ii

k vk vv
k v k v

π
= =

++
=

+ +∑ ∑
  

We augment the function   with Laplace smoothing as follows: 
Definition 8 (Feature Measuring Function with Smoothing). We denote by 

ˆ
p , the smoothed version of p  achieved through the application of the 

smoothing function 1π . More formally: 
1ˆ

p pπ=    

Example 3. By applying 1π  to column 2 of Table 5, we obtain ( )ˆ
iψ τ  as 

shown by column 3 of Table 6. 
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Table 6. Quantification and smoothing of slices using ̂ . 

( )ϕ τ  ( )iψ τ  ( )ˆ
iψ τ  

1τ  1,3,1,0  1 1 1 3 1 1 1 0 1 2 1 1, , , , , ,
1 5 1 5 1 5 1 5 3 3 3 6
+ + + +

=
+ + + +

 

2τ  1, 2, 2,0  1 1 1 2 1 2 1 0 1 1 1 1, , , , , ,
1 5 1 5 1 5 1 5 3 2 2 6
+ + + +

=
+ + + +

 

3τ  0,3, 2,0  1 0 1 3 1 2 1 0 1 2 1 1, , , , , ,
1 5 1 5 1 5 1 5 6 6 2 6
+ + + +

=
+ + + +

 

4τ  0,0,0,5  1 0 1 0 1 0 1 5 1 1 1, , , , , ,1
1 5 1 5 1 5 1 5 6 6 6
+ + + +

=
+ + + +

 

5τ  0, 2,1,1  1 0 1 2 1 1 1 1 1 1 1 1, , , , , ,
1 5 1 5 1 5 1 5 6 2 3 3
+ + + +

=
+ + + +

 

6τ  2,0,0,0  1 2 1 0 1 0 1 0 1 1 1 1, , , , , ,
1 5 1 5 1 5 1 5 2 6 6 6
+ + + +

=
+ + + +

 

 
When detecting suspicious activities within traffic data, it can be advanta-

geous to prioritize specific positions within the values returned by ̂  in n . 
For instance, if ̂  yields ( )1, , nv v

 where each iv  represents traffic origi-
nating from a specific country, these values might be weighted according to the 
respective country’s reputation in cyberattacks, assigning greater weight to 
countries with negative reputations. Presently, there’s a lack of a systematic ap-
proach to guide end users in determining these weight values. However, we be-
lieve that fine-tuning these weights based on intuition could enhance detection 
capabilities. 

The subsequent definition formalizes the concept of weights.  
Definition 9 (Weighting Function ω). We denote by ω a weighting function 

that accepts weights in ( )n+ , a tuple in n , and returns a probability distri-
bution, i.e.: ( ) [ ]: 0,1

n nnω + × →  . 
Let 1, , mV V  be in n ). We extend ω to a set { }1, , mV V

 and a sequences 

1, , mV V
 of tuples as follows: 

{ }( ) ( ) ( ){ }
( ) ( ) ( )

1 1

1 1

, , , ,

, , , ,
m m

m m

V V V V

V V V V

ω ω ω

ω ω ω

=

=

 

 

 

The following definition provides an example of ω. 
Definition 10. (Product Scalar Weighting Function) We define the scalar 

product weighting function, abbreviated as spw, as follows: 

( ) [ ]

( ) 1 1

spw : 0,1

wwspw w, , ,
w. w.

n nn

n nvvv
v v

+ × →

××
= 

 
 

where .w u  is the scalar product of the tow vectors w and u, i.e.:  

1
w. w

n

i i
i

u v
=

= ×∑  
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We extend the function ̂  by incorporating a weighting function as follows: 
Definition 11 (Feature Measuring Function with Smoothing and Weight-

ing). Let ω a weighting function. In the sequel, we denote by ,
ˆ

p ω , the weighted 
version of ˆ

p  using the weighting function ω. More precisely: 

,
ˆ ˆ

p pω ω=    

and for any trace τ and a weight vector w, we have: 

( ) ( )( ),
ˆ ˆw, w,p pω τ ω τ=   

Example 4. Let’s examine the trace provided in Example 3. Suppose we aim to 
prioritize packets containing ports not in 1, 6, 17. As an example, we apply the 
weighting function spwω =  with weights w 0.2,0.2,0.2,0.4= . The results 
are illustrated in Table 7. 

