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Abstract 
Aiming at the problem of low accuracy of traditional target detection methods 
for target detection in endoscopes in substation environments, a CNN-based 
real-time detection method for masked targets is proposed. The method 
adopts the overall design of backbone network, detection network and algo-
rithmic parameter optimisation method, completes the model training on 
the self-constructed occlusion target dataset, and adopts the multi-scale per-
ception method for target detection. The HNM algorithm is used to screen 
positive and negative samples during the training process, and the NMS algo-
rithm is used to post-process the prediction results during the detection process 
to improve the detection efficiency. After experimental validation, the obtained 
model has the multi-class average predicted value (mAP) of the dataset. It has 
general advantages over traditional target detection methods. The detection 
time of a single target on FDDB dataset is 39 ms, which can meet the need of 
real-time target detection. In addition, the project team has successfully dep-
loyed the method into substations and put it into use in many places in Bei-
jing, which is important for achieving the anomaly of occlusion target detec-
tion. 
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1. Introduction 

In recent years, with the rapid development of neural networks, deep learning has 
made great progress as an important component of neural networks, and has 
been widely used in speech recognition, image classification, natural language 
processing and other fields. From the genre, deep learning can be divided into 
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three main directions: supervised learning, unsupervised learning, and reinforce-
ment learning. With the rapid development of deep learning technology, deep 
learning has become increasingly prominent in the field of target detection. Many 
new excellent deep learning methods and target detection frameworks have been 
proposed. 

The current advanced target detection framework can be divided into two cate-
gories: two-stage and single-stage. Most of the most advanced detection methods 
are implemented by a two-stage detection framework, such as Faster R-CNN [1], 
R-FCN [2], FPN [3] and Cascade R-CNN. Compared with the two-stage target 
detection framework, the single-stage detection framework has the advantages of 
simple structure and fast speed. Typical representatives are SSD [4] and Yolo [5] 
[6], they have achieved a balance between speed and accuracy. The latest sin-
gle-stage detection framework Yolov5 achieves an accuracy comparable to the 
two-stage target detection framework. In general, the accuracy of the current 
single-stage detection framework is still difficult to surpass the two-stage detec-
tion framework. 

Target detection is a specific task in the field of target detection. The devel-
opment of general target detection technology [7]-[12] has greatly promoted the 
development of target detection [13] [14] [15] [16]. Specifically, different from 
generic object detection, target detection features smaller ratio variations (from 
1:1 to 1:1.5) but much larger scale variations (from several pixels to a thousand 
pixels). 

By drawing on the ideas of Stefanos et al., the research on target detection 
was mainly divided into traditional methods based on hand-designed features 
and modern methods based on Convolutional Neural Net (CNN) to extract fea-
tures. 

With the continuous progress of single-stage target detection technology, the 
latest target detection methods [17] [18] mainly focus on the realization of sin-
gle-stage target detection, Since single-stage target detection does not use the sug-
gestion box for the “rough detection + fine-tuning” strategy, only one forward 
propagation calculation is performed, so the detection speed has been greatly 
improved compared with the two-stage target detection method. 

As a fine detection technique for non-contact substation targets, target detec-
tion is critical for its real-time and accuracy. However, in device injury detec-
tion, the target of the subject is mostly occluded by objects. The lack of features 
and the noise aliasing caused by the occluders can seriously reduce the accuracy 
of traditional target detection methods, or even fail to detect the target. In addi-
tion, in public places with high traffic flow, the real-time nature of target detec-
tion under high traffic flow is also a major challenge. How to shorten the detec-
tion time of the target under the premise of guaranteeing the detection accuracy 
becomes the key to non-contact substation target detection. 

To summarize, our key contributions are: 
• The backbone of the algorithm refers to the idea of multi-scale feature per-

ception in SSD [4], and builds a lightweight multi-scale convolutional network 
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according to the task characteristics of target detection, so as to solve the prob-
lem of poor detection effect of the original SSD network on the small target. 

• The single-stage target detection model generally has the problem of imbal-
ance between simple samples and difficult samples during training. We improve 
the loss function used in the training of the original SSD algorithm and use the 
improved cross-entropy loss function to solve the problem between simple sam-
ples and difficult samples and improve the comprehensive detection performance 
of the trained model. 

