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Abstract 
Transportation of freight and passengers by train is one of the oldest types of 
transport, and has now taken root in most of the developing countries espe-
cially in Africa. Recently, with the advent and development of high-speed 
trains, continuous monitoring of the railway vehicle suspension is of signifi-
cant importance. For this reason, railway vehicles should be monitored con-
tinuously to avoid catastrophic events, ensure comfort, safety, and also im-
proved performance while reducing life cycle costs. The suspension system is 
a very important part of the railway vehicle which supports the car-body and 
the bogie, isolates the forces generated by the track unevenness at the wheels 
and also controls the attitude of the car-body with respect to the track surface 
for ride comfort. Its reliability is directly related to the vehicle safety. The 
railway vehicle suspension often develops faults; worn springs and dampers 
in the primary and secondary suspension. To avoid a complete system failure, 
early detection of fault in the suspension of trains is of high importance. The 
main contribution of the research work is the prediction of faulty regimes of a 
railway vehicle suspension based on a hybrid model. The hybrid model frame-
work is in four folds; first, modeling of vehicle suspension system to generate 
vertical acceleration of the railway vehicle, parameter estimation or identifi-
cation was performed to obtain the nominal parameter values of the vehicle 
suspension system based on the measured data in the second fold, further-
more, a supervised machine learning model was built to predict faulty and 
healthy state of the suspension system components (damage scenarios) based 
on support vector machine (SVM) and lastly, the development of a new SVM 
model with the damage scenarios to predict faults on the test data. The level 
of degradation at which the spring and damper becomes faulty for both pri-
mary and secondary suspension system was determined. The spring and dam-
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per becomes faulty when the nominal values degrade by 50% and 40% and 
30% and 40% for the secondary and primary suspension system respectively. 
The proposed model was able to predict faulty components with an accuracy 
of 0.844 for the primary and secondary suspension system. 
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Railway Vehicle, Suspension System, Hybird Model, Fault Detection, Support 
Vector Machine 

 

1. Introduction 

Rail transport plays an important role in today’s global economy and also the 
most efficient land-based mode of transport for freight and the most reliable 
commuting method for passengers. Given the global pervasiveness of the rai-
lroads, making this transportation mode even more reliable, efficient and safe is 
of significant importance. The suspension system is the most crucial part of the 
railway vehicle, which support the car-body and the bogie, isolates the forces 
generated by the track unevenness at the wheels and also controls the attitude of 
the car-body with respect to the track surface for better ride comfort, reliability 
and safety of the railway vehicle [1] [2]. Figure 1 depicts the suspension system 
of a railway vehicle.  

Faults in suspension system are linked with seal wear, leakages, fatigue crack 
propagation and material deformation of the springs and dampers and this fail-
ure mode mechanism leads to the decrease or increase of the nominal parame-
ters values, thus the damping effect or stiffness co-efficient. Any change in the 
nominal values of the suspension system influence the vehicle dynamic behaviour 
and can lead to castastropic event [4] [5]. On-line fault detection and condition  
 

 
Figure 1. The suspension system [3]. 
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monitoring for railway vehicles present numerous benefits to the railway opera-
tion and system. Detection of faulty components at their former stages will avoid 
further deterioration in vehicle performance and improve vehicle safety.  

Timely repairs or replacement of faulty components, leads to increase in op-
erational reliability and availability. Scheduled maintenance and its related cost 
can be significantly reduced, because maintenance in the future may be carried 
out on demand [3] [6]. Fault detection and isolation is the process of identifying 
operational fault and finding their root cause. Several conventional approaches 
which includes the use of ultrasonic, electromagnetic ultrasound, acoustic way-
side detectors and excessive heat detection system to detect fault in the wheels, 
axles and roller bearing of the railway vehicle have been studied but still the is-
sues of safety, reliability and availability of the system still lingers around [7]. 
The emergence of reliability-based, data-driven and model-based approaches 
over the decades has remedy the lingering issues of conventional approaches. 
Each category of methods has its own merits and demerits which are often com-
bined in practical applications called hybrid model. The accuracy of data-driven 
approaches is highly dependent on the amount of condition monitoring data 
available and they also require huge amount of data for training. Deriving mod-
els under model-based from real physical systems is very challenging due to sys-
tem complexity and stochastic degradation behavior of components and its ac-
curacy depends on correct modeling of the system. Multiple case studies have 
validated the use of modern approach which includes data-driven, reliability and 
model based as presented in [2] [6] [8] [9] [10] [11] [12].  

