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Abstract 
In this paper, we will be looking at our efforts to find a novel solution for mo-
tion deblurring in videos. In addition, our solution has the requirement of 
being camera-independent. This means that the solution is fully implemented 
in software and is not aware of any of the characteristics of the camera. We 
found a solution by implementing a Convolutional Neural Network-Long 
Short Term Memory (CNN-LSTM) hybrid model. Our CNN-LSTM is able to 
deblur video without any knowledge of the camera hardware. This allows it to 
be implemented on any system that allows the camera to be swapped out with 
any camera model with any physical characteristics. 
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1. Introduction 

Optical cameras often play a crucial role in autonomous unmanned aerial vehi- 
cles. They are often used in navigation systems for object detection and avoidance, 
or they can be used for collecting visual information about the environment the 
vehicle is operating in. Unfortunately, various issues arise when using optical 
cameras in these situations. One such issue is motion blur. Motion blur can in-
troduce unwanted artifacts or distort the image or video to the point where it no 
longer contains any useful information. To overcome motion blur, the image or 
video must be processed to try to reduce or eliminate the blur. 

Various methods can be used to deblur an image or video. These methods can 
be in the form of statistical analysis such as heavy tail analysis proposed by Zhu 
[1]. There are also techniques that utilize machine learning such as the Variant 
Depth Network proposed by Guo, Wang, Hong-Ning, and Li [2]. There are also 
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more unconventional methods such as using super-resolution as proposed by 
Fang, Ning, Zhan, and Zongqian [3]. All these techniques have a common flaw, 
and that is that they are often tailored to a specific camera. These methods will 
consider the various characteristics of the camera to aid in the process of deblur-
ring the image. To overcome the issue of camera specificity, we need a method 
that is completely agnostic to the camera. This will allow the method to be used 
with any image or video. 

In this paper, we will be looking at a novel method for deblurring video. This 
method utilizes machine learning and is completely camera agonistic. The me-
thod was developed and tested in a virtual environment created using the Unreal 
Engine and AirSim such that camera parameters could be adjusted throughout 
testing and development to determine if it is truly agnostic. First, we will provide 
background knowledge and terminology of the various terms and technical ideas 
used throughout the paper. Then, a brief survey of related works and any defini-
tions of important concepts will be provided. We will then discuss our experi-
mental design, such as information on the environments and datasets. Details on 
our proposed model will then be provided along with the results of our experi-
ment. We will then provide a conclusion that will discuss all the important ta-
keaways from this experiment, lessons learned, and any future work would like 
to accomplish. 

2. Background 

The main issue with cameras is that they often introduce motion blur in the im-
ages. Motion blur is caused by the shutter speed on the camera being too slow 
for how fast the camera or the objects in the image or video are moving. If there 
is movement in the image and the shutter doesn’t close fast enough, the camera 
will collect light information about the object as it is moving. This will cause 
motion blur to occur in the image or video and it will look like streaking or 
smearing in the image. Figure 1 shows what motion blur looks like in an image. 

To acquire a quality image, that both humans and machines can interpret, the 
settings for the aperture, sensitivity to light, and shutter speed all need to be ba-
lanced to create an image that is properly exposed and free of artifacts. Most 
cameras manufactured presently can auto-balance some of these key characteris-
tics, but when trying to integrate small and cheap cameras into a system, there 
are often sacrifices that need to be made in the camera design. For instance, a 
manufacturer may try to reduce the cost of a camera by reducing the sensitivity 
to light or by slowing down the shutter speed. This does lower the cost of pro-
ducing the camera but it also lowers the quality of the images the camera pro-
duces. This will in turn cause humans and machines to misinterpret the details 
in the images the camera produces. 

Having a fast shutter on a camera comes at a cost of size and price, so lower 
priced cameras generally have slower/longer shutters. For this reason, there have 
been several techniques developed for removing motion blur from a single cap-
tured image. 
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Figure 1. Motion blur example. 

