
Journal of Intelligent Learning Systems and Applications, 2023, 15, 89-107
https://www.scirp.org/journal/jilsa

ISSN Online: 2150-8410
ISSN Print: 2150-8402

DOI: 10.4236/jilsa.2023.154007 Nov. 6, 2023 89 Journal of Intelligent Learning Systems and Applications

Camera Independent Motion Deblurring in
Videos Using Machine Learning

Tyler Welander, Ronald Marsh, Bryce Gruber

Department of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, North Dakota, USA

Abstract
In this paper, we will be looking at our efforts to find a novel solution for mo-
tion deblurring in videos. In addition, our solution has the requirement of
being camera-independent. This means that the solution is fully implemented
in software and is not aware of any of the characteristics of the camera. We
found a solution by implementing a Convolutional Neural Network-Long
Short Term Memory (CNN-LSTM) hybrid model. Our CNN-LSTM is able to
deblur video without any knowledge of the camera hardware. This allows it to
be implemented on any system that allows the camera to be swapped out with
any camera model with any physical characteristics.

Keywords
Motion Blur, Video, Convolutional Neural Network, Long Short-Term
Memory, AirSim, OpenCV

1. Introduction

Optical cameras often play a crucial role in autonomous unmanned aerial vehi-
cles. They are often used in navigation systems for object detection and avoidance,
or they can be used for collecting visual information about the environment the
vehicle is operating in. Unfortunately, various issues arise when using optical
cameras in these situations. One such issue is motion blur. Motion blur can in-
troduce unwanted artifacts or distort the image or video to the point where it no
longer contains any useful information. To overcome motion blur, the image or
video must be processed to try to reduce or eliminate the blur.

Various methods can be used to deblur an image or video. These methods can
be in the form of statistical analysis such as heavy tail analysis proposed by Zhu
[1]. There are also techniques that utilize machine learning such as the Variant
Depth Network proposed by Guo, Wang, Hong-Ning, and Li [2]. There are also

How to cite this paper: Welander, T.,
Marsh, R. and Gruber, B. (2023) Camera
Independent Motion Deblurring in Videos
Using Machine Learning. Journal of Intel-
ligent Learning Systems and Applications,
15, 89-107.
https://doi.org/10.4236/jilsa.2023.154007

Received: August 2, 2023
Accepted: November 3, 2023
Published: November 6, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jilsa
https://doi.org/10.4236/jilsa.2023.154007
https://www.scirp.org/
https://doi.org/10.4236/jilsa.2023.154007
http://creativecommons.org/licenses/by/4.0/

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 90 Journal of Intelligent Learning Systems and Applications

more unconventional methods such as using super-resolution as proposed by
Fang, Ning, Zhan, and Zongqian [3]. All these techniques have a common flaw,
and that is that they are often tailored to a specific camera. These methods will
consider the various characteristics of the camera to aid in the process of deblur-
ring the image. To overcome the issue of camera specificity, we need a method
that is completely agnostic to the camera. This will allow the method to be used
with any image or video.

In this paper, we will be looking at a novel method for deblurring video. This
method utilizes machine learning and is completely camera agonistic. The me-
thod was developed and tested in a virtual environment created using the Unreal
Engine and AirSim such that camera parameters could be adjusted throughout
testing and development to determine if it is truly agnostic. First, we will provide
background knowledge and terminology of the various terms and technical ideas
used throughout the paper. Then, a brief survey of related works and any defini-
tions of important concepts will be provided. We will then discuss our experi-
mental design, such as information on the environments and datasets. Details on
our proposed model will then be provided along with the results of our experi-
ment. We will then provide a conclusion that will discuss all the important ta-
keaways from this experiment, lessons learned, and any future work would like
to accomplish.

2. Background

The main issue with cameras is that they often introduce motion blur in the im-
ages. Motion blur is caused by the shutter speed on the camera being too slow
for how fast the camera or the objects in the image or video are moving. If there
is movement in the image and the shutter doesn’t close fast enough, the camera
will collect light information about the object as it is moving. This will cause
motion blur to occur in the image or video and it will look like streaking or
smearing in the image. Figure 1 shows what motion blur looks like in an image.

To acquire a quality image, that both humans and machines can interpret, the
settings for the aperture, sensitivity to light, and shutter speed all need to be ba-
lanced to create an image that is properly exposed and free of artifacts. Most
cameras manufactured presently can auto-balance some of these key characteris-
tics, but when trying to integrate small and cheap cameras into a system, there
are often sacrifices that need to be made in the camera design. For instance, a
manufacturer may try to reduce the cost of a camera by reducing the sensitivity
to light or by slowing down the shutter speed. This does lower the cost of pro-
ducing the camera but it also lowers the quality of the images the camera pro-
duces. This will in turn cause humans and machines to misinterpret the details
in the images the camera produces.

Having a fast shutter on a camera comes at a cost of size and price, so lower
priced cameras generally have slower/longer shutters. For this reason, there have
been several techniques developed for removing motion blur from a single cap-
tured image.

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 91 Journal of Intelligent Learning Systems and Applications

Figure 1. Motion blur example.