 
Table 7. Slice distribution. 

( )ϕ τ  ( )iψ τ  ( )ˆ
iψ τ  ( ),

ˆ , iwψ ω τ  

1τ  1,3,1,0  1 2 1 1, , ,
3 3 3 6

 0.2,0.4,0.2,0.2  

2τ  1, 2, 2,0  1 1 1 1, , ,
3 2 2 6

 0.2,0.3,0.3,0.2  

3τ  0,3, 2,0  1 2 1 1, , ,
6 6 2 6

 0.1,0.4,0.3,0.2  

4τ  0,0,0,5  1 1 1, , ,1
6 6 6

 0.067,0.067,0.67,0.8  

5τ  0, 2,1,1  1 1 1 1, , ,
6 2 3 3

 0.1,0.3,0.2,0.4  

6τ  2,0,0,0  1 1 1 1, , ,
2 6 6 6

 0.429,0.143,0.143,0.286  

3.4. Divergence Measuring  

After abstracting and transforming the traffic into smoothed distributions, the 
next step involves measuring the divergence between adjacent slices within each 
sequence. To achieve this, we employ a divergence function such as the KL-Div- 
ergence.  

Definition 12 (Divergence Function). A divergence measuring function, 
denoted by Δ, can be any function with the following signature:  

[ ] [ ]: 0,1 0,1n n∆ × → .  
Examples of divergence measuring functions are given in Table 8. 

 
Table 8. Examples of divergence functions. 

Divergence 

Δ ::=  KL-Divergence [23] | Cosine [24] |TF-IDF [25] |… 
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Notice that, since the KL-Divergence, usually denoted by KLD , between two 
distributions ( )1, , nP p p= 

 and ( )1, , nQ q q= 
 is not commutative (i.e., 

( ) ( )|| ||KL KLD P Q D Q P≠  as shown by Equations (1) and (2)), we can consider 

( ) ( ) ( ) ( ), , || ||KL KLP Q KL P Q D P Q D Q P∆ = = +  as the divergence value. 

 ( ) 2
1

|| log
n

i
KL i

i i

pD P Q p
q=

 
= ×  

 
∑  (1) 

 ( ) 2
1

|| log
n

i
KL i

i i

qD Q P q
p=

 
= ×  

 
∑  (2) 

Example 5. We apply the KL-Divergence to the trace of Example 4. The result 
is shown by Table 9.  

 
Table 9. Slice distribution. 

( )ϕ τ  ( )iψ τ  ( ),
ˆ ,i iu wψ ω τ=   ( )1,i iPKL u u +  ( )1 ,i iPKL u u+  ( )1,i iKL u u +  

1τ  1,3,1,0  1 0.2,0.4,0.2,0.2u =  0.049 0.51 1 

2τ  1, 2, 2,0  2 0.2,0.3,0.3,0.2u =  0.0755 0.066 0.142 

3τ  0,3, 2,0  3 0.1,0.4,0.3,0.2u =  1.3435 1.2440 2.597 

4τ  0,0,0,5  4 0.067,0.067,0.67,0.8u =  0.5107 0.6265 1.137 

5τ  0, 2,1,1  5 0.1,0.3,0.2,0.4u =  0.4024 0.5388 0.941 

6τ  2,0,0,0  6 0.429,0.143,0.143,0.286u =  - - - 

3.5. Divergence Clustering  

After quantifying the divergence between successive slices of traces, the next step 
is to ascertain if significant abrupt changes have occurred. To accomplish this, 
we estimate the number of clusters generated by the divergence values. If this 
count exceeds one, we infer that the trace contains suspicious traffic. 

Definition 13 (Clustering). Let : 2 true,falsen →  be a clustering algo-
rithm that estimates the optimal number of clusters N associated with a dataset 
in 2 . It returns true if the number N n≥ , indicating that the threshold for 
suspicious activity has been surpassed, and false otherwise. 