 
The concept of motion blur also affects video since video is just a series of 

pictures, typically referred to as frames, played at a certain speed. The unique 
opportunity in trying to correct motion blur with video, as opposed to single 
images, is that video is typically captured such that sequences of frames are re-
markably similar to other frames in the sequence. By utilizing the surrounding 
frames, additional information may be provided to aid in removing motion blur 
in a video sequence more effectively than a single image. 

While there are solutions to motion blur that can be applied by hardware, not 
all cameras have the capability to modify their settings to the degree that is 
needed. For this reason, our goal is to provide a software solution that can be 
applied to a camera capable of capturing standard video. For this discussion, we 
are going analyze two primary approaches to this problem through software 
means, using traditional computational methods and applying machine learning 
methods. 

2.1. Blur Kernel 

A blurred image can be considered to be composed of a combination of a clear 
image and a modifying element in the form of a blurring kernel. The equation 1 
describes this:  

B k L n= ⊗ +                        (1) 

In Equation (1), a clear image L has a blur kernel k applied and noise factor n 
added to generate the resultant blurred image B. To unblur an image, one must 
extract the blur kernel from the blurred image to inversely reconstruct the clear 
image. 

Multiple techniques for deblurring using the blur kernel concept have been 
developed. A maximum a posteriori (MAP) estimation-based method specializes 
in trying to maximize the probability of the posterior [4] [5] [6]. Adjustments 
are made to the blur kernel and the clear image. Variational Bayesian (VB)- 
based methods seek the best blur kernel by utilizing a distribution of probable 
clear images [7] [8] [9]. Another method is the edge-based method [4] [5] [6]. 
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This method will extract edges and use the generated clear image to estimate the 
value of the blur kernel. However, it must be done in conjunction with filtering 
or optimizing. As pointed out by Liu, Shaoguo, Wang, et al. [10], these methods 
are not always the most accurate as the aperture chosen for the blur kernel is of-
ten done manually. This is not ideal since choosing the wrong size kernel to use 
will significantly impact the generated results. 

2.2. Point-Spread Function 

The theory behind the Point-Spread Function (PSF) is similar to that of the blur 
kernel in the way that the blurred image is composed of the initial image and a 
blurring element. In this case, instead of a blurring kernel, a blurring function is 
applied to an image to generate the blurred image. For example, to blur an image 
with a blur kernel you would use Equation (1). To blur an image with a PSF, you 
would use Equation (2).  

PSFB L n= ⊗ +                      (2) 

As can be seen, the only difference is the blur kernel is replaced with a PSF. 
The unique opportunity that this technique provides is the ability to incorporate 
frequency domain analysis for deblurring. 

There have been several attempts to remove motion blur through the PSF ap-
proach. One such attempt involved taking several images of the same subject 
with the camera set to different shutter speeds. When the PSF is transformed to 
the frequency domain, the PSF is expected to contain null values filled with zeros. 
By changing the shutter speed used to capture the image, the range of the null 
values is shifted. This allows for null filling to take place by filling the null values 
of one image captured by another to form a joined PSF as shown by Agrawal 
[11]. While this technique appears promising, there are two notable issues. 
Agrawal assumes that the vehicle is traveling at a constant velocity; while this 
should be fine when using a small sample size of images captured quickly, this 
variable cannot be guaranteed in all situations. Additionally, to take videos of an 
object with different shutter speeds in the real world, specialized software may 
have to be integrated into the camera to switch shutter speeds after capturing an 
image. 

2.3. Super Pixels 

Another approach for deblurring is to separate regions of an image into super-
pixels as demonstrated by Qiao [12]. Many attempts at addressing motion blur 
through a mathematical approach try to find a single blur kernel for the entirety 
of an image. While this may simplify the approach to the problem, it may be dif-
ficult to address the varying levels of motion blur that could occur in the image. 
Superpixels allow for creating many smaller sections of the original image and to 
calculate many localized blur kernels that are more accurately defined by the 
small, localized area. 

Generating accurate blur kernels from a blurred image can be difficult without 
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having a clear reference to verify. Qiao was able to use sections of superpixels to 
accurately define localized blur kernels within a video by using multiple frames 
of a video to synthesize a clear frame. This process is broken up into three main 
parts, segmentation, kernel estimation, and path matching, to generate a deb-
lurred frame. 