The concept of motion blur also affects video since video is just a series of

pictures, typically referred to as frames, played at a certain speed. The unique
opportunity in trying to correct motion blur with video, as opposed to single
images, is that video is typically captured such that sequences of frames are re-
markably similar to other frames in the sequence. By utilizing the surrounding
frames, additional information may be provided to aid in removing motion blur
in a video sequence more effectively than a single image.

While there are solutions to motion blur that can be applied by hardware, not
all cameras have the capability to modify their settings to the degree that is
needed. For this reason, our goal is to provide a software solution that can be
applied to a camera capable of capturing standard video. For this discussion, we
are going analyze two primary approaches to this problem through software
means, using traditional computational methods and applying machine learning
methods.

2.1. Blur Kernel

A blurred image can be considered to be composed of a combination of a clear
image and a modifying element in the form of a blurring kernel. The equation 1
describes this:

B k L n= ⊗ + (1)

In Equation (1), a clear image L has a blur kernel k applied and noise factor n
added to generate the resultant blurred image B. To unblur an image, one must
extract the blur kernel from the blurred image to inversely reconstruct the clear
image.

Multiple techniques for deblurring using the blur kernel concept have been
developed. A maximum a posteriori (MAP) estimation-based method specializes
in trying to maximize the probability of the posterior [4] [5] [6]. Adjustments
are made to the blur kernel and the clear image. Variational Bayesian (VB)-
based methods seek the best blur kernel by utilizing a distribution of probable
clear images [7] [8] [9]. Another method is the edge-based method [4] [5] [6].

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 92 Journal of Intelligent Learning Systems and Applications

This method will extract edges and use the generated clear image to estimate the
value of the blur kernel. However, it must be done in conjunction with filtering
or optimizing. As pointed out by Liu, Shaoguo, Wang, et al. [10], these methods
are not always the most accurate as the aperture chosen for the blur kernel is of-
ten done manually. This is not ideal since choosing the wrong size kernel to use
will significantly impact the generated results.

2.2. Point-Spread Function

The theory behind the Point-Spread Function (PSF) is similar to that of the blur
kernel in the way that the blurred image is composed of the initial image and a
blurring element. In this case, instead of a blurring kernel, a blurring function is
applied to an image to generate the blurred image. For example, to blur an image
with a blur kernel you would use Equation (1). To blur an image with a PSF, you
would use Equation (2).

PSFB L n= ⊗ + (2)

As can be seen, the only difference is the blur kernel is replaced with a PSF.
The unique opportunity that this technique provides is the ability to incorporate
frequency domain analysis for deblurring.

There have been several attempts to remove motion blur through the PSF ap-
proach. One such attempt involved taking several images of the same subject
with the camera set to different shutter speeds. When the PSF is transformed to
the frequency domain, the PSF is expected to contain null values filled with zeros.
By changing the shutter speed used to capture the image, the range of the null
values is shifted. This allows for null filling to take place by filling the null values
of one image captured by another to form a joined PSF as shown by Agrawal
[11]. While this technique appears promising, there are two notable issues.
Agrawal assumes that the vehicle is traveling at a constant velocity; while this
should be fine when using a small sample size of images captured quickly, this
variable cannot be guaranteed in all situations. Additionally, to take videos of an
object with different shutter speeds in the real world, specialized software may
have to be integrated into the camera to switch shutter speeds after capturing an
image.

2.3. Super Pixels

Another approach for deblurring is to separate regions of an image into super-
pixels as demonstrated by Qiao [12]. Many attempts at addressing motion blur
through a mathematical approach try to find a single blur kernel for the entirety
of an image. While this may simplify the approach to the problem, it may be dif-
ficult to address the varying levels of motion blur that could occur in the image.
Superpixels allow for creating many smaller sections of the original image and to
calculate many localized blur kernels that are more accurately defined by the
small, localized area.

Generating accurate blur kernels from a blurred image can be difficult without

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 93 Journal of Intelligent Learning Systems and Applications

having a clear reference to verify. Qiao was able to use sections of superpixels to
accurately define localized blur kernels within a video by using multiple frames
of a video to synthesize a clear frame. This process is broken up into three main
parts, segmentation, kernel estimation, and path matching, to generate a deb-
lurred frame.

The initial segmentation of a video frame is driven by a few different factors.
One of these factors includes color and may not generate accurate results if there
are moving objects that contain multiple high-contrasting colors, therefore, the
estimated motion of an object is considered when segmenting the video frame
into superpixels.

After segmentation, blurry and clear superpixels are identified. While a frame
should be expected to be composed of blurry pixels by a majority, some clear
superpixels may be present. Blur kernels are then calculated for each superpixel.
Each kernel can then be optimized from surrounding superpixels within the
frame to form the global kernel. A comparison between the target blurred frame
and a neighboring clear frame can then be used to estimate the motion model.

Clear superpixels within a series of frames are used to replace blurry superpix-
els through path matching. Variables from the previous two steps are used to
optimize the search and eventually apply texture synthesis to cleanly blend su-
perpixels after matching within the reconstructed frame.