• In view of the characteristics of target detection tasks in substation, we con-
structed a mask occlusion target dataset for algorithm model training to improve 
the accuracy of the detection model for targets wearing masks. 

2. Model and Materials 
2.1. Algorithm’s Overall Structure 

The algorithm draws on the use of feature pyramid prediction in SSD, and inte-
grates the detection results of multiple convolutional layers to realize the detec-
tion for targets of different sizes. The overall structure of the algorithm is shown 
in Figure 1, including the backbone network, the FPN feature fusion network, 
and the detection network. The detection network is composed of a positioning 
sub-network and a classification sub-network, which respectively complete the 
target bounding box positioning and classification confidence prediction. 

2.2. Backbone Network 

The backbone network is composed of a basic network and a high-level network. 
The convolutional structure parameters of the network are shown in Table 1. 
The backbone network obtains a larger reception and richer semantic informa-
tion by expanding the down-sampling multiple layer by layer. 
 

Table 1. Convolution structure of the backbone network. 

Convolution layer Parameters (kernel size, channel) Feature output (high, wide) 

Conv1(C1) {(3 × 3, 32), (1 × 1, 16)} h = H/2, w = W/2 (C1_2) 

Max_pooling1 2 × 2 h = H/4, w = W/4 

Conv2(C2) {(3 × 3, 32), (1 × 1, 32)} h = H/4, w = W/4 (C2_2) 

Max_pooling2 2 × 2 h = H/8, w = W/8 

Conv3(C3) {(3 × 3, 64), (1 × 1, 32), (3 × 3, 64)} h = H/8, w = W/8 (C3_3) 

Max_pooling3 2 × 2 h = H/16, w = W/16 

Conv4(C4) {(3 × 3, 128), (1 × 1, 64), (3 × 3, 128)} h = H/16, w = W/16 (C4_3) 

Max_pooling4 2 × 2 h = H/32, w = W/32 

Conv5(C5) {(3 × 3, 256), (1 × 1, 128), (3 × 3, 256)} h = H/32, w = W/32 (C5_3) 

Max_pooling5 2 × 2 h = H/64, w = W/64 

Conv6(C6) {(3 × 3, 256), (1 × 1, 256), (3 × 3, 256)} h = H/64, w = W/64 (C6_3) 
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Figure 1. Algorithm’s overall structure framework. 
 

There is only one actual target detection classification type for the basic net-
work design. Compared with the multi-target detection of SSD, the classification 
difficulty of basic network is greatly reduced. Therefore, the VGG [5] deep clas-
sification network is discarded and two shallow convolutional networks C1 and 
C2 are used to extract the shallow semantic information in the input image. The 
high-level network is composed of four convolutional networks C3, C4, C5, and 
C6, which output four different scale feature maps to enhance the algorithm’s 
ability to detect targets of different sizes. In order to reduce the amount of para-
meter calculations and speed up the detection speed, the algorithm uses the SSH 
[19] method to cancel the last fully connected layer of the convolutional network. 
In addition, the cancellation of the fully connected layer makes the size of the 
input image no longer limited during testing. 

The downsampling factor of the backbone network is 64, that is, the target 
with 64 pixels is output as a point on the last layer of feature map (C6_3). 

2.3. Detection Network 

To deepen the semantic information of the input feature maps, the detector of the 
detection network uses two different 3 × 3 convolution kernels to convolve the 
four fusion feature maps of P3_3-P6_3. There are four detectors with the same 
structure in the detection network. The connection structure of the first detector is 
shown in Figure 2. The detector consists of a positioning sub-network (box net) 
and a classification sub-network (class net) that are used to do target bounding 
box location and classification confidence prediction for fusion feature maps of 
different scales. The detailed process is: the positioning sub-network convolves 
the fusion feature map through a 3 × 3 convolution kernel, and outputs a list of 
coordinate values of the target prediction frame [[x1, y1, w1, h1], [x2, y2, h2, 
w2], …], the classification sub-network outputs the classification confidence de-
gree list [S1, S2, S3, …] corresponding to each target frame in the fusion feature 
map through a 3 × 3 convolution kernel. After sorting the classification confi-
dence degree list, the pre-diction box with a score greater than 0.3 is selected as 
the candidate box, and then the candidate box is subjected to non-maximum  
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Figure 2. Connection structure of detection network’s first detector. 
 

suppression processing, and the candidate box with an IOU greater than the thre-
shold 0.3 is selected as the final target bounding box. 