In 2008, Ding and Mei [13] carried out a study on fault detection and isolation 
of the bogie suspension components, particulary on the dampers of the primary 
and secondary suspension system. A cross correlation function approach was 
used to detect changes from the acceleration signals. The authors proposed ap-
proach was effectively proven on a simulink dataset. Li and Goodall [8] applied 
the model-based approach for condition monitoring of the railway vehicle sys-
tem by modelling the railway vehicle dynamics of the car-body and the bogie 
thus the primary and the secondary suspension. The authors considered the lat-
eral and the yaw models for the dynamic modelling. The fault detection and iso-
lation were done with a Kalman filter approach to generate the residual for di-
agnostics. Based on the calculation of the power spectral density (PSDs) and the 
rms, fault isolation was achieved by comparing the PSDs or the rms, calculated 
using the innovation data before and after the fault alarm. Mori and Tsunashima 
(2010) [7] demonstrated the possibility to detect faults in suspension system of a 
railway vehicle using interacting multiple-model (IMM) approach. Measure-
ment data were generated by full-vehicle model simulation for fault detection. 
IMM model was integrated with kalman filter (KF) to improve the performance 
of detcetion. And it was concluded that proposed approach could efficiently 
detect suspension system faults. 

Alfi et al. (2011) [14] developed condition monitoring approach for bogie 
suspension component fault detection and isolation using model-free and mod-
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el-based methods. The model-free approach is a data-driven method based on 
Random Decrement Technique (RDT) signal processing technique. The authors 
extracted features from the lateral acceleration signal for bogie incipient failure 
detection which was virtually measured by simulation. A model-based approach 
is a combination of extended kalman filter (EKF) and bayesian statistics. The 
railway vehicle suspension system model was built and simulated to generate 
different faulty virtual measurements. Both proposed methods performed well in 
detecting incipient faults. 

Wu et al. (2015) [15] investigated incipient failure detection and estimation of 
a closed-loop secondary suspension system for high-speed trains. They devel-
oped a dynamic model of the suspension system and then proposed total mea-
surable fault information residual (ToMFIR) estimation method. The suspension 
system was simulated by Matlab/Simulink with external disturbance parameters 
to generate faulty signals for their study. The authors proposed approach was 
able to detect and estimate propagating faults. Melnik et al. (2014) [16] pre-
sented an on-line monitoring system for suspension fault detection. Different 
acceleration signals were simulated by artificially creating faulty signals by alter-
ing the stiffness and damping parameters of the suspension system. For real da-
taset, they acquired acceleration signals for primary suspension via sensors lo-
cated on the frame of bogie and for secondary suspension via sensors installed 
on the car body. Extracted features from both scenarios were used in fault detec-
tion by calculating Euclidean distances between faulty signal and a normal one 
for suspension diagnostics. Semi-supervised fault detection approach was used 
to detect faults in vehicle suspension system with one-class multi-sensor data in 
(Peng and Jin, 2018) [6]. The authors modelled the suspension system to gener-
ate multi-sensor data by using SIMPACK. Features were extracted from the data 
using semi-supervised learning method integrated with physical-based domain 
knowledge to improve the accuracy of the fault detection. One-class SVM clas-
sifier was used to detect fault in each subsystem and the efficacy of their pro-
posed approach was demonstrated on a rail vehicle suspension system.  

In all the reviewed works above, the authors did not consider the level of de-
gradation where each spring and damper in the primary or the secondary sus-
pension system becomes faulty. To merge the merrits of both data-driven and 
model-based approaches in order to improve the accuracy, this study presents a 
hybrid model to detect and isolate faulty regimes or components in railway ve-
hicle suspension system and also quantify the level of degradation where each 
components (springs or dampers) becomes faulty. The main contribution of this 
work is quantifying the level of degradation of the springs and dampers of the 
primary and secondary suspension, identifying the nominal parameter values of 
the railway vehicle based on the measured data and increased in the prediction 
accuracy of the proposed approach.  

This paper is structured as follows: the railway vehicle suspension description 
and it governing equation are presented in Section 2. Section 3 describes the ver-
tical track input and it’s modeling into the railway vehicle. The proposed ap-
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proach is described in Section 4. In Section 5, the results and discussions are 
presented, and finally conclusions are presented in Section 6. 

2. Model Description of Railway Vehicle Suspension    

Railway vehicle consist of many components for a vehicle-track dynamics simu-
lation representing the mechanical properties of the main components are of in-
terest. The main sub-division of the vehicle components can be made into body 
components and suspension components [1]. The dominating body components 
are the car-body, bogie frame and wheelset, which essentially holds the vehicle 
mass (weight). The main suspension components are various springs and dam-
pers whose forces essentially are related to the displacements and velocities of 
the components. The model consists of a carbody, bogies and a set of wheelset 
interconnected via force elements. The primary suspension connects the bogie 
frame and the wheelset while the secondary suspension connects the carbody 
and the bogie frame [1]. The springs and dampers of the primary and secondary 
suspension system are the main critical components considered in this work. 
The bogie and suspension systems of a conventional bogie vehicle system is pre-
sented, followed by the development of a mathematical model. Figure 2 depicts 
the body and suspension system of a railway vehicle.  