The main caveat this technique brings, though having promising results, is the
computational time it takes to compute individual frames. Ideally, we would like
to have as close to real-time processing as possible, but with the outlined tech-
nique, the quickest a single frame took over 16 seconds to process.

2.4. Neural Networks

Machine learning methods involve utilizing any algorithm that falls in any of the
various classes of algorithms that are supposed to simulate learning in a com-
puter. In general, machine learning methods and algorithms work by analyzing
data to approximate the desired solution or searching the search space looking
for the desired solution. Russell and Norvig defined these classes as neural net-
works, evolutionary algorithms, and swarm intelligence algorithms [13].

Neural networks are a set of simulated neurons arranged in various architec-
tures. These architectures each have strengths that make them ideal for certain
situations. Convolutional neural networks (CNN) are quite useful for image
processing tasks while long short-term neural networks are great for processing
time-dependent data. What makes neural networks so powerful is they can clas-
sify or group data based on the patterns within the data. The developer of the
neural network only needs to know the type of data he or she is getting, the
structure of the data, and the goal of the neural network to develop a functioning
neural network. There is no need to know what the data contains. Neural net-
works will gain the ability for classifying or grouping data through the process of
training. There are three forms of training neural networks can go through. The

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 94 Journal of Intelligent Learning Systems and Applications

first form is supervised learning. Supervised learning is when the training set of
data is labeled or there is a set of data that says what the data is. An example of
this is when you are trying to train an image classifier. Before the user starts us-
ing the network to say what images are, a set of images will be passed in to train
the network. The images in this training set will contain some sort of metadata
that says what the image is. After this training set is used, the neural network will
be able to identify non-labeled data to a certain degree of accuracy depending on
the quality of the training data set. The second form of training is unsupervised
learning. Unsupervised learning is the same as supervised learning except the
training set is not labeled. This form of training is often used for anomaly detec-
tion or any tasks where the grouping of the data is not necessarily known befo-
rehand. The last type of training is reinforcement learning. This type of training
is continuously happening as the network is being used and usually doesn't end.
Reinforcement learning is generally used in applications where training data is
hard to get or is continuously changing. Robotics is an example of when rein-
forcement learning is employed.

Neural networks have been proven to show some promise in the field of mo-
tion deblurring. In [14], Chen et al. proposed a CNN-LSTM hybrid model. Their
model works by first looking at each image or frame in the video and it attempts
to deblur the image without looking at the other images. It will then predict an
inverse blurring kernel and record that amount. Once the model has done this
for all frames, it will then attempt to find an average inverse blurring kernel to be
used across all the images. The idea behind this is that by just looking at a single
image the inverse blurring kernel can be inaccurate compared to what the de-
sired kernel would be, and to correct it, you average the kernel across all frames
to try to improve the accuracy of the deblurring kernel. The results of this me-
thod can be seen in Figure 2. Now, this proposed model has two flaws for our
use case. The first flaw is that it can not be performed in real-time. Since it is
analyzing all the frames, the entire video needs to be completed before the deb-
lurring process can begin. The second flaw is that the model must take into ac-
count the camera parameters to aid in the deblurring process which is some-
thing we are trying to avoid.

Figure 2. Results of Conv-LSTM shown.

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 95 Journal of Intelligent Learning Systems and Applications

Yang et al. [15] have also attempted to utilize a CNN network to remove mo-
tion blur from video. Instead of utilizing a standard CNN, they developed a 3D
CNN to analyze and extract spatial-temporal features to generate additional in-
termediate frames. By combining the 3D CNN with a Fourier accumulation
module (FAM), generated intermediate frames can be further processed to re-
move the blurring effect. An example of the input image and the resulting clear
image from their model can be seen in Figure 3. Depending on the type of
alignment used in processing, computational times can vary between several
seconds to a few minutes. To improve computational speed one may, the best
choice is to not apply alignment; however, this is only recommended in situa-
tions when relative motion is small. While relative motion can be minimized by
increasing the frame rate of a video, this is not always possible with all hardware
used for capturing video.

There are a few issues with utilizing traditional CNN methods for reducing
motion blur within images. Input images may have unwanted deblurring effects
due to the loss of spatial information in some of the image preparation steps.
Additionally, to increase the quality of the result, more convolutional layers are
typically added to a network causing a larger model size and demanding more
computational resources. Guo et al. [2] has demonstrated that a variant-depth
network (VDN) provides a solution to these commonly found limitations. By
using subnetworks that vary in depth and create different levels of deblurring,
more information is preserved during the computational process. As shown by
the group's research, not only does this method excel at the qualitative results
when compared to other methods by producing deblurred images that are ex-
tremely similar to their truth images, but also outperformed the other methods
computational time. In comparison, the developed VDN is over twice as fast as
its fastest competitor as tested by Guo et al. This method is currently optimized
for single images but could potentially be expanded for use with video deblur-
ring in the future with some modifications.