We are particularly interested in 2 . When 2  returns true, it indicates that 
the traffic is considered suspicious. Examples of the 2  function are provided 
in Table 10. 

 
Table 10. Examples of clustering functions. 

Clustering 

2  ::=  HC [26] | KM [27] | EM [28] |… 

 
Example 6. Let’s apply the K-means algorithm with the Elbow Method to 

compute 2  on the trace from the previous example, as illustrated in Table 11.  
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Table 11. K-means results. 

Cluster 1 Cluster 2 

0.100, 0.142, 0.941, 1.137 2.587 

3.6. Suspicious Traffic Detection 

Now, we have all the necessary ingredients to define a suspicious traffic. 
Definition 14 (Suspicious Traffic)  

● Let τ be a trace.  
● Let 1, , np pϕ = 

 be a n sequences of propositions.  
● Let 1, , mq qψ = 

 be a m sequences of propositions. 
● Let 1w w , , wn= 

 be a weight vector in n . 
● Let [ ] [ ]: 0,1 0,1n n∆ × →  be a divergence measuring function such as 

KL-Divergence. 
● Let { }2 : 2 true,false→  be a clustering algorithm that estimated the best 

number of clusters N related to the set of data in 2  and returns true if 
2N ≥ , false otherwise.  

We define ( )
2

,
, , , ,wSuspiciousσ ω τ ϕ ψ∆  , a generic function designed to detect 

suspicious traffic within an analyzed trace τ, as follows: 

( ) ( )( )( )( )2, 2 ,
ˆ, , ,w w,Suspiciousω ψ ω ϕτ ϕ ψ τ∆ = ∆     

The Suspicious function integrates various analyses, conducted in the se-
quence depicted in Figure 3, and returns true if the traffic is deemed suspicious, 
and false otherwise. It requires three functions, ω, Δ, and 2 , as well as four pa-
rameters: τ, w, φ, and ψ. 
 

 
Figure 3. Steps involved in detecting suspicious traffic.  

 
Example 7. Let’s apply the Suspicious function to the trace provided in Ex-

ample 1 to ascertain if there exists a sudden change. Based on the results shown 
in Table 11, where 2  generates more than one cluster, we deduce that: 

( )
2, , , ,w trueSuspiciousω τ ϕ ψ∆ =  

The suspicious traffic is triggered on slice 3τ . 

4. Case Study  

In this section, we present three cases of detecting suspicious activities using two 
distinct datasets comprising real traffic. The first case involves detecting suspi-
cious activities based on daily patterns in the dataset from [29]. The second and 
third cases utilize the UNSW-NB15 dataset [30] to detect suspicious traffic by 
analyzing TCP and DNS traffic, respectively. 
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4.1. Detecting Suspicious Activities Based on Days of the Week 

An example of an interesting dataset with a real traffic is available at [29]. It 
contains 21,000 rows and covers the traffics related to 10 workstations with local 
IP addresses over a period of three months. Half of these local IP addresses were 
hacked at some point during this period and became members of different bot-
nets and generated abnormal traffic. 

A screenshot of a part of the dataset is shown in Figure 4, where: 
● date: yyyy-mm-dd (from 2006-07-01 through 2006-09-30);  
● l_ipn: local IP address (coded as an integer from 0-9);  
● r_asn: remote ASN (an integer which identifies the remote Autonomous 

System Network);  
● f: flows (number of connections during the corresponding day).  
 

 
Figure 4. A part of the dataset provided by [29]. 

 
We try to detect the infected computer based on the following assumption for 

each workstation of the network: the nature of traffic may vary across different 
days of the week. For instance, weekend traffic could differ significantly from 
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that of weekdays. However, when we consider a specific day, such as Monday, 
there is no compelling reason for it to undergo substantial changes from one 
week to another. This implies that Monday’s traffic should remain relatively 
consistent across all weeks. A similar pattern is expected for other days of the 
week, such as Tuesday, Wednesday, and so forth. 