The initial segmentation of a video frame is driven by a few different factors. 
One of these factors includes color and may not generate accurate results if there 
are moving objects that contain multiple high-contrasting colors, therefore, the 
estimated motion of an object is considered when segmenting the video frame 
into superpixels. 

After segmentation, blurry and clear superpixels are identified. While a frame 
should be expected to be composed of blurry pixels by a majority, some clear 
superpixels may be present. Blur kernels are then calculated for each superpixel. 
Each kernel can then be optimized from surrounding superpixels within the 
frame to form the global kernel. A comparison between the target blurred frame 
and a neighboring clear frame can then be used to estimate the motion model. 

Clear superpixels within a series of frames are used to replace blurry superpix-
els through path matching. Variables from the previous two steps are used to 
optimize the search and eventually apply texture synthesis to cleanly blend su-
perpixels after matching within the reconstructed frame. 

The main caveat this technique brings, though having promising results, is the 
computational time it takes to compute individual frames. Ideally, we would like 
to have as close to real-time processing as possible, but with the outlined tech-
nique, the quickest a single frame took over 16 seconds to process. 

2.4. Neural Networks 

Machine learning methods involve utilizing any algorithm that falls in any of the 
various classes of algorithms that are supposed to simulate learning in a com-
puter. In general, machine learning methods and algorithms work by analyzing 
data to approximate the desired solution or searching the search space looking 
for the desired solution. Russell and Norvig defined these classes as neural net-
works, evolutionary algorithms, and swarm intelligence algorithms [13]. 

Neural networks are a set of simulated neurons arranged in various architec-
tures. These architectures each have strengths that make them ideal for certain 
situations. Convolutional neural networks (CNN) are quite useful for image 
processing tasks while long short-term neural networks are great for processing 
time-dependent data. What makes neural networks so powerful is they can clas-
sify or group data based on the patterns within the data. The developer of the 
neural network only needs to know the type of data he or she is getting, the 
structure of the data, and the goal of the neural network to develop a functioning 
neural network. There is no need to know what the data contains. Neural net-
works will gain the ability for classifying or grouping data through the process of 
training. There are three forms of training neural networks can go through. The 
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first form is supervised learning. Supervised learning is when the training set of 
data is labeled or there is a set of data that says what the data is. An example of 
this is when you are trying to train an image classifier. Before the user starts us-
ing the network to say what images are, a set of images will be passed in to train 
the network. The images in this training set will contain some sort of metadata 
that says what the image is. After this training set is used, the neural network will 
be able to identify non-labeled data to a certain degree of accuracy depending on 
the quality of the training data set. The second form of training is unsupervised 
learning. Unsupervised learning is the same as supervised learning except the 
training set is not labeled. This form of training is often used for anomaly detec-
tion or any tasks where the grouping of the data is not necessarily known befo-
rehand. The last type of training is reinforcement learning. This type of training 
is continuously happening as the network is being used and usually doesn't end. 
Reinforcement learning is generally used in applications where training data is 
hard to get or is continuously changing. Robotics is an example of when rein-
forcement learning is employed. 

Neural networks have been proven to show some promise in the field of mo-
tion deblurring. In [14], Chen et al. proposed a CNN-LSTM hybrid model. Their 
model works by first looking at each image or frame in the video and it attempts 
to deblur the image without looking at the other images. It will then predict an 
inverse blurring kernel and record that amount. Once the model has done this 
for all frames, it will then attempt to find an average inverse blurring kernel to be 
used across all the images. The idea behind this is that by just looking at a single 
image the inverse blurring kernel can be inaccurate compared to what the de-
sired kernel would be, and to correct it, you average the kernel across all frames 
to try to improve the accuracy of the deblurring kernel. The results of this me-
thod can be seen in Figure 2. Now, this proposed model has two flaws for our 
use case. The first flaw is that it can not be performed in real-time. Since it is 
analyzing all the frames, the entire video needs to be completed before the deb-
lurring process can begin. The second flaw is that the model must take into ac-
count the camera parameters to aid in the deblurring process which is some-
thing we are trying to avoid. 