2.5. Super-Resolution

Along with the previously stated techniques for motion deblurring, there are a
few unconventional techniques that are quite effective. One of these techniques
that we are interested in is super-resolution. Super-resolution is a class of tech-
niques that are used to increase the resolution of images or frames in videos.
From a high level, super-resolution works by performing some form of analysis
on the pixels of the image. The analysis is then used to calculate the appropriate
values for the pixels missing in the image and these generated pixels are then in-
serted throughout the image to increase the resolution. Even though these pixels
were not in the original image and were generated after the fact, it can be argued
that the generated pixels are accurate to a certain extent. For this paper, we are
not directly concerned with how super-resolution works or its primary use case
of it. In image deblurring, there are instances where pixels are missing so we can
use the super-resolution to aid us in the deblurring process.

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 96 Journal of Intelligent Learning Systems and Applications

Figure 3. Results of 3D CNN + FAM.

In [16], Matsushita et al. proposed a method for motion deblurring using su-
per-resolution. The idea behind their proposed method is that they would first
perform an analysis of the image to estimate a blur kernel. The inverse of the
blur kernel would be performed on the image to reduce the motion blur. This
method worked for reducing the motion blur, but the image was not an accurate
duplicate of the original image that did not have any motion blur. This is due to
the motion blur overwriting or corrupting the pixels in the image so the data for
those pixels would be lost. In most cases, motion blur can be corrected enough
so that the human eye cannot pick up differences at a glance. In severe cases
where it cannot be corrected enough, super-resolution, as shown by the authors,
can be used effectively to restore the missing or corrupted pixels. For our expe-
riment, we are not concerned with the super-resolution used by the authors. In-
stead, we are more concerned with how they ran their experiment. The authors
not only tested their proposed method on a single image, but they also tested it
on a varying number of frames from a video. As can be seen in Figure 4 is that
the accuracy of their method improves with the number of frames the analysis is
being performed on.

3. Experiment

For our work, we took a two-phased approach. In the first phase, we tested our
model against a simulated dataset that contains video frames of a simple envi-
ronment with very few objects. We then tested the Variant-Depth Network
(VDN) model proposed by Guo, Wang, Dai, and Li [2] with this same dataset. A
comparative analysis was performed on the results of these two models for the
simple environment. The next step of this phase was to test both models in a
complex environment that had many objects in it. This step followed the same
procedure as our simple environment. For the second phase, we trained and
tested our model using the Go Pro dataset [17]. This phase allowed us to com-
pare our model against multiple other models that used this dataset. The pur-
pose of this two-phase approach is due to there being a small number of suitable
public datasets that could be used to test our model. Most datasets are created to
suit a specific test and are never released publicly. Also, most models are not
open sourced so they would have to be reimplemented using the details from the

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 97 Journal of Intelligent Learning Systems and Applications

Figure 4. Results from the review of super resolution method
by Matsushita et al. [16].

respective paper. This creates a difficult scenario to accurately test a model. To
overcome this, we developed an open-source dataset of a simulated environment.
This allowed us to test our model and the VDN against it. However, since this is
a dataset of a simulated environment, we felt that it was a good starting point,
but we should continue to use at least one dataset of real world images. We de-
cided to use the Go Pro dataset for our real-world dataset as multiple models
have already been tested against it and the models were all open source. Since
the models were open source, we were able to train and test all models using the
same computing platform. The computing platform used for these experiments
include an Intel i7-9700k, NVidia RTX 2070 Super, 16 GB of 2800 MHz DDR4
memory, and a one TB m2 NVMe SSD running Windows 11.

3.1. Model

Our model that we developed for this experiment was a convolutional neural
network-long short-term memory (CNN-LSTM) hybrid implemented using Py-
thon 3.10, Pytorch 1.13, and Cuda 11.6. The implemented model can be viewed
as several separate models that all work together to accomplish motion deblur-
ring. The first model is a CNN that is used to extract features from each frame.
We will call this model the feature extractor. The purpose of the feature extrac-
tor is to generate the feature maps of each image. A feature map contains all the

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 98 Journal of Intelligent Learning Systems and Applications

information about the various details and objects in the image such as data on
points, lines, or various shapes. For this particular model there are 32 feature
maps. The feature extractor takes in each frame of the video as an input. Pytorch
models require all inputs to be in the form of a tensor so the data of each frame
must be preprocessed so it can be packaged as a tensor. In our case since each
frame is 640 × 640 pixels, our input tensor is a three-dimensional tensor of size
640 × 640 × 3. The depth value of 3 is needed to represent the RGB values of
each pixel. The input tensor is first passed to a two-dimensional convolutional
layer. A 3 × 3 matrix is used for the convolution kernel in this layer. The output
of the convolutional layer is then passed to an activation layer that uses a ReLu
activation function. The output of the activation layer is then passed to a flat-
tening layer to reduce the dimension of the tensor to one dimension. From here,
the tensor is then passed to a buffer layer to be stored until the next four frames
are processed by the CNN model. Once five frames are processed, those five
frames are then sent to the LSTM component of our model.