Based on the assumption, we proceed as follows: we segregate the traffic asso-
ciated with each workstation and day of the week into distinct files. With ten 
workstations and seven days a week, this results in a total of 70 files. Subse-
quently, each of these files undergoes analysis to identify any abrupt changes. 

Here are the values of the parameters required used within the function 
GSuspicious allowing to detect suspect traffic. 
● τ (trace): the dataset available at [29]. 
● The trace is scattered into various slices, each exclusively comprising traffic 

linked to a specific IP address and a designated day of the week. To illustrate, 
for IP address 0, distinct slices are allocated for Mondays, Tuesdays, and so 
forth. Similar slices are build for IP addresses 1 to 9. By doing this division, 
we are implicitly making the assumption that for any IP address, the traffic of 
different Mondays should be quite similar and this should be the same for the 
other days of the week. More formally, the slicing will be based on the fol-
lowing set of propositions:  

{ },
1 9
0 6

i j
i
j

pϕ
≤ ≤
≤ ≤

=


 

where  

( ) ( ), , 7
.

N
i j j j

p IP i date dd j
+

= = ∧ =  

and 21000N =  represents the number of events in the trace.  
● Let ( ) ( )1 1 , , n nq v q vψ = = =  where 1, , nv v  are the different values 

that appears in the column r_asn presented in ascending order. 
● ( ) ( )1w w , ,w 1, ,1n= = 

. This captures the fact that each element of the 
partition has the same weight. 

● Δ is the KL-Divergence. 
● Let 2  is the composition of K-means and Elbow Methods. The K-means 

do the clustering and the Elbow Methods estimate the best number of clus-
ters.  

All these fixed parameters will be the input of our Suspicious function to con-
clude whether the traffic is suspicious or not. This function proceed as follows:  
● After applying the function ϕ  to the dataset, we obtain a separate file for 

each IP address and each day of the week. For instance, for IP address 0 and 
Monday, we generate a file that will be analyzed independently for suspicious 
traffic. This file aggregates traffic not only from a single Monday but from 
multiple Mondays, and our objective is to detect any sudden changes in the 
distribution of traffic from one Monday to another. We repeat this process 
for the other days of the week and for the remaining IP addresses. 
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● The traffic from each IP address and each day of the week undergoes trans-
formation through the function ψ , resulting in a point in n , where each 
dimension represents the number of connections related to every r_asn, and 
n is the total number of r_asn. 

● Thanks to the function Δ, we quantify the divergence between every two 
successive Mondays for each IP address, and we repeat this process for the 
other days of the week as well. 

● Using the function 2  (composition of the K-means and the Elbow Me-
thod), we estimate the number of clusters generated by the previous steps. 

● If we observe two or more clusters for any analyzed sequence, we infer that 
the traffic is suspicious.  

Below, we present the results obtained from the Elbow Method corresponding 
to the different days and IP addresses.  

1) Monday: Based on the analysis of Monday traffic depicted in Figure 5, we 
identify five non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious ma-
chines (0, 1, 2, 4, and 8). 
 

 
Figure 5. Elbow results for every Monday.   

 
2) Tuesday: Based on the analysis of Tuesday traffic depicted in Figure 6, we 

identify five non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious ma-
chines (0, 1, 2, 4, and 8). 

3) Wednesday: Based on the analysis of Wednesday traffic shown in Figure 7, 
we observe five non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious 
machines (0, 1, 2, 4, and 8).  

4) Thursday: According to the analysis depicted in Figure 8, we identify five 
non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious machines (0, 1, 2, 
4, and 8) on Thursday. 

5) Friday: Based on the analysis presented in Figure 9, we observe five 
non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious machines (0, 1, 2, 
4, and 8) on Friday. 
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Figure 6. Elbow results for every Tuesday.   

 

 
Figure 7. Elbow results for every Wednesday.   

 

 
Figure 8. Elbow results for every Thursday.   
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Figure 9. Elbow results for every Friday.   

 
6) Saturday: According to the analysis shown in Figure 10, we can identify 

five non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious machines (0, 
1, 2, 4, and 8) on Saturday. 

 

 
Figure 10. Elbow results for every Saturday.   