 

 

Figure 2. Results of Conv-LSTM shown. 
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Yang et al. [15] have also attempted to utilize a CNN network to remove mo-
tion blur from video. Instead of utilizing a standard CNN, they developed a 3D 
CNN to analyze and extract spatial-temporal features to generate additional in-
termediate frames. By combining the 3D CNN with a Fourier accumulation 
module (FAM), generated intermediate frames can be further processed to re-
move the blurring effect. An example of the input image and the resulting clear 
image from their model can be seen in Figure 3. Depending on the type of 
alignment used in processing, computational times can vary between several 
seconds to a few minutes. To improve computational speed one may, the best 
choice is to not apply alignment; however, this is only recommended in situa-
tions when relative motion is small. While relative motion can be minimized by 
increasing the frame rate of a video, this is not always possible with all hardware 
used for capturing video. 

There are a few issues with utilizing traditional CNN methods for reducing 
motion blur within images. Input images may have unwanted deblurring effects 
due to the loss of spatial information in some of the image preparation steps. 
Additionally, to increase the quality of the result, more convolutional layers are 
typically added to a network causing a larger model size and demanding more 
computational resources. Guo et al. [2] has demonstrated that a variant-depth 
network (VDN) provides a solution to these commonly found limitations. By 
using subnetworks that vary in depth and create different levels of deblurring, 
more information is preserved during the computational process. As shown by 
the group's research, not only does this method excel at the qualitative results 
when compared to other methods by producing deblurred images that are ex-
tremely similar to their truth images, but also outperformed the other methods 
computational time. In comparison, the developed VDN is over twice as fast as 
its fastest competitor as tested by Guo et al. This method is currently optimized 
for single images but could potentially be expanded for use with video deblur-
ring in the future with some modifications. 

2.5. Super-Resolution 

Along with the previously stated techniques for motion deblurring, there are a 
few unconventional techniques that are quite effective. One of these techniques 
that we are interested in is super-resolution. Super-resolution is a class of tech-
niques that are used to increase the resolution of images or frames in videos. 
From a high level, super-resolution works by performing some form of analysis 
on the pixels of the image. The analysis is then used to calculate the appropriate 
values for the pixels missing in the image and these generated pixels are then in-
serted throughout the image to increase the resolution. Even though these pixels 
were not in the original image and were generated after the fact, it can be argued 
that the generated pixels are accurate to a certain extent. For this paper, we are 
not directly concerned with how super-resolution works or its primary use case 
of it. In image deblurring, there are instances where pixels are missing so we can 
use the super-resolution to aid us in the deblurring process. 
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Figure 3. Results of 3D CNN + FAM. 
 

In [16], Matsushita et al. proposed a method for motion deblurring using su-
per-resolution. The idea behind their proposed method is that they would first 
perform an analysis of the image to estimate a blur kernel. The inverse of the 
blur kernel would be performed on the image to reduce the motion blur. This 
method worked for reducing the motion blur, but the image was not an accurate 
duplicate of the original image that did not have any motion blur. This is due to 
the motion blur overwriting or corrupting the pixels in the image so the data for 
those pixels would be lost. In most cases, motion blur can be corrected enough 
so that the human eye cannot pick up differences at a glance. In severe cases 
where it cannot be corrected enough, super-resolution, as shown by the authors, 
can be used effectively to restore the missing or corrupted pixels. For our expe-
riment, we are not concerned with the super-resolution used by the authors. In-
stead, we are more concerned with how they ran their experiment. The authors 
not only tested their proposed method on a single image, but they also tested it 
on a varying number of frames from a video. As can be seen in Figure 4 is that 
the accuracy of their method improves with the number of frames the analysis is 
being performed on. 