As stated above, the LSTM processes five frames at a time. The goal of the
LSTM is to use this series of frames to help determine where motion blur is oc-
curring and the amount of motion blur. It accomplishes this by using the two
frames before a specified frame and the two frames after to try to determine how
the objects within the frame are moving while the shutter of the camera is open.
This data/image flow is depicted in Figure 5. The frames are depicted as N1, N,
or N2. The N frame is the current frame being processed. The 1 or 2 denote the
position of the frame in the series relative to the current frame being processed.
These five frames act as the input for the LSTM. Once the frames are processed
by the LSTM, the oldest frame, or N + 2, is discarded and a new frame is re-
quested from the CNN. The remaining frames shift over to accommodate the
new frame. So, frame N + 1 becomes N + 2, frame N becomes N + 1, frame N −
1 becomes N, and N − 2 becomes N − 1. The new frame is depicted as N − 2. To
accomplish these steps, the LSTM is architected with four hidden states and two
LSTM layers stacked together. Each hidden state represents each frame in the se-
ries and two LSTM layers were chosen over one because it gave us the best re-
sults during our initial testing. After the frames are done being analyzed by the
LSTM and removed from the series, they are sent to the final component of our
model.

Figure 5. The flow of frames from CNN to LSTM.

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 99 Journal of Intelligent Learning Systems and Applications

The final component of our model is for post-processing the data and trans-
forming the tensor that was output from the LSTM back into an image of the
same size as the initial frames. This is accomplished by reshaping the output
tensor of the LSTM to a tensor of shape 638 × 638 × 3. The reasoning as to why
we reshape the tensor to this shape instead of the initial 640 × 640 × 3 is because
the convolutional layer in the first component of the model causes us to lose data
along the edges of the frame. To correct this, we add an upsampling layer to this
component. The upsampling layer calculates the values for each field along the
one pixel edge by calculating the average of the three nearest neighbors from the
input tensor. After the tensor has been upsampled, we have the desired shape of
the tensor of 640 × 640 × 3. The tensor is then passed into a function to be used
to generate the new frame.

3.2. Environments

Since the version of AirSim that we are utilizing is a plugin for the Unreal En-
gine, the possibilities for different environments are endless with the proper de-
velopment. We used the Blocks and ZhangJiajie projects that were included in
the Windows v1.8.1 release of AirSim to generate the synthetic data.

The Blocks environment [18], shown in Figure 6 is rather simple. It is filled
with simple block structures with some occasional points of interest, such as
cubes, cylinders, or spheres. This allowed us to generate a simple image for the
initial development stages.

ZhangJiajie [19] is noticeably more complex than Blocks. As shown in Figure
7, the inclusion of vegetation and other real-world features allows us to test our
approach with a more realistic model.

3.3. Datasets

As stated above, our experiment used the Blocks and the ZhangJiajie environ-
ments to generate our simulated dataset. Our decision to utilize AirSim and
these environments was driven by the fact that AirSim could generate various
artifacts in the images, such as motion blur. However, it was discovered that the
motion blur feature within AirSim was not functioning correctly, so an alterna-
tive method needed to be developed for generating the sets of images.

The approach used for generating sets of images with motion blur was to add
a constant vertical or horizontal blur to various sets of images. Example kernels
for this operation are shown in Equations (3) and (4) respectively. This allowed
us to continue utilizing the environments developed within the Unreal Engine
for generating synthetic data.

0 0 1 0 0
0 0 1 0 0

1 0 0 1 0 0
5

0 0 1 0 0
0 0 1 0 0

 (3)

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 100 Journal of Intelligent Learning Systems and Applications

Figure 6. Sample image of blocks environment.

Figure 7. Sample image of ZhangJiajie environment.

0 0 0 0 0
0 0 0 0 0

1 1 1 1 1 1
5

0 0 0 0 0
0 0 0 0 0

 (4)

The images generated from the simulated environment will be used as clear
images for training and testing the neural network. Additionally, the images will
also provide image data for generating the images with motion blur. The other
type of data used to generate sample source images with motion blur is the im-
age depth map. The depth maps are generated using built in functions in AirSim
and the Unreal Engine. Examples of both image types, normal vision and depth
vision, captured from the synthetic environment are shown in Figure 8.

The reason behind the generation of the image depth map is related to how
motion blur is different according to how close or far away a subject is from the
camera. In this case, we are operating on the basis that all of the synthetic envi-
ronments are static and the camera is moving. This would cause the subjects
closer to the camera to have more motion blur. With using the depth map as a

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 101 Journal of Intelligent Learning Systems and Applications

Figure 8. Generated depth map of an image.

reference, different areas of the image will have blur kernels with varying aper-
tures to them. The larger the value in the depth map, the larger the blur kernel
that is applied.