2.4. IOU Calculation 

The positive and negative samples need to be divided before model training. The 
method is to match the default box and the ground truth box, and calculate IOU 
between the default box and the ground truth box through the Jaccard function. 
Assuming that A represents the area of the default box, B represents the area of 
the ground truth box, and threshold is the set threshold. When the IOU is great-
er than the set threshold, the A default box is classified as a positive sample, oth-
erwise it’s a negative sample, as shown in Equation (1): 

IoU threshold
A B A B
A B A B A B
∩ ∩

= = >
∪ + − ∩

            (1) 

In general, the number of positive samples matched by Jaccard calculation is far 
less than the number of negative samples that cannot be matched, resulting in an 
imbalance in the number of positive and negative samples, which makes it difficult 
to do model training. If the number of negative samples is not suppressed, and the 
samples are directly trained, the training direction will be dominated by the nega-
tive samples, and the detection performance of the resulting model will be poor. In 
order to solve the problem of serious imbalance in the ratio of positive samples to 
negative samples, the Hard Negative Mining (HNM) method is used in training 
process. The default boxes are sorted according to the classification confidence 
degree, the default boxes with high confidence are selected to be trained, and the 
ratio of positive samples to negative samples are controlled to nearly 1:3. 

3. Experimental and Analysis 

The target detection model in the article is built and trained in the PyTorch en-
vironment. The training is based on NVIDIA GeForce GTX1050 GPU and Intel 
CORE i7 CPU. The training process uses Sto-chastic Gradient Descent (SGD), 
the learn rate is set to 0.01, the weight_decay is set to 0.0005, the momentum is 
set to 0.9, the batch_size is set to 16, the max_epoch is set to 500 iterations, and 
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the input image size is 320 × 320 pixels during training. 

3.1. Detection Network 

The main evaluation indexes of the experiment use Precision and Recall, namely 
P-R curve, and use multi-category mean Average Precision (mAP) to compre-
hensively evaluate the detection effect of the model, as follows: 

TPP
TP FP

=
+

                       (2) 

TPR
TP FN

=
+

                       (3) 

where P is the accuracy rate, TP is the number of correctly predicted targets in 
the samples, FP is the number of backgrounds that are incorrectly predicted as 
targets in the samples, and the accuracy rate refers to the proportion of the 
number of targets correctly predicted by the model to the total number of tar-
gets. In Equation (3), R is the recall rate, FN is the number of targets that are in-
correctly predicted as the background in the samples, and the recall rate refers to 
the ratio of the number of targets correctly predicted by the model to the total 
number of truly labeled targets in the samples. mAP refers to the average value 
of multiple categories of AP, and the calculation method of AP is the area en-
closed by the P-R curve and the coordinate axis. 

3.2. Experimental Results 

In order to verify the performance of the model, the above target detection methods 
are compared with traditional target detection methods based on hand-designed 
features (VJ [8], DPM, ACF and LDCF+) and modern target detection methods 
based on CNN for accuracy testing on the WIDER TARGET test set. The IOU 
threshold during the test is set to 0.3, and the P-R curves on the three subsets of 
Easy, Medium, and Hard are shown in Figure 3. The red curve in Figure 3 
represents our target detection method. According to the difficulty of target de-
tection, the three subsets are divided into three difficulty levels: easy, medium, 
and difficult. 

Comparing the experimental results of the methods in Figure 5, it can be 
concluded that the MY method achieved the best detection results on the three 
subsets of the WIDER TARGET test set, and obtained the mAP of Easy-0.841, 
Medium-0.802, and Hard-0.600. In addition, it can be seen from Figure 5 that 
the MY method has a better recall rate under the same precision rate of different 
methods. 