Parameters of the rigid bodies and other parameters of a conventional bogie 
model [17] which are relevant for the simulation of the railway vehicle are pre-
sented in Table 1. 

The vertical vehicle suspension of the railway vehicle is considered in this 
work. The vertical dynamic model is designed to study the dynamic response of 
the vehicle to track irregularities. Nine-degree of freedom (9-DoF) model of the 
dynamics of the railway vehicle is considered. Motions that are directly related 
to the vertical suspensions are considered, including the vertical accleration, roll 
and pitch motion of the car-body and the two bogies. The equations governing 
the dynamics behaviour of the railway vehicle suspencion was derived by using 
Newton’s second law of motion with the help of the schematic diagram (lateral 
view) in Figure 3.  

 

 
Figure 2. Simplified suspension system of a railway vehicle [3].  
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Table 1. Initial vehicle parameters [17]. 

Normenclature Description Values Units 

cM  Mass of carbody 38,000 Kg 

bM  Mass of Bogie 2500 Kg 

sC  Damping constants of secondary damper 30,000 Ns/m 

pC  Damping constants of primary damper 17,900 Ns/m 

sK  Spring constants of secondary spring 508,000 N/m 

pK  Spring constants of primary spring 2,500,000 N/m 

Jφ  Carbody pitch inertia 2,310,000 Kgm2 

Jθ  Carbody roll inertia 14,400 Kgm2 

bJ φ  Bogie pitch inertia 2000 Kgm2 

bJ θ  Bogie roll inertia 720 Kgm2 

l Half of the carbody length 9.5 m 

1l  Half of the distance between two wheelsets in a bogie 1.25 m 

b Half of the distance between secondary spring 0.75 m 

1b  Half of the distance between primary spring 0.75 m 

Kθ  Spring constants of the anti-roll spring 1 N/m 

 

 
Figure 3. Schematic diagram of the suspension system in lateral view.  
 

The 3 DoF of the car-body is described as  
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where z, z1 and z2 represent the vertical displacement of the carbody, the front 
and rear bogie respectively. φ  denotes the pitch angle of the centre of gravity. 
θ  denotes the roll angle of the centre gravity for the masses. 

The front bogie is described as  
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where 1rd  and 1ld  denote the vertical displacement of the right and left wheel 
in the leading wheelset, 2rd  and 2ld  denote the vertical displacement of the 
right and left wheel in the trailing wheelset. 

The rear bogie is described as  
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3rd  and 3ld  denote the vertical displacement of the right and left wheel in the 
leading wheelset, 4rd  and 4ld  denote the vertical displacement of the right and 
left wheel in the trailing wheelset. 

3. Modelling of the Vertical Track Input   

The vertical and it’s related motion of the railway vehicle are considered in this 
work. The displacement and it’s derivates to each of the wheels of the railway 
vehicle are provided by the rail track. The track inputs are irregular as a result of 
the track misalignment. The track imperfections are mainly the cause of dynam-
ic wheel load of moving railway vehicle. The gaussian stochastic process has 
been used by many researchers [4] [17] [18] in modeling of the road or track 
profile. The power spectral density (PSD) of the vertical track input irregularity 
can be modeled as  

 ( ) 2 ,rASv Ω =
Ω

                          (10) 

Considering the stationary gaussian random process of the track irregularity, 
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the wave number ( )rad mΩ , which denotes the rate of the cycle change with 
respect of the distance is presented. Figure 4 shows the vertical track input from 
band limited noise block with a selected random seed as a time series where 

72.5 10rA −= ×  radm is the roughness factor in the vertical direction for me-
dium level quality track [6] and V = 180 km/h denotes the velocity of the railway 
vehicle.  

The track inputs of the front and rear bogie in displacement is represesent by 

ijd  where i = 1, 2, 3 and 4 and j = r (right) and l = (left) and ijd�  are their de-
rivative track input in velocity as shown in Figure 4. 

The modelling of the vehicle suspension dynamics was done in MATLAB- 
SIMULINK using Equations (1)-(9) and all the components (gain block, trans-
port delay block, add function etc) used in this system are inherently present in 
the MATLAB/SIMULINK library.  

4. Experiment and Simulation Setup   

The suspension system under investigation in this work is as shown in Figure 5, 
Full car model consists of four (4) wheelset, two bogies (leading and trailing) 
and a car body. Eighteen sensors are positioned arbitrarlily to measure the ver-
tical acceleration of each rigid bodies. The location of the sensors use in the ex-
periment are highlighted in red dot.  

The modelling of the vehicle suspension dynamics was done in MATLAB- 
SIMULINK and all the components used in this system are inherently present in 
the MATLAB-SIMULINK library. Figure 6 shows the modelling process of the 
suspension system.  
 