As stated, there are two different datasets that we generated for this experi-
ment. In both environments, five key locations were picked out in each of the
environments. We then proceeded to fly the simulated drone around each of
these key locations for 30 seconds. This resulted in five minutes of total video
between the two environments. All videos were recorded at 24 frames per
second. Before we applied the motion blur, we had a total of 7200 frames. After
all the videos were collected, we selected 3 kernel sizes for horizontal blurring
and 2 kernel sizes for vertical blurring. For horizontal motion blurring, we used
kernel sizes of 10, 30, and 50 to produce frames with motion blur in them. The
reason for multiple blur kernels is to simulate the varying speeds the simulated
drone is flying at. The larger blur kernel corresponds to faster velocities the si-
mulated drone is flying at. For vertical motion blurring, we selected kernel sizes
20 and 40. Each frame in our dataset was used to produce five motion-blurred
images with the selected kernel sizes to give us a dataset size of 36,000 frames.
Figure 9 shows a generated depth map and examples of final images after gene-
rating motion blurring.

For our real-world dataset, we utilized the Go Pro dataset. The Go Pro dataset
is divided into two individual datasets. One of the datasets is for training and the
other one is for testing. The training dataset is comprised of 2103 images and the
testing dataset is comprised of 1111 images. Each of these images in the datasets
also have a corresponding sharp image included in the dataset. This sharp image
is compared against the deblurred image our model produces to ensure our
model can accurately deblur the images.

3.4. Results

As stated above, our model was evaluated and compared in two different expe-
riments. First, our model was compared to the VDN model proposed by Guo,
Wang, Dai, Hong-Ning and Li using Peak Signal-to-Noise Ratio (PSNR) and
structural similarity index measure (SSIM) methods for comparative results. For
both PSNR and SSIM, higher values correspond to better results and lower val-
ues correspond to worse results. The VDN model was chosen for comparison

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 102 Journal of Intelligent Learning Systems and Applications

Figure 9. Sample blur results.

because the code was open source, so we were able to test their model using our
dataset. Both models were trained for 10 epochs against our generated dataset.
The number of epochs was chosen after initial testing revealed the rate of which
the accuracy improved was starting to slow down. From Table 1, you can see that
the VDN has a PSNR value of 31.02 and a SSIM of 0.9473, and our CNN-LSTM
model produced values of 30.86 and 0.9398 for PSNR and SSIM respectively. In
Figure 10, you can see some of the resulting images from this experiment.

Our second experiment involved comparing our model against the deep mul-
ti-scale CNN model purposed by Nah, Kim, and Lee [17], the Non-Uniform
CNN model purposed by Sun, Cao, Xu, and Ponce in [20], the Total Varia-
tion-Latent Image (TV-L1) model purposed by Kim and Lee [21], and the VDN
purposed by Guo, Wang, Dai, Hong-Ning and Li [2]. For this second experi-
ment, instead of using our simulated dataset, we used the Go-Pro dataset [17]
and compared the models using PSNR and SSIM. All the models were trained
for 10 epochs. From Table 2, you can see that our CNN-LSTM does not perform
well compared to the other models. With a PSNR of 21.22 and a SSIM of 0.7988,
our CNN-LSTM (in bold) did the worst of all the models.

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 103 Journal of Intelligent Learning Systems and Applications

Table 1. VDN and CNN-LSTM results.

Model PSNR SSIM

VDN 31.02 0.9473

CNN-LSTM 30.86 0.9398

Figure 10. Deblurring results.

Table 2. Results from Go-Pro dataset experiment.

Model PSNR SSIM

Deep Multi-Scale CNN 27.41 0.8873

Non-Uniform CNN 23.55 0.8322

TV-L1 22.74 0.8203

VDN 22.62 0.8198

CNN-LSTM 21.22 0.7988

During our analysis of the results from the first experiment, we discovered

that our CNN-LSTM model had a severe drop in performance around the edges

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 104 Journal of Intelligent Learning Systems and Applications

of the image. With this observation, we decided to see if our CNN-LSTM pro-
duced better results if we ignored a 5-pixel wide strip along each of the edges
when calculating the PSNR and SSIM using images from our simulated dataset
and the Go Pro dataset. This led to a large increase in accuracy for our model.
This improvement was so great, our model outperformed the VDN when the
VDN also ignored the edges for the PSNR and SSIM calculations using both the
simulated dataset and the Go Pro dataset. Table 3 shows the results in our si-
mulated environment and Table 4 shows the results for the Go Pro dataset. As
you can see from Table 3 and Table 4, our CNN-LSTM outperformed the VDN
in both experiments. For the simulated environment, our CNN-LSTM had a
PSNR of 37.52 and a SSIM of 0.9625 while the VDN had values of 34.36 and
0.9584 for the PSNR and SSIM respectively. For the experiment using the Go Pro
dataset, our model had values of 23.41 and 0.8274 for the PSNR and SSIM while
the VDN had 23.02 and 0.8256. With this new data, we can argue that our
CNN-LSTM is superior to the VDN if we can improve its performance along the
edges of the image. While our model is still less accurate than the other models
when ignoring the edges, our CNN-LSTM is very close in accuracy to the TV-L1
and the Non-Uniform CNN models using the Go Pro dataset. With our model
only being 0.11 PSNR and 0.0022 SSIM behind the TV-L1, we believe that with
simple tuning our model will become more accurate than the TV-L1. For the
Non-Uniform CNN model, there was a difference of 0.55 PSNR and 0.0194
SSIM between it and our CNN-LSTM. While the difference is larger than the
difference between our model and the TV-L1, we still believe we can become
more accurate than the Non-Uniform CNN model with some tuning. As for the
data from our second experiment (using real-world images), we speculate that
our model had a severe performance decrease due to the increased number of
objects in the scenes and the more realistic motion blurring happening in the
images.