Table 2 shows the mAP performance of MY method on three subsets. Com-
pared with traditional target detection methods based on hand-designed features 
and several CNN-based target detection methods, the MY method has a signifi-
cant improvement in detection accuracy, and achieved the highest mAP on the 
three test subsets. Among them, the detection accuracy of the MY method on the 
Easy and Medium subsets is more than 2 times higher than that of the VJ me-
thod, and the detection accuracy of the Hard subset is 4.38 times higher than 
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Table 2. Comparison of mAP of different methods on different difficulty subsets of the 
WIDER TARGET test. 

Method 
mAP 

Easy Medium Hard 

MY (ours) 0.841 0.802 0.600 

LDCF+ 0.797 0.772 0.564 

Targetness 0.716 0.604 0.315 

Multi-scale Cascade CNN 0.711 0.636 0.400 

DPM 0.690 0.448 0.201 

Two-stage CNN 0.657 0.589 0.304 

ACF 0.642 0.526 0.252 

VJ 0.412 0.333 0.137 

 

 
(a) 

 
(b) 
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(c) 

Figure 3. P-R curves of different methods on differ-
ent difficulty subsets of the WIDER TARGET test set: 
(a) Result on easy subset; (b) Result on medium sub-
set; (c) Result on hard subset. 

 
that of the VJ method. Compared with the classic CNN-based target detection 
method targetness, the MY method achieves the highest scores on all three sub-
sets. The experimental results can fully illustrate that the CNN-based target de-
tection method generally has more advantages than the traditional target detec-
tion method based on hand-designed features in terms of detection accuracy. 

In order to further verify the performance of the model, the MY method and 
the classic target detection methods based on deep learning (Faster R-CNN, CNN 
Cascade, Targetness) are supplemented with experiments on the FDDB data set. 
The IOU threshold is set to 0.5 during the experiment. The detection speed of 
each method and the true positives rate corresponding to different false positives 
are obtained. The experimental results are shown in Table 3. 

From the experimental data in Table 3, it can be concluded that the detection 
speed of the MY method on the FDDB target data set is 14 fps, and the detection 
time of a single target is about 39 ms after conversion, which can basically achieve 
the effect of real-time target detection. In addition, the true rate of this method is 
greater than 0.9 in different stages of false positives on FDDB, indicating that this 
method has a good positive detection rate for various types of targets. 

Figure 4 shows the effect of real-time target detection on the picture in the 
substation. As can be seen from the resultant figure, the MY method can suc-
cessfully detect multiple substation equipment targets in the current substation. 
Compared with DaSiamRPN and SSD, our method has good detection perfor-
mance for real-time targets, high traffic targets and occlusion targets. 

3.3. Alarm System 

The project team has actively used its strengths to develop a fully automated 

https://doi.org/10.4236/jilsa.2023.161001


L. Liu et al. 
 

 

DOI: 10.4236/jilsa.2023.161001 9 Journal of Intelligent Learning Systems and Applications 
 

deep learning-based target detection system for cooperative substations, enabl-
ing the detection of electrical substation equipment in a masked environment. 
The system uses our target detection model to detect foreign object targets inside 
the transformer, and can be run directly on an embedded board. The test results 
are shown in Figure 5. 

 

 

Figure 4. Results of the testing of the electrical substation equipment in the substation 
using the MY method. 

 

 

Figure 5. Results of target detection of foreign objects in transformers. 
 

Table 3. False positives correspond to the true positives rate. 

Method 
False positives corresponds to the true positives rate 

Speed Time of single 
100 200 500 1000 

CVPR2016 FR-CNN 0.90 0.93 0.95 0.96 3 fps 185 ms 

MY (ours) 0.90 0.92 0.94 0.94 14 fps 39 ms 

ICCV2015 Targetness 0.87 0.8 0.89 0.90 20 fps 28 ms 

CVPR2015 CNN Cascade 0.85 0.85 - - 14 fps 40 ms 
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4. Conclusion 

A CNN-based single-stage masked real-time target detection method is proposed 
for the practical needs of substation target anomaly detection. The model is trained 
on a self-built masked occlusion target dataset through various tests on the algo-
rithm backbone network structure and parameter optimisation methods. Expe-
riments show that the target detection method proposed in this paper has good 
detection performance for masked targets. Compared with the traditional target 
detection methods, the detection accuracy has a general advantage and achieves 
the best detection mAP. Supplementary experiments compare the detection speed 
of the method with the modern classical methods, and the true rates correspond-
ing to different numbers of false positives, which show that the method has high 
real-time performance and accuracy, and can meet the needs of real-time target 
detection, but its speed still needs to be further improved. In conclusion, our pro-
posed target detection method has good detection performance in terms of ac-
curacy, real-time, and occlusion target detection, which is of great significance for 
safeguarding the safety of substations. 