 
Figure 4. Simulink model of the vertical track irregularity.  
 

 
Figure 5. Simplified suspension system [19]. 
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Figure 6. Simulink modelling process of the suspension system. 

 
The modelling of the suspension system in Matlab-Simulink was done in 

three (3) section as shown in Figure 6. The first section is the input, where the 
system parameters which includes the masses, stiffness, damping coefficient and 
the inertia of the suspension system serves as the initial parameters for simula-
tion, the track irregularities or the track profile also serves as the input to each of 
the wheelset that is 1 2 3, ,d d d  and 4d  as shown in Figure 4 and lastly under 
input section is the speed of the railway vehicle (V). The second section is the 
process, where equations governing the dynamic behavior of the railway vehicle 
suspension (Equations (1)-(9)) are represented by blocks in Matlab-Simulink li-
brary. Lastly is the output section, where the vertical accleration, ptich, and roll 
of each rigid bodies (carbody and the bogies) are modelled but the vertical acce-
leration of the each are considered in this work.  

5. Parameter Identification or Estimation   
5.1. Data Description   

The data provided by [19] was used in this work. It contains 200 labeled experi-
ments for training and 200 unlabeled experiments are conducted under faulty 
conditions with different failure modes for testing. Each experiment consist of a 
matrix of 90 feature values overtime measured with 18 sensors [19]. Table 2 
gives a detailed description of the data. The vertical acceleration measurement 
from the data was used in identifying the parameters of the suspension system.  
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Table 2. Data description [19].  

Feature set/sensor Sensor Location Corresponding Components 

f101-f105 azs_1 Car body Leading Secondary spring and damper 

f106-f110 azp_1r Bogie left/Right Leading and Trailing Primary spring and damper 

f111-f115 azp_1l   

f116-f120 azp_2r   

f121-f125 azp_2l   

f146-f150 azs_2 Car body Trailing Secondary spring and damper 

f151-f155 azp_3r Bogie left/Right Trailing and Leading Primary spring and damper 

f156-f160 azp_3l   

f161-f165 azp_4r   

f166-f170 azp_4l   

5.2. Parameter Identification or Estimation Scheme   

The parameters of the model are identified by parameter estimation toolbox in 
matlab-simulink. The non-linear square optimization method which reduces the 
distance between the model and the measured response and the trust region is 
used as the identification algorithm to minimize the objective function under the 
toolbox. The objective function is given by  

 
22

1 1
,

N N

m p
k k

SSE e y y
= =

= = −∑ ∑                     (11) 

where SSE is the Sum Square Error, my  is the measured value and py  is the 
predicted value. The trust region algorithm works by formulating a quadratic 
model for the area within a given radius or trust region. The convergence of the 
algorithm occurs when the norm of the step fall below specified tolerance values. 
The tolerance value for the cost function and the parameters is 0.001. The trust 
region has the ability to converge fast, step out of the local minima and also re-
quires fewer function or gradient evaluation. The parameters to be identified are 
stiffness ( sK , pK ) and damping parameters ( sC , pC ), the primary and sec-
ondary suspension as well as the masses ( cM , bM ) and inertia ( xJ , 1xJ , 2xJ , 

yJ , 1yJ , 2yJ ). Figure 7 shows the parameter identification scheme.  
The measured vertical acceleration signal [19] for the carbody (azs_1) was 

compared with the vertical acceleration signal (carbody) of the simulink model 
to estimate the vehicle parameters by applying an optimization algorithm to the 
objective function that is to reduce sum square error (SSE) between the meas-
ured and the simulated. Several numerical integration is done on the objective 
function to obtain a minimal SSE. The vehicle parameters for the least SSE value 
is then updated to the simulink and that becomes it identified parameter values 
or the adopted values.  

6. Proposed Methodology   

In this Section, a fault detection method with a hybrid model is discussed in details.  
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Figure 7. Parameter identification process. 

 
The hybrid model is a combination of the model-based and data-driven ap-
proach to detect and isolate faulty components in the primary (between the 
wheel sets and the bogie frame) and the secondary (between the bogie frame and 
the vehicle body) suspension system of a railway vehicle as shown in Figure 8.  

A simulink model of the suspension system was built with system inputs as 
the vehicle speed (V), the track profile and the system parameters values such as 
the masses ( cM , bM ), the inertia ( xJ , yJ , 1xJ , 2xJ , 1yJ  and 2yJ ), stiffness 
( sK , pK ) and the damping coefficient ( sC , pC ). Faults were induced into the 
simulink model by reducing the stiffness and damping coefficient of the springs 
and dampers of the primary and secondary suspension system. An SVM model 
was developed with the measured data in [19]. The health state of each the damage 
scenarios, that is, the stiffness and damping coefficient sequential loss of 10% - 
80% reduction of the nominal parameter values was determined by the devel-
oped SVM model. Features were extracted from the vertical acceleration of the 
simulink model for each damage scenarios. The extracted features were then fed 
into ML with its targets (health state) to build a new classifier (SVM model). The 
new SVM model was then used to predict on the test data in [19] based on se-
lected features from the measured vertical acceleration.  