Table 3. Results when ignoring the edges for simulated dataset.

Model PSNR SSIM

VDN 34.36 0.9584

CNN-LSTM 37.52 0.9625

Table 4. Results when ignoring the edges for Go Pro dataset.

Model PSNR SSIM Runtime

Deep Multi-Scale CNN 28.11 0.9002 36.07s

Non-Uniform CNN 23.96 0.8468 58.22 s

TV-L1 23.52 0.8296 124.36 s

VDN 23.02 0.8256 31.74 s

CNN-LSTM 23.41 0.8274 24.53 s

https://doi.org/10.4236/jilsa.2023.154007

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 105 Journal of Intelligent Learning Systems and Applications

After collecting the results from the previous experiment, we decided to run
one more test. We wanted to see how our CNN-LSTM model compared to the
other models in terms of runtime. We captured the runtime of each of these
models by capturing how long each model took to deblur all the images in the
test set of the Go Pro dataset. We then repeated each run five times and then we
averaged the results. As you can see in Table 4, our model has superior runtimes
with an average runtime of 24.53 seconds while the next fastest was the VDN
model with 31.74 seconds as the average runtime. If we assume a framerate of 24
hertz, only 3 of the models will be capable of running in real time. These models
are our CNN-LSTM, the Deep Multi-Scale CNN, and the VDN. For determining
if a model can run in real time, we checked if the total runtime was less than
46.29 seconds. If it was less than 46.29 seconds, the model was deemed capable
of running in real time. The 46.29 seconds is determined by dividing the total
number of images in the test set, 1111 images, by 24. The number 24 represents
the number of images the model needs to process in one second if we assume the
camera runs at 24 hertz.

4. Conclusion

In this paper, we proposed a hardware agnostic solution to motion deblurring in
videos. This enables our solution to be used in any application where camera
hardware can be interchangeable, and the physical characteristics of the camera
are not static. While experimental results showed that our model was not the
most accurate model, they did show that our model had a significant improve-
ment in accuracy when ignoring the edges of the images. Even though all models
had an increase in accuracy when ignoring the edges, our model had a large
enough improvement that it outperformed the VDN and came very close to the
TV-L1 and the Non-Uniform CNN models. Our results also showed that our
model was the fastest out of all the tested models. This enables our model to be
the optimal solution in applications where speed is more desirable than accuracy,
and when the center of the image is more important than the edges. For future
work, we hope to optimize our solution so not only is it the fastest, but it is also
the most accurate even when we do not ignore the edges.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Zhu, Y.-F. (2010) Blur Detection for Surveillance Video Based on Heavy-Tailed

Distribution. 2010 Asia Pacific Conference on Postgraduate Research in Microelec-
tronics and Electronics, Shanghai, 22-24 September 2010, 101-105.
https://doi.org/10.1109/PRIMEASIA.2010.5604950

[2] Guo, C., Wang, Q., Dai, H.-N. and Li, P. (2022) VDN: Variant-Depth Network for
Motion Deblurring. Computer Animation and Virtual Worlds, 33, e2066.
https://doi.org/10.1002/cav.2066

https://doi.org/10.4236/jilsa.2023.154007
https://doi.org/10.1109/PRIMEASIA.2010.5604950
https://doi.org/10.1002/cav.2066

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 106 Journal of Intelligent Learning Systems and Applications

[3] Fang, N. and Zhan, Z.Q. (2022) High-Resolution Optical Flow and Frame-Recurrent
Network for Video Super-Resolution and Deblurring. Neurocomputing, 489, 128-138.
https://doi.org/10.1016/j.neucom.2022.02.067

[4] Qi S., Jia, J.Y. and Aseem, A. (2008) High-Quality Motion Deblurring from a Single
Image. ACM Transactions on Graphics, Vol. 27.
https://doi.org/10.1145/1360612.1360672

[5] Krishnan, D., Tay, T. and Fergus, R. (2011) Blind Deconvolution Using a Norma-
lized Sparsity Measure. CVPR 2011, Colorado Springs, 20-25 June 2011, 233-240.