 
7) Sunday: Based on the analysis presented in Figure 11, we observed five 

non-suspicious machines (3, 5, 6, 7, and 9) and five suspicious machines (0, 1, 2, 
4, and 8) on Sunday. 

Here are the conclusions extracted from Figures 5-11: 
● There are five clear elbows showing that the number of clusters related to the 

traffics of the machines l_ipn values 0, 1, 2, 4, and 8 is greater than one and 
then they are the origins of the suspicious traffics shown in Table 12.  

● There are five machines l_ipn values 3, 5, 6, 7, and 9 with no elbow, meaning 
that the number of their clusters is one, then they are not associated with any 
suspicious traffic showed in Table 12.  
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Figure 11. Elbow results for every Sunday.   
 
Table 12. Detecting suspicious traffic based on days of the week. 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Unsuspicious 3, 5, 6, 7, 9 3, 5, 6, 7, 9 3, 5, 6, 7, 9 3, 5, 6, 7, 9 3, 5, 6, 7, 9 3, 5, 6.7, 9 3, 5, 6, 7, 9 

Suspicious 0, 1, 2, 4, 8 0, 1, 2, 4, 8 0, 1, 2, 4, 8 0, 1, 2, 4, 8 0, 1, 2, 4, 8 0, 1, 2, 4, 8 0, 1, 2, 4, 8 

Total Suspicious 0, 1, 2, 4, 8 

 
● The confusion matrix for our approach: 

 
 Predicted 

 Negative Positive 

Actual Negative True Negative (TN) False Negative (FN) 

 Positive False Positive (FP) True Positive (TP) 

 
Our approach predicted that 5/10 local IPs are botnets. Actually, only 5/10 lo-

cal IPs are real botnets. Therefore: 
 

 Predicted  

 Negative Positive Total 

Actual Negative 5 0 5 

 Positive 0 5 5 

 Total 5 5 10 

 
It follows that:   

● TP TN 10 100%
TP TN FP FN

Accurac
10

y +
= =

+
=

+ +
.  
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● TP 5 100%
TP FP

Precisi n
5

o = ==
+

. 

● TP 5 100%
TP FN

R call
5

e = =
+

= .  

● False Negative (FN) = 0%.  
● False Positive (FP) = 0%.  
● Performance: Our code was executed on a Ubuntu virtual machine with a 2.3 

GHz Intel Core i9 processor, equipped with 2 cores and 4GB of RAM. The 
total execution time to process the entire dataset, consisting of 21,000 rows 
covering 10 workstations over a three-month period, was approximately 51.7 
seconds. 

4.2. Detecting Suspicious Activities Based on DNS and HTTP  
Traffic  

The UNSW-NB15 dataset [30] was generated using the IXIA PerfectStorm tool. 
It encompasses nine categories of modern attack types and incorporates realistic 
behaviors of normal traffic. Comprising 49 features across various categories, 
some of them are illustrated in Figure 12. Utilized as an attack tool, IXIA dis-
patches both benign and malicious traffic to different network nodes. A segment 
of certain fields from this traffic is demonstrated in Table 13. 
 

 
Figure 12. UNSW-NB15: example of features. 

 
The network contains three sub networks as shown by Figure 13. 
1) Sub network1 (server1): contains nodes with source IP addresses from 

59.166.0.0 to 59.166.0.9. 
2) Sub network2 (Server2): contains nodes with source IP addresses from 

175.45.176.0 to 175.45.176.3. 
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Table 13. UNSW-NB15 samples.  

 
 

 
Figure 13. UNSW-NB15 network.  

 
3) Sub network3 (Server3): contains nodes with source IP addresses from 

149.171.126.0 to 149.171.126.19.  
Subnetwork 1 (servers1) and subnetwork 3 (server3) are configured to exhibit 
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normal traffic patterns, whereas subnetwork 2 (server2) is associated with ab-
normal or malicious activities. 

We employ our approach across various source IP addresses within all sub-
networks. Our assumption is that the nature of the outbound traffic should not 
undergo sudden changes. 