3. Experiment 

For our work, we took a two-phased approach. In the first phase, we tested our 
model against a simulated dataset that contains video frames of a simple envi-
ronment with very few objects. We then tested the Variant-Depth Network 
(VDN) model proposed by Guo, Wang, Dai, and Li [2] with this same dataset. A 
comparative analysis was performed on the results of these two models for the 
simple environment. The next step of this phase was to test both models in a 
complex environment that had many objects in it. This step followed the same 
procedure as our simple environment. For the second phase, we trained and 
tested our model using the Go Pro dataset [17]. This phase allowed us to com-
pare our model against multiple other models that used this dataset. The pur-
pose of this two-phase approach is due to there being a small number of suitable 
public datasets that could be used to test our model. Most datasets are created to 
suit a specific test and are never released publicly. Also, most models are not 
open sourced so they would have to be reimplemented using the details from the  
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Figure 4. Results from the review of super resolution method 
by Matsushita et al. [16]. 

 
respective paper. This creates a difficult scenario to accurately test a model. To 
overcome this, we developed an open-source dataset of a simulated environment. 
This allowed us to test our model and the VDN against it. However, since this is 
a dataset of a simulated environment, we felt that it was a good starting point, 
but we should continue to use at least one dataset of real world images. We de-
cided to use the Go Pro dataset for our real-world dataset as multiple models 
have already been tested against it and the models were all open source. Since 
the models were open source, we were able to train and test all models using the 
same computing platform. The computing platform used for these experiments 
include an Intel i7-9700k, NVidia RTX 2070 Super, 16 GB of 2800 MHz DDR4 
memory, and a one TB m2 NVMe SSD running Windows 11. 

3.1. Model 

Our model that we developed for this experiment was a convolutional neural 
network-long short-term memory (CNN-LSTM) hybrid implemented using Py-
thon 3.10, Pytorch 1.13, and Cuda 11.6. The implemented model can be viewed 
as several separate models that all work together to accomplish motion deblur-
ring. The first model is a CNN that is used to extract features from each frame. 
We will call this model the feature extractor. The purpose of the feature extrac-
tor is to generate the feature maps of each image. A feature map contains all the 
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information about the various details and objects in the image such as data on 
points, lines, or various shapes. For this particular model there are 32 feature 
maps. The feature extractor takes in each frame of the video as an input. Pytorch 
models require all inputs to be in the form of a tensor so the data of each frame 
must be preprocessed so it can be packaged as a tensor. In our case since each 
frame is 640 × 640 pixels, our input tensor is a three-dimensional tensor of size 
640 × 640 × 3. The depth value of 3 is needed to represent the RGB values of 
each pixel. The input tensor is first passed to a two-dimensional convolutional 
layer. A 3 × 3 matrix is used for the convolution kernel in this layer. The output 
of the convolutional layer is then passed to an activation layer that uses a ReLu 
activation function. The output of the activation layer is then passed to a flat-
tening layer to reduce the dimension of the tensor to one dimension. From here, 
the tensor is then passed to a buffer layer to be stored until the next four frames 
are processed by the CNN model. Once five frames are processed, those five 
frames are then sent to the LSTM component of our model. 

As stated above, the LSTM processes five frames at a time. The goal of the 
LSTM is to use this series of frames to help determine where motion blur is oc-
curring and the amount of motion blur. It accomplishes this by using the two 
frames before a specified frame and the two frames after to try to determine how 
the objects within the frame are moving while the shutter of the camera is open. 
This data/image flow is depicted in Figure 5. The frames are depicted as N1, N, 
or N2. The N frame is the current frame being processed. The 1 or 2 denote the 
position of the frame in the series relative to the current frame being processed. 
These five frames act as the input for the LSTM. Once the frames are processed 
by the LSTM, the oldest frame, or N + 2, is discarded and a new frame is re-
quested from the CNN. The remaining frames shift over to accommodate the 
new frame. So, frame N + 1 becomes N + 2, frame N becomes N + 1, frame N − 
1 becomes N, and N − 2 becomes N − 1. The new frame is depicted as N − 2. To 
accomplish these steps, the LSTM is architected with four hidden states and two 
LSTM layers stacked together. Each hidden state represents each frame in the se-
ries and two LSTM layers were chosen over one because it gave us the best re-
sults during our initial testing. After the frames are done being analyzed by the 
LSTM and removed from the series, they are sent to the final component of our 
model. 