Acknowledgements 

This research was funded by State Grid Limited Science and Technology Project, 
Grant No. 520617230001. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Xia, Y.Q., Gao, R.Z. and Lin, M. (2020) Green Energy Complementary Based on Intel-

ligent Power Plant Cloud Control System. Acta Automatica Sinica, 46, 1844-1868. 

[2] Chen, Y.J., Zhu, X.T. and Yu, Y.R. (2022) Empirical Analysis of Lightning Network: 
Topology, Evolution, and Fees. Ruan Jian Xue Bao/Journal of Software, 33, 3858-3873. 

[3] Zheng, H.B., Sun, Y.H., Liu, X.H., et al. (2021) Infrared Image Detection of Substation 
Insulators Using an Improved Fusion Single Shot Multibox Detector. IEEE Transac-
tions on Power Delivery, 36, 3351-3359.  
https://doi.org/10.1109/TPWRD.2020.3038880  

[4] Ala, G., Favuzza, S. and Mitolo, M., Musca, R. and Zizzo, G. (2022) Forensic Analysis 
of Fire in a Substation of a Commercial Center. IEEE Transactions on Industry Ap-
plications, 56, 3218-3223. https://doi.org/10.1109/TIA.2020.2971675  

[5] Nassu, B.T., Marchesi, B., Wagner, R., et al. (2022) A Computer Vision System for 
Monitoring Disconnect Switches Distribution Substations. IEEE Transactions on Pow-
er Delivery, 37, 833-841. https://doi.org/10.1109/TPWRD.2021.3071971  

[6] Balouji, E., Bäckström, K., McKelvey, T. and Salor, Ö. (2020) Deep-Learning-Based 
Harmonics and Interharmonics Predetection Designed for Compensating Signifi-
cantly Time-Varying EAF Currents. IEEE Transactions on Industry Applications, 56, 
3250-3260. https://doi.org/10.1109/TIA.2020.2976722  

[7] Guan, X., Gao, W., Peng, H., Shu, N. and Gao, D.W. (2022) Image-Based Incipient 

https://doi.org/10.4236/jilsa.2023.161001
https://doi.org/10.1109/TPWRD.2020.3038880
https://doi.org/10.1109/TIA.2020.2971675
https://doi.org/10.1109/TPWRD.2021.3071971
https://doi.org/10.1109/TIA.2020.2976722


L. Liu et al. 
 

 

DOI: 10.4236/jilsa.2023.161001 11 Journal of Intelligent Learning Systems and Applications 
 

Fault Classification of Electrical Substation Equipment by Transfer Learning of Deep 
Convolutional Neural Network. IEEE Canadian Journal of Electrical and Computer 
Engineering, 45, 1-8. https://doi.org/10.1109/ICJECE.2021.3109293  

[8] Zheng, H.B., Cui, Y.H., Yang, W.Q., et al. (2022) An Infrared Image Detection Me-
thod of Substation Equipment Combining Iresgroup Structure and CenterNet. IEEE 
Transactions on Power Delivery, 37, 4757-4765.  
https://doi.org/10.1109/TPWRD.2022.3158818  

[9] Ou, J.H., Wang, J.G., Xue, J., Zhou, X., et al. (2023) Infrared Image Target Detection 
of Substation Electrical Equipment Using an Improved Faster R-CNN. IEEE Trans-
actions on Power Delivery, 38, 387-396.  
https://doi.org/10.1109/TPWRD.2022.3191694  

[10] Han, S., Yang, F., Jiang, H., et al. (2021) A Smart Thermography Camera and Applica-
tion in the Diagnosis of Electrical Equipment. IEEE Transactions on Instrumentation 
and Measurement, 70, 1-8. https://doi.org/10.1109/TIM.2021.3094235  