4.2.1. Detecting Suspicious Activities Based on DNS Traffic 
Below are the values of the required parameters used within the Suspicious func-
tion for detecting suspicious traffic: 
● τ (trace): it is the dataset available at [30].  
● Let  

( ) ( )1IP.SourceAdd , , IP.SourceAdd nips ipsϕ = = =  

where { }1, , nips ips
 are the different IP source addresses appearing in τ. 

UDP.SourcePort  

● Let 
( ) ( )
( ) ( )

1IP.DestAdd UDP.DestPort , ,

IP.DestAdd UDP.DestPortn

ipd DNS

ipd DNS

ψ = = ∧ =

= ∧ =



, where  

{ }1, , nipd ipd
 are the different IP destination addresses appearing in τ. 

● ( ) ( )1w w , , w 1, ,1n= = 
. 

● Δ is the KL-Divergence. 
● Let 2  is the composition of K-means and Elbow Methods. The K-means 

do the clustering and the Elbow Methods estimate the best number of clusters.  
Below, we present the results obtained from the Elbow Method corresponding 

to the different subnetworks (servers).  
1) Sub network1 (Server1): the Source IP addresses from 59.166.0.0 to 59.166.0.9: 

shown in Figure 14. 
 

 
Figure 14. Elbow results for sub network1 (server1) based on DNS services.   
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2) Sub network2 (Server2): Source IP addresses from 175.45.176.0 to 
175.45.176.3: shown in Figure 15.  
 

 
Figure 15. Elbow results for sub network2 (server2) based on DNS services.   

 
3) Sub network3 (Server3): Source IP addresses from 149.171.126.0 to 

149.171.126.19: shown in Figure 16.  
 

 
Figure 16. Elbow results for sub network3 (server3) based on DNS services.   

 
From Figure 14, the maximum distortion value for subnetwork 1 (server1) is 

above 8. In Figure 15, the maximum distortion value for subnetwork 2 (server2) 
exceeds 80. Meanwhile, in Figure 16, the maximum distortion value for sub-
network 3 (server3) is above 70, but for only one IP address, whereas more than 
20 IP addresses have a distortion value of zero. 
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Based on these findings, our approach predicts that subnetwork 2 (server2) is 
suspicious, as it exhibits abnormal or malicious activities in the network traffic. 
Therefore: 

 
 Predicted  

 Negative Positive Total 

Actual Negative 2 0 2 

 Positive 0 1 1 

 Total 2 1 3 

 
It follows that:   

● TP TN 3 100%
T

Accu
P TN FP FN

racy
3

+
= =

+ + +
= .  

● TP 1 100%
TP FP

Precisi n
1

o = ==
+

. 

● TP 1 100%
TP FN

R call
1

e = =
+

= .  

● False Negative (FN) = 0%.  
● False Positive (FP) = 0%.  

4.2.2. Detecting Suspicious Activities Based on HTTP Traffic 
Below are the values of the required parameters used within the Suspicious func-
tion for detecting suspicious traffic: 
● τ (trace): it is the dataset available at [30].  
● Let  

( ) ( )1IP.SourceAdd , , IP.SourceAdd nips ipsϕ = = =  

where { }1, , nips ips
 are the different IP source addresses appearing in τ. 

UDP.SourcePort  

● Let 
( ) ( )
( ) ( )

1. . , ,

. .n

IP DestAdd ipd TCP DestPort HTTP

IP DestAdd ipd TCP DestPort HTTP

ψ = = ∧ =

= ∧ =



, where  

{ }1, , nipd ipd
 are the different IP destination addresses appearing in τ. 

● ( ) ( )1w w , , w 1, ,1n= = 
. 

● Δ is the KL-Divergence. 
● Let 2  is the composition of K-means and Elbow Methods.  

Below, we present the results obtained from the Elbow Method for different 
subnetworks (servers). 

1) Sub network1 (Server1): IP source addresses from 59.166.0.0 to 59.166.0.9 
shown in Figure 17. 

2) Sub network2 (Server2): IP source addresses from 175.45.176.0 to 
175.45.176.3 shown in Figure 18.  