 

 

Figure 5. The flow of frames from CNN to LSTM. 
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The final component of our model is for post-processing the data and trans-
forming the tensor that was output from the LSTM back into an image of the 
same size as the initial frames. This is accomplished by reshaping the output 
tensor of the LSTM to a tensor of shape 638 × 638 × 3. The reasoning as to why 
we reshape the tensor to this shape instead of the initial 640 × 640 × 3 is because 
the convolutional layer in the first component of the model causes us to lose data 
along the edges of the frame. To correct this, we add an upsampling layer to this 
component. The upsampling layer calculates the values for each field along the 
one pixel edge by calculating the average of the three nearest neighbors from the 
input tensor. After the tensor has been upsampled, we have the desired shape of 
the tensor of 640 × 640 × 3. The tensor is then passed into a function to be used 
to generate the new frame. 

3.2. Environments 

Since the version of AirSim that we are utilizing is a plugin for the Unreal En-
gine, the possibilities for different environments are endless with the proper de-
velopment. We used the Blocks and ZhangJiajie projects that were included in 
the Windows v1.8.1 release of AirSim to generate the synthetic data. 

The Blocks environment [18], shown in Figure 6 is rather simple. It is filled 
with simple block structures with some occasional points of interest, such as 
cubes, cylinders, or spheres. This allowed us to generate a simple image for the 
initial development stages. 

ZhangJiajie [19] is noticeably more complex than Blocks. As shown in Figure 
7, the inclusion of vegetation and other real-world features allows us to test our 
approach with a more realistic model. 

3.3. Datasets  

As stated above, our experiment used the Blocks and the ZhangJiajie environ-
ments to generate our simulated dataset. Our decision to utilize AirSim and 
these environments was driven by the fact that AirSim could generate various 
artifacts in the images, such as motion blur. However, it was discovered that the 
motion blur feature within AirSim was not functioning correctly, so an alterna-
tive method needed to be developed for generating the sets of images. 

The approach used for generating sets of images with motion blur was to add 
a constant vertical or horizontal blur to various sets of images. Example kernels 
for this operation are shown in Equations (3) and (4) respectively. This allowed 
us to continue utilizing the environments developed within the Unreal Engine 
for generating synthetic data. 

0 0 1 0 0
0 0 1 0 0

1 0 0 1 0 0
5

0 0 1 0 0
0 0 1 0 0

 
 
 
 
 
 
  

                       (3) 
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Figure 6. Sample image of blocks environment. 
 

 

Figure 7. Sample image of ZhangJiajie environment. 
 

0 0 0 0 0
0 0 0 0 0

1 1 1 1 1 1
5

0 0 0 0 0
0 0 0 0 0

 
 
 
 
 
 
  

                       (4) 

The images generated from the simulated environment will be used as clear 
images for training and testing the neural network. Additionally, the images will 
also provide image data for generating the images with motion blur. The other 
type of data used to generate sample source images with motion blur is the im-
age depth map. The depth maps are generated using built in functions in AirSim 
and the Unreal Engine. Examples of both image types, normal vision and depth 
vision, captured from the synthetic environment are shown in Figure 8. 

The reason behind the generation of the image depth map is related to how 
motion blur is different according to how close or far away a subject is from the 
camera. In this case, we are operating on the basis that all of the synthetic envi-
ronments are static and the camera is moving. This would cause the subjects 
closer to the camera to have more motion blur. With using the depth map as a  
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Figure 8. Generated depth map of an image. 
 
reference, different areas of the image will have blur kernels with varying aper-
tures to them. The larger the value in the depth map, the larger the blur kernel 
that is applied. 