[11] Li, J., Xu, Y., Nie, K., et al. (2023) PEDNet: A Lightweight Detection Network of 
Power Equipment in Infrared Image Based on YOLOv4-Tiny. IEEE Transactions on 
Instrumentation and Measurement, 72, 1-12.  
https://doi.org/10.1109/TIM.2023.3235416  

[12] Zhou, N., Luo, L.E., Sheng, G.H. and Jiang, X.C. (2019) High Accuracy Insulation 
Fault Diagnosis Method of Power Equipment Based on Power Maximum Likelihood 
Estimation. IEEE Transactions on Power Delivery, 34, 1291-1299.  
https://doi.org/10.1109/TPWRD.2018.2882230  

[13] Fan, Z., Shi, L., Xi, C., et al. (2022) Real Time Power Equipment Meter Recognition 
Based on Deep Learning. IEEE Transactions on Instrumentation and Measurement, 
71, 1-15. https://doi.org/10.1109/TIM.2022.3191709  

[14] Lin, T.-Y., Goyal, P., Girshick, R., He, K. and Dollár, P. (2017) Focal Loss for Dense 
Object Detection. 2017 IEEE International Conference on Computer Vision (ICCV), 
Venice, 22-29 October 2017, 2999-3007. https://doi.org/10.1109/ICCV.2017.324  

[15] Yang, S., Luo, P., Loy, C.-C. and Tang, X. (2016) From Facial Parts Responses to 
Target Detection: A Deep Learning Approach. 2015 IEEE International Conference 
on Computer Vision (ICCV), Santiago, 7-13 December 2015, 3676-3684.  
https://doi.org/10.1109/ICCV.2015.419  

[16] Kayhan, O.S. and van Gemert, J.C. (2020) On Translation Invariance in CNNs: 
Convolutional Layers Can Exploit Absolute Spatial Location. 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, 13-19 
June 2020, 14262-14273. https://doi.org/10.1109/CVPR42600.2020.01428  

[17] Bai, Z.Q., Cui, Z.P., Rahim, J.A., Liu, X. and Tan, P. (2020) Deep Facial Non-Rigid 
Multi-View Stereo. 2020 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), Seattle, WA, 13-19 June 2020, 5850-5860.  
https://doi.org/10.1109/CVPR42600.2020.00589  

[18] Hang, R., Liu, Q., Hong, D. and Ghamisi, P. (2019) Cascaded Recurrent Neural 
Networks for Hyperspectral Image Classification. IEEE Transactions on Geoscience 
& Remote Sensing, 57, 5384-5394. https://doi.org/10.1109/TGRS.2019.2899129  

[19] Mou, L.C., Lu, X.Q., Li, X.L. and Zhu, X.X. (2020) Nonlocal Graph Convolutional 
Networks for Hyperspectral Image Classification. IEEE Transactions on Geoence and 
Remote Sensing, 58, 8246-8257. https://doi.org/10.1109/TGRS.2020.2973363  

 

https://doi.org/10.4236/jilsa.2023.161001
https://doi.org/10.1109/ICJECE.2021.3109293
https://doi.org/10.1109/TPWRD.2022.3158818
https://doi.org/10.1109/TPWRD.2022.3191694
https://doi.org/10.1109/TIM.2021.3094235
https://doi.org/10.1109/TIM.2023.3235416
https://doi.org/10.1109/TPWRD.2018.2882230
https://doi.org/10.1109/TIM.2022.3191709
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ICCV.2015.419
https://doi.org/10.1109/CVPR42600.2020.01428
https://doi.org/10.1109/CVPR42600.2020.00589
https://doi.org/10.1109/TGRS.2019.2899129
https://doi.org/10.1109/TGRS.2020.2973363

	A CNN-Based Single-Stage Occlusion Real-Time Target Detection Method
	Abstract
	Keywords
	1. Introduction
	2. Model and Materials
	2.1. Algorithm’s Overall Structure
	2.2. Backbone Network
	2.3. Detection Network
	2.4. IOU Calculation

	3. Experimental and Analysis
	3.1. Detection Network
	3.2. Experimental Results
	3.3. Alarm System

	4. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