[6] Li, X., Zheng, S.C. and Jia, J.Y. (2013) Unnatural L0 Sparse Representation for Nat-
ural Image Deblurring. 2013 IEEE Conference on Computer Vision and Pattern
Recognition, Portland, 23-28 June 2013, 1107-1114.
https://doi.org/10.1109/CVPR.2013.147

[7] Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T. and Freeman, W.T. (2006) Re-
moving Camera Shake from a Single Photograph. ACM Transactions on Graphics,
25, 787-794. https://doi.org/10.1145/1141911.1141956

[8] Levin, A., Weiss, Y., Durand, F. and Freeman, W.T. (2009) Understanding and
Evaluating Blind Deconvolution Algorithms. 2009 IEEE Conference on Computer
Vision and Pattern Recognition, Miami, 20-25 June 2009, 1964-1971.
https://doi.org/10.1109/CVPR.2009.5206815

[9] Levin, A., Weiss, Y., Durand, F. and Freeman, W.T. (2011) Efficient Marginal Like-
lihood Optimization in Blind Deconvolution. CVPR 2011, Colorado Springs, 20-25
June 2011, 2657-2664. https://doi.org/10.1109/CVPR.2011.5995308

[10] Liu, S.G., Wang, H.B., Wang, J. and Pan, C.H. (2016) Blur-Kernel Bound Estima-
tion From Pyramid Statistics. IEEE Transactions on Circuits and Systems for Video
Technology, 26, 1012-1016. https://doi.org/10.1109/TCSVT.2015.2418585

[11] Agrawal, A., Xu, Y. and Raskar, R. (2009) Invertible Motion Blur in Video. ACM
Transactions on Graphics, 28, 1-8. https://doi.org/10.1145/1576246.1531401

[12] Qiao, C.B., Lau, R.W.H., Sheng, B., Zhang, B.X. and Wu, E.H. (2017) Temporal
Coherence-Based Deblurring Using Non-Uniform Motion Optimization. IEEE
Transactions on Image Processing, 26, 4991-5004.

[13] Russell, S. and Norvig, P. (2021) Artificial Intelligence: A Modern Approach. Pear-
son, London.

[14] Chen, H.Y., Teng, M.G., Shi, B.X., Wang, Y.Z. and Huang, T.J. (2022) A Residual
Learning Approach to Deblur and Generate High Frame Rate Video With an Event
Camera. IEEE Transactions on Multimedia, 1-14.
https://doi.org/10.1109/TMM.2022.3199556

[15] Yang, F., Xiao, L. and Yang, J.X. (2020) Video Deblurring Via 3D CNN and Fourier
Accumulation Learning. 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing, Barcelona, 04-08 May 2020, 2443-2447.
https://doi.org/10.1109/ICASSP40776.2020.9054514

[16] Matsushita, Y., Kawasaki, H., Ono, S. and Ikeuchi, K. (2014) Simultaneous Deblur
and Super-Resolution Technique for Video Sequence Captured by Hand-Held
Video Camera. 2014 IEEE International Conference on Image Processing, Paris,
27-30 October 2014, 4562-4566. https://doi.org/10.1109/ICIP.2014.7025925

[17] Nah, S., Kim, T.H. and Lee, K.M. (2018) Deep Multi-Scale Convolutional Neural
Network for Dynamic Scene Deblurring. Computer Vision and Pattern Recogni-
tion, 1, 1-21.

https://doi.org/10.4236/jilsa.2023.154007
https://doi.org/10.1016/j.neucom.2022.02.067
https://doi.org/10.1145/1360612.1360672
https://doi.org/10.1109/CVPR.2013.147
https://doi.org/10.1145/1141911.1141956
https://doi.org/10.1109/CVPR.2009.5206815
https://doi.org/10.1109/CVPR.2011.5995308
https://doi.org/10.1109/TCSVT.2015.2418585
https://doi.org/10.1145/1576246.1531401
https://doi.org/10.1109/TMM.2022.3199556
https://doi.org/10.1109/ICASSP40776.2020.9054514
https://doi.org/10.1109/ICIP.2014.7025925

T. Welander et al.

DOI: 10.4236/jilsa.2023.154007 107 Journal of Intelligent Learning Systems and Applications

[18] Setup Blocks Environment for AirSim.
https://microsoft.github.io/AirSim/unreal_blocks/

[19] Shouhuzhedelang (2017) Zhang Jia Jie Mountain. Unreal Engine Marketplace.
https://www.unrealengine.com/marketplace/en-US/product/zhangjiajie-mountain

[20] Sun, J., Cao, W., Xu, Z. and Ponce, J. (2015) Learning a Convolutional Neural Net-
work for Non-Uniform Motion Blur Removal. 2015 IEEE Conference on Computer
Vision and Pattern Recognition, Boston, 07-12 June 2015, 769-777.
https://doi.org/10.1109/CVPR.2015.7298677

[21] Kim T.H. and Lee, K.M. (2014) Segmentation-Free Dynamic Scene Deblurring,
Computer Vision and Pattern Recognition. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 2766-2773.

https://doi.org/10.4236/jilsa.2023.154007
https://microsoft.github.io/AirSim/unreal_blocks/
https://www.unrealengine.com/marketplace/en-US/product/zhangjiajie-mountain
https://doi.org/10.1109/CVPR.2015.7298677

	Camera Independent Motion Deblurring in Videos Using Machine Learning
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. Blur Kernel
	2.2. Point-Spread Function
	2.3. Super Pixels
	2.4. Neural Networks
	2.5. Super-Resolution

	3. Experiment
	3.1. Model
	3.2. Environments
	3.3. Datasets
	3.4. Results

	4. Conclusion
	Conflicts of Interest
	References