As stated, there are two different datasets that we generated for this experi-
ment. In both environments, five key locations were picked out in each of the 
environments. We then proceeded to fly the simulated drone around each of 
these key locations for 30 seconds. This resulted in five minutes of total video 
between the two environments. All videos were recorded at 24 frames per 
second. Before we applied the motion blur, we had a total of 7200 frames. After 
all the videos were collected, we selected 3 kernel sizes for horizontal blurring 
and 2 kernel sizes for vertical blurring. For horizontal motion blurring, we used 
kernel sizes of 10, 30, and 50 to produce frames with motion blur in them. The 
reason for multiple blur kernels is to simulate the varying speeds the simulated 
drone is flying at. The larger blur kernel corresponds to faster velocities the si-
mulated drone is flying at. For vertical motion blurring, we selected kernel sizes 
20 and 40. Each frame in our dataset was used to produce five motion-blurred 
images with the selected kernel sizes to give us a dataset size of 36,000 frames. 
Figure 9 shows a generated depth map and examples of final images after gene-
rating motion blurring. 

For our real-world dataset, we utilized the Go Pro dataset. The Go Pro dataset 
is divided into two individual datasets. One of the datasets is for training and the 
other one is for testing. The training dataset is comprised of 2103 images and the 
testing dataset is comprised of 1111 images. Each of these images in the datasets 
also have a corresponding sharp image included in the dataset. This sharp image 
is compared against the deblurred image our model produces to ensure our 
model can accurately deblur the images. 

3.4. Results 

As stated above, our model was evaluated and compared in two different expe-
riments. First, our model was compared to the VDN model proposed by Guo, 
Wang, Dai, Hong-Ning and Li using Peak Signal-to-Noise Ratio (PSNR) and 
structural similarity index measure (SSIM) methods for comparative results. For 
both PSNR and SSIM, higher values correspond to better results and lower val-
ues correspond to worse results. The VDN model was chosen for comparison  
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Figure 9. Sample blur results. 
 

because the code was open source, so we were able to test their model using our 
dataset. Both models were trained for 10 epochs against our generated dataset. 
The number of epochs was chosen after initial testing revealed the rate of which 
the accuracy improved was starting to slow down. From Table 1, you can see that 
the VDN has a PSNR value of 31.02 and a SSIM of 0.9473, and our CNN-LSTM 
model produced values of 30.86 and 0.9398 for PSNR and SSIM respectively. In 
Figure 10, you can see some of the resulting images from this experiment. 

Our second experiment involved comparing our model against the deep mul-
ti-scale CNN model purposed by Nah, Kim, and Lee [17], the Non-Uniform 
CNN model purposed by Sun, Cao, Xu, and Ponce in [20], the Total Varia-
tion-Latent Image (TV-L1) model purposed by Kim and Lee [21], and the VDN 
purposed by Guo, Wang, Dai, Hong-Ning and Li [2]. For this second experi-
ment, instead of using our simulated dataset, we used the Go-Pro dataset [17] 
and compared the models using PSNR and SSIM. All the models were trained 
for 10 epochs. From Table 2, you can see that our CNN-LSTM does not perform 
well compared to the other models. With a PSNR of 21.22 and a SSIM of 0.7988, 
our CNN-LSTM (in bold) did the worst of all the models. 
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Table 1. VDN and CNN-LSTM results. 

Model PSNR SSIM 

VDN 31.02 0.9473 

CNN-LSTM 30.86 0.9398 

 

 

Figure 10. Deblurring results. 
 

Table 2. Results from Go-Pro dataset experiment. 