6.1. Diagnostic Model Development   

Fault diagnostic involves the process of identifying and isolating fault (failed 
component), the failure mode (cause of failure) and the degradation level in 
condition monitoring. Figure 9 and Figure 13 illustrate the diagnostic approach  
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Figure 8. Ilustration of the hybrid model. 

 

 
Figure 9. Diagnostic approach. 
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and the work flow of the health state evaluation approach to diagnostic. A diag-
nostic model development to detect faults in the suspension system is proposed 
as follows. The layout procedure is provided in Figure 9. 

1) Data-preparation: The time and frequency domain features are generated. The 
raw acceleration measurements are pre-processed to extract time and frequency 
features from a data set that contains labeled and unlabeled data in this work. 

2) Feature selection: This is where extracted features are selected based on 
their importance to help improve classification accuracy and also to remove ir-
relevant features using the backward approach. The detailed procedure will be 
discussed in Section 6.5.  

3) Fault detection: Support vector machine (SVM) classifier using extracted 
features from the labeled data was used to determine the normal and faulty con-
dition of the data set. The trained SVM model was used to predict the state of 
unlabeled data set. The reason for SVM and the procedure will be discussed in 
Section 6.6.  

6.2. Feature Extraction   

Feature extraction is a usual step in all diagnostic and prognostic approaches. It 
is the process of obtaining time, frequecy and time-frequency domain features from 
raw signal data by sensors. Feature extraction reduces the dimensionality of the 
data, remove redundancy and hence minimizes the complexity and the computa-
tional requirements of the machine learning algorithm [20] [21] [22]. A total of 
12 features where extracted from each signal, that is 9 features from time domain 
and 3 from frequency domain as shown in Table 3 and Table 4 respectively.  
 
Table 3. Time domain features [20] [23]. 
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Table 4. Frequency domain features [23] [24]. 

Feature Equation 

Maximum amplitude ( )Maximum amplitude max A=  

Frequency at maximum amplitude ( )max
frequency s A

W=  

Energy of Signal 
2

1

Energy signal
n

m
m

A
=

= ∑  

6.3. Time Domain Feature   

Raw sensory data is in nature time-series signal. Statistical time-domain features 
could be extracted as informative features fed into machine learning systems. 
Table 3 shows a list of time domain features used in this work for fault diagnosis 
in matlab.  

6.4. Frequency Domain Feature   

Frequency domain features are features obtained by transforming the time do-
main signal to frequency domain. These features help in identifying characteris-
tics frequencies of a system in relation to various types of faults. The process of 
extracting features from FFT was done in matlab and Table 4 shows the fre-
quency domain feature used in this work to identify various types of faults.  

6.5. Feature Selection   

Feature selection is one of the dimensionality reduction approaches. It helps to 
remove irrelevant or redundant features and also increase the classification ac-
curacy. Feature selection techniques obtain a new generated feature set from the 
original set [21]. Figure 10 shows the procedure for evaluation and selection. 
Given that: ( )1 2 3 4, , , , , nf X X X X X= �  where 1 2 3 4, , , , , nX X X X X�  are the 
extracted features. ( )1 2 3 4, , , , , mf f X X X X X′ ′ ′ ′ ′ ′⊂ = �  where  

1 2 3 4, , , , , mX X X X X′ ′ ′ ′ ′�  are the selected features. The subset feature ( f ′ ) ob-
tained gives the optimum performance due to some objective function and sig-
nificant criteria. The backward feature selection algorithm was used in this work.  

Full or complete feature set is fed into the serach algorithm from the training 
data set to outcome a feature subset. The feature subset is then used with the ML 
algorithm and the prediction accuracy was obtain. Features with smallest impact 
on error are drop until the whole module is completed. After that the final fea-
ture subset is then fed in the ML algorithm for training.  

6.6. Support Vector Machine (SVM)   

Support vector machine (SVM) is a supervised learning algorithm that can be 
used for binary data classification problems. The binary classification problem is 
solved by constructing an optimal hyperplane as a decision surface such that the 
margin of seperation between the two classes in the data is maximized as shown 
in Figure 11. Data points that falls on the boundary plane are called support  
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Figure 10. Feature selection and evaluation procedure.  

 

 
Figure 11. SVM algorithm optimal hyperplane [20]. 

 
vectors. Boundary are planes that are parallel to the hyperplanes and lie on the 
the border of the two classes. 

SVMs have the ability to handle very large feature spaces, because their train-
ing process enables the dimension of classified vectors to not have as distinct an 
influence on their performance as it has on the performance of conventional 
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classifier. It also benefit in fault classification, because the number of features to 
be the basis of fault diagnosis may not have to be limited. Also, SVM-based clas-
sifiers have good generalization properties compared to conventional classifiers, 
because in training an SVM classifier the so-called structural misclassification 
risk is minimized [25].  

Given n training samples ( ,i ix y ), 1,2, ,i x= � , where each sample has R 
features,( R

ix Q∈ ) and a class label with one of the binary values ( )1,1iy ∈ − , a 
hyperplane is a ( 1n ) dimensional space described by  

 T 0b+ =W                           (12) 

where W is a vector orthogonal to the hyperplane and b is a constant. The 
hyperplane (W, b) that seperate data is described by the function;  

 ( ) ( )Tf x sgn b= +W                       (13) 

for a good classification of data [20]. The following constarints are as a results of 
choosing a hyperplane such that the boundary planes are as funtional distance of 
at least 1 from the hyperplane.  

 T
11 where 1b y+ ≤ − = −W                    (14) 

T
11 where 1b y+ ≥ − =W                    (15) 

SVM problems involve maximizing the margin seperating the two classes of 
data as shown in Figure 12. The margin between the two data class is given by;  

 2ρ =
W

                         (16) 

The kernel function allows the construction of a hyperplane in the higher di-
mensional feature space without explicitly performing calculations in this feature 
space. Typical kernel functions used include: Linear, Polynomial, Radial basis 
function (RBF) and Multi-layer perceptron.  

Training phase, where the machine classification algorithm (SVM) uses la-
beled data to learn the underlying behavior between different health states. This 
results to a classification model with the necessary weights, biases and parame-
ters. Testing or online phase where unlabeled features from condition monitor-
ing data of a similar unit are used as the input to the algorithm for classification 
(Figure 13). 

7. Faults in Suspension System   

The suspension fault types considered in this work are the sequential stiffness 
loss and damping coefficient loss of the secondary and primary suspension sys-
tem. Faults associated with dampers and springs are leakages, seal wear, fatigue 
crack propagation and material deformation (yielding or creep) [5]. The failure 
mechanism considered in this study are leakages and fatigues crack propagation 
of dampers and springs respectively. This failure mechanism leads to the reduc-
tion in stiffness and damping effect and as a result changes the dynamic beha-
vior of the railway vehicle. Suspension faults were artificially introduced into the  
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Figure 12. SVM algorithm maximised margin [25].  

 

 
Figure 13. Work flow of health state evaluation approach to diagnostic. 

 
simulink model by reducing the damping coefficient and the stiffness in a se-
quential order as shown in Table 5. 

The dynamic behaviour of each damage scenarios that is the vertical accelera-
tion of the carbody and the bogie was extracted. Features were extracted from 
each scenarios vertical acceleration. The selected features were then fed into the 
classifier to determine the state of each. After the state of each damage scenarios 
was determined, the data was then trained using the extracted features from the 
signal (vertical acceleration). The trained model was used to predict the state and 
possible failure mode of the testing data.  
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Table 5. Sequential stiffness and damping coefficient loss of the nominal values. 

Normenclature Nominal Values Damage Scenarios (% reduction) 

  10% 20% 30% 40% 50% 60% 70% 80% 

snC  30,915 27,823.5 24,732 21,640.5 18,549 15,457.5 12,366 9274.5 6183 

pnC  18,863 16,976.7 1509.4 13,204.1 11,317.8 9431.5 7545.2 5658.9 3772.6 

snK  58,340 52,506 46,672 40,838 35,004 29,170 23,336 17,502 11,668 

pnK  2,196,200 1,976,580 1,756,960 1,537,340 1,317,720 1,098,100 878,480 658,860 439,240 

8. Results and Discussion   
8.1. Modelling of the Track Input  

Figure 14 represents the vertical displacement of the track input obtained from 
the simulated data in Figure 4 which serves as an input to the simulink model 
and Figure 15 shows it first-order derivative at the vehicle speed of 180 km/h to 
the simulink model and the magnitude of the track input depends on the vehicle 
speed. The PSD of a typical road profile [26] matches the output of the simulated 
in 14 with displacement amplitude of 19 cm which shows a good correlation 
with a typical road profile. The measured output or the simulated is the processed 
output of the developed simulink model in Figure 4.  

8.2. Parameter Identification or Estimation   

Figure 16 depicts the initial plot of the simulated and the measured. The car 
body vertical acceleration of the model was plotted with the measured car body 
vertical acceleration (azs_i), where ( 1, 2i = ). The initial expected cost or the sum 
square error (SSE) of the measured and simulated was 178.8085 with the initial 
conditions of function tolerance of 0.001 and parameter tolerance which is 0.001. 
The deviation in SSE is as a result of incorrect system parameters use for simula-
tion in respect to the measured data [19]. Less SSE correspond to better or accu-
rate system parameters and vice-versa.  

Figure 17 shows how the simulated and measured match after the optimiza-
tion algorithm. A minimum SSE of 24.459 was obtain after the algorithm which 
shows a better system parameter values of the railway vehicle suspension as com-
pared to the initial system values in Table 1 and aslo the obtained system para-
meter values are relevant for condition monitoring of the suspension system.  

The SSE after the algorithm was 24.459 as shown in Figure 18 with 31 itera-
tions. It can also be seen in Figure 17 that the measured match the simulated in 
all peaks and also indicates a good correlation. 

Figure 18 shows the objective cost or the expected cost verses the number of 
iteration. It depicts how the deviation that is the objective function (which de-
scribes the distance between the simulation and the measurement defined in 
time-domian using non-linear least square method in parameter estimation 
toolbox in Matlab Simulink) varies with number of iteration from 178.8085 to 
24.459.  
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                   (a) 

 
                    (b) 

Figure 14. (a) Vertical track input in displacement; (b) A plot of displacement with track 
length. 
 

Figure 19 confirms the success of the optimization process by using trust re-
gion algorithm in Matlab-Simulink. The estimated parameters are cM , bM , 

sC , pC , sK , pK , xJ , yJ , 1xJ , 2xJ , 1yJ  and 2yJ . It also illustrates how 
the identified or estimated parameters converge with the number of iterations.  
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Figure 15. Vertical track input in velocity. 

 

 
Figure 16. Initial plot of the measured and simulated vertical acceleration of the car body.  
 

 
Figure 17. Measured and simulated vertical acceleration of the car body after the algorithm.  

 
Table 6 illustrate the estimated nominal values of the suspension system based 

on the measured data extracted from the Figure 19.  
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Figure 18. Expected cost verses iteration. 

 
Table 6. Adopted nominal vehicle parameter based on data. 

Normenclature Description Values Units 

cM  Mass of carbody 99,498 Kg 

bM  Mass of Bogie 1956.3 Kg 

sC  Damping constants of secondary damper 30,915 Ns/m 

pC  Damping constants of primary damper 18,863 Ns/m 

sK  Spring constants of secondary spring 58,340 N/m 

pK  Spring constants of primary spring 2.1962 × 106 N/m 

xJ  Carbody roll inertia 14,400 Kgm2 

yJ  Carbody pitch inertia 2.218 × 106 Kgm2 

1xJ  Front bogie roll inertia 14,400 Kgm2 

2xJ  Rear Bogie roll inertia 720 Kgm2 

1yJ  Front Bogie pitch inertia 1861.5 Kgm2 

2yJ  Rear Bogie pitch inertia 1767.6 Kgm2 

 

 
Figure 19. Estimated parameters verses iteration. 
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8.3. Support Vector Machine Trained Model  

Figure 20 and Figure 21 depict the model prediction diagram for the secondary 
and primary suspension system with different features with the measured data. 
The normal or healthy class is in red, the faulty class is in blue and × represent a 
wrong prediction of the model. The data from normal conditions are clustered 
together in the extracted feature space. However, the data from faulty conditions 
are in the same cluster too. The normal and faulty samples are more separable in  
 

 
Figure 20. Scatter plot for model prediction (secondary suspension). 
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Figure 21. Scatter plot for model prediction (primary suspension). 

 
both secondary and primary suspension system model prediction. The model 
predicts accurately the faulty and healthy classes, having a low prediction error, 
i.e., the frequency where faulty classes fall in the nominal or healthy boundary is 
very low. 

8.4. Model Evaluation   

The metric to assess the performance of the model accuracy is described by; 
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The number of experiments correctly predicted
Total number of testing experiments

              (17) 

Figure 22 illustrates the confusion matrices based on the model prediction 
accuracy of 0.988 and 0.989 for the secondary and primary suspension system 
respectively.  

This SVM model detects anomaly in the data, it classifies the data as healthy 
and faulty but does not explain the real cause of fault, if its whether the damper 
or spring. Therefore, it is necessary to develop a model that explains the origin of 
the faulty or healthy output as it will be presented later on. 

8.5. Suspension Fault Conditions   

The secondary and primary suspension is crucial for the comfort of the vehicle. 
Secondary suspension has the function to reduce the effect of vibration from the 
bogie frame to the car body and also the primary suspension ensures the guid-
ance of the wheelset on the track and reduces vibrations transmitted from the 
wheelsets. Figure 23 and Figure 24 show the dynamic behavior of the suspen-
sion system for the nominal condition when there is no fault, that is s snC C=  
and s snK K=  for the secondary and p pnC C=  and p pnK K=  for primary 
suspension. At nominal condition the railway vehicle moves with a velocity of 
180 km/h. The vibration effect on the carbody is very minimal and also the nat-
ural frequency falls within the range in which human beings are most sensitive 
to. Low vibration effects correspond to healthy system component and vice-versa.  

Table 7 shows the sequential damping coefficient loss and the sequential 
stiffness loss of the secondary and primary suspension at 0.8 and 0.3 reduction of 
the nominal parameter values. It illustartes the peak value, maximum FFT am-
plitude and the frequency at maximum FFT amplitude.  

Table 8 shows the prediction of damage scenarios of the damper and the  
 

 
Figure 22. Confusion matrix (secondary and primary suspension). 
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Figure 23. Vertical acceleration and its FFT (secondary suspension).  
 

 
Figure 24. Vertical acceleration and its FFT (primary suspension). 
 
Table 7. Damping coefficient and stiffness sequential loss of the primary and secondary suspension.  

Secondary Suspension Primary Suspension 

Sequential Damping Co-efficient Loss 

 Max. Peak Max. FFT Amplitude (A) Frequency|max(A) Max. Peak Max. FFT Amplitude (A) Frequency|max(A) 

0.8 sn pnC C  0.1414 0.01287 24.47 0.369 0.1389 25.93 

0.3 sn pnC C  0.5571 0.1720 24.48 2.699 0.1761 37.25 

Sequential Stiffness Loss 

0.8 sn pnK K  0.1715 0.01242 3.301 0.4904 0.01801 22.59 

0.3 sn pnK K  1.5560 0.13740 3.378 6.4690 0.25760 24.89 

 
spring secondary suspension system and it indicates that when the damper and 
spring degrade by 50% and 40% respectively of the nominal value they becomes 
faulty when the suspension system components are in use. 

Table 9 shows the prediction of damage scenarios of the damper and the  
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Table 8. Damage scenarios prediction using the trained SVM model. 

Damage Scenarios (Damper) State Damage Scenarios (Spring) State 

D-10 healthy S-10 healthy 

D-20 healthy S-20 healthy 

D-30 healthy S-30 healthy 

D-40 healthy S-40 faulty 

D-50 faulty S-50 faulty 

D-60 faulty S-60 faulty 

D-70 faulty S-70 faulty 

D-80 faulty S-80 faulty 

 
Table 9. Damage scenarios prediction using the trained SVM model. 

Damage Scenarios (Damper) State Damage Scenarios (Spring) State 

D-10 healthy S-10 healthy 

D-20 healthy S-20 healthy 

D-30 faulty S-30 healthy 

D-40 faulty S-40 faulty 

D-50 faulty S-50 faulty 

D-60 faulty S-60 faulty 

D-70 faulty S-70 faulty 

D-80 faulty S-80 faulty 

 
spring in the primary suspension system and it indicates that when the damper 
and spring degrade by 30% and 40% respectively of the nominal value they be-
comes faulty when the suspension system components are in use.  

8.6. SVM Trained Model with the Damage Scenarios   

Figure 25 and Figure 26 illustrate the model prediction diagram for the sec-
ondary and primary suspension system with different features from the simu-
lated data. The yellow class represents the healthy or normal sample (healthy spring 
and damper), the blue class represents faulty spring, the red class represents faulty 
damper and × represents a wrong prediction of the model. The model predicts 
accurately the faulty and healthy classes, having a low prediction error of 0.156. 
Low prediction error or misclassification is as a result of the model being unable 
to detect efficiently the differences between the healthy and faulty samples.  

The comparison of prediction accurarcies with the same features among sev-
eral classifiers is presented in Table 10. It shows that the proposed approach 
(SVM) can predict correctly most of the experiment with an accuaracy of 0.844.  

Figure 27 illustrates the confusion matrices for the SVM model prediction in 
Figure 25 and Figure 26 based on the model prediction accuracy of 0.844 (using 
Equation (17)) with a minimum prediction error of 0.156 for the primary and 
secondary suspension system. 
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Table 10. Prediction accuracies with different models. 

Model Accurarcy 

KNN (Fine KNN) 0.719 

Naive Bayes (Kernel Naive Bayes) 0.781 

Ensemble (Bagged Trees) 0.813 

SVM (Linear SVM) 0.844 

 

 
Figure 25. Scatter plot for model prediction (secondary suspension). 
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Figure 26. Scatter plot for model prediction (primary suspension). 

9. Conclusions   

A hybrid model framework for dectecting and isolating faulty regimes or com-
ponents of railway vehicle suspension was proposed. The approach framework 
include four parts: 1) vehicle dynamics modeling; 2) parameter estimation or 
identification; 3) SVM model with feature extraction and selection, and 4) pre-
diction of the suspension fault conditions with the trained SVM and develop-