3) Sub network3 (Server3): IP source addresses from 149.171.126.0 to 
149.171.126.19 shown in Figure 19.  

From Figure 17, the maximum distortion value for subnetwork 1 (server1) is 

https://doi.org/10.4236/jis.2024.153022


M. Ali Elsiddig, M. Mejri 
 

 

DOI: 10.4236/jis.2024.153022 405 Journal of Information Security 
 

above 4. In Figure 18, the maximum distortion value for subnetwork 2 (server2) 
exceeds 2. Meanwhile, in Figure 19, the maximum distortion value for subnet-
work 3 (server3) is above 0.008, but only for one IP address, while more than 20 
IP addresses have a distortion value of zero. 

Based on these findings, our approach predicts that subnetworks 1 (server1) 
and 2 (server2) are suspicious, as they exhibit abnormal or malicious activities in 
the network traffic. Therefore: 

 

 
Figure 17. Elbow results for sub network1 (server1) based on HTTP services.   

 

 
Figure 18. Elbow results for sub network2 (server2) based on HTTP services. 
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Figure 19. Elbow Results for sub network3 (server3) based on HTTP services.   
 

 Predicted  

 Negative Positive Total 

Actual Negative 1 1 2 

 Positive 0 1 1 

 Total 1 2 3 

 
It follows that:   

● TP TN 2 67%
TP TN F

Accura
P F

c
3

y
N

+
= =

+ + +
= .  

● TP 1 100%
TP FP

Precisi n
1

o = ==
+

. 

● TP 1 50%
TP F

Re a l
N

c l
2

= ==
+

. 

● False Negative (FN) = 0%.  

● False Positive (FP) 1 33.33%
3

= = .  

4.3. Discussion  

Table 14. Evaluation of the proposed approaches. 

Techniques Attacks types Target Learning types Logic rules 
Training is 

not required 
Multi-target 

Detection 
rate 

-Kullback-Leibler 
(KL) Divergence. 
-Cosine Similarity 
-TF-IDF 
-k-mean algorithm. 

suspicious attacks 
for different target 

IP-Addresses 
TCP/UDP-Ports 

HTTP.Url 
others 

unsupervised 
learning 

✓ ✓ ✓ 100% 
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Table 14 resumes the main features of the proposed approach. Although it has 
shown the best detection rate (100%), our experimental dataset remains small 
and we need to apply it on further representative datasets to have better preci-
sion on this parameter and other metrics. 

5. Conclusions  

This paper introduces a promising new technique for incident detection, leve-
raging differential analysis. Initially, the traffic undergoes dispersion via a slicing 
function ϕ , partitioning it into sequences of slices based on propositional log-
ical formulas φ, which are specified by the end-user. Subsequently, each slice 
undergoes transformation through a measuring function ψ , mapping it to a 
point in n  by quantifying select characteristics defined by the end-user via a 
formula ψ. following this, the distances between successive values returned by 

ψ , associated with the same sequence, are evaluated using a designated func-
tion Δ (e.g., KL-Divergence). Lastly, employing a clustering technique (e.g., 
K-means), the values produced by Δ are clustered, and the number of clusters is 
estimated. If any sequence yields more than one cluster, it indicates suspicious 
activity. 

The experimental results demonstrate significant promise, with a 100% accu-
racy achieved across both datasets used in the experiments. However, it’s essen-
tial to note that this level of accuracy may not be guaranteed with other datasets 
and is contingent upon the parameters selected for analysis, such as φ and ψ. 

In addition to its remarkable efficiency, the approach exhibits versatility in 
tackling a wide array of attacks spanning various activities, including those tar-
geting networks, operating systems, and applications. Notably, it operates with-
out necessitating any learning step or data. 

Looking ahead, our future endeavors entail applying this methodology to di-
verse datasets encompassing log files that capture a spectrum of activities across 
networks, operating systems, and applications. Furthermore, we aspire to inte-
grate this approach into an open-source Security Information and Event Man-
agement (SIEM) tool like Wazuh, thereby extending its accessibility and practi-
cality within cybersecurity frameworks. 
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