Model PSNR SSIM 

Deep Multi-Scale CNN 27.41 0.8873 

Non-Uniform CNN 23.55 0.8322 

TV-L1 22.74 0.8203 

VDN 22.62 0.8198 

CNN-LSTM 21.22 0.7988 

 
During our analysis of the results from the first experiment, we discovered 

that our CNN-LSTM model had a severe drop in performance around the edges 
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of the image. With this observation, we decided to see if our CNN-LSTM pro-
duced better results if we ignored a 5-pixel wide strip along each of the edges 
when calculating the PSNR and SSIM using images from our simulated dataset 
and the Go Pro dataset. This led to a large increase in accuracy for our model. 
This improvement was so great, our model outperformed the VDN when the 
VDN also ignored the edges for the PSNR and SSIM calculations using both the 
simulated dataset and the Go Pro dataset. Table 3 shows the results in our si-
mulated environment and Table 4 shows the results for the Go Pro dataset. As 
you can see from Table 3 and Table 4, our CNN-LSTM outperformed the VDN 
in both experiments. For the simulated environment, our CNN-LSTM had a 
PSNR of 37.52 and a SSIM of 0.9625 while the VDN had values of 34.36 and 
0.9584 for the PSNR and SSIM respectively. For the experiment using the Go Pro 
dataset, our model had values of 23.41 and 0.8274 for the PSNR and SSIM while 
the VDN had 23.02 and 0.8256. With this new data, we can argue that our 
CNN-LSTM is superior to the VDN if we can improve its performance along the 
edges of the image. While our model is still less accurate than the other models 
when ignoring the edges, our CNN-LSTM is very close in accuracy to the TV-L1 
and the Non-Uniform CNN models using the Go Pro dataset. With our model 
only being 0.11 PSNR and 0.0022 SSIM behind the TV-L1, we believe that with 
simple tuning our model will become more accurate than the TV-L1. For the 
Non-Uniform CNN model, there was a difference of 0.55 PSNR and 0.0194 
SSIM between it and our CNN-LSTM. While the difference is larger than the 
difference between our model and the TV-L1, we still believe we can become 
more accurate than the Non-Uniform CNN model with some tuning. As for the 
data from our second experiment (using real-world images), we speculate that 
our model had a severe performance decrease due to the increased number of 
objects in the scenes and the more realistic motion blurring happening in the 
images.  

 
Table 3. Results when ignoring the edges for simulated dataset. 

Model PSNR SSIM 

VDN 34.36 0.9584 

CNN-LSTM 37.52 0.9625 

 
Table 4. Results when ignoring the edges for Go Pro dataset. 

Model PSNR SSIM Runtime 

Deep Multi-Scale CNN 28.11 0.9002 36.07s 

Non-Uniform CNN 23.96 0.8468 58.22 s 

TV-L1 23.52 0.8296 124.36 s 

VDN 23.02 0.8256 31.74 s 

CNN-LSTM 23.41 0.8274 24.53 s 
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After collecting the results from the previous experiment, we decided to run 
one more test. We wanted to see how our CNN-LSTM model compared to the 
other models in terms of runtime. We captured the runtime of each of these 
models by capturing how long each model took to deblur all the images in the 
test set of the Go Pro dataset. We then repeated each run five times and then we 
averaged the results. As you can see in Table 4, our model has superior runtimes 
with an average runtime of 24.53 seconds while the next fastest was the VDN 
model with 31.74 seconds as the average runtime. If we assume a framerate of 24 
hertz, only 3 of the models will be capable of running in real time. These models 
are our CNN-LSTM, the Deep Multi-Scale CNN, and the VDN. For determining 
if a model can run in real time, we checked if the total runtime was less than 
46.29 seconds. If it was less than 46.29 seconds, the model was deemed capable 
of running in real time. The 46.29 seconds is determined by dividing the total 
number of images in the test set, 1111 images, by 24. The number 24 represents 
the number of images the model needs to process in one second if we assume the 
camera runs at 24 hertz. 

4. Conclusion 

In this paper, we proposed a hardware agnostic solution to motion deblurring in 
videos. This enables our solution to be used in any application where camera 
hardware can be interchangeable, and the physical characteristics of the camera 
are not static. While experimental results showed that our model was not the 
most accurate model, they did show that our model had a significant improve-
ment in accuracy when ignoring the edges of the images. Even though all models 
had an increase in accuracy when ignoring the edges, our model had a large 
enough improvement that it outperformed the VDN and came very close to the 
TV-L1 and the Non-Uniform CNN models. Our results also showed that our 
model was the fastest out of all the tested models. This enables our model to be 
the optimal solution in applications where speed is more desirable than accuracy, 
and when the center of the image is more important than the edges. For future 
work, we hope to optimize our solution so not only is it the fastest, but it is also 
the most accurate even when we do not ignore the edges. 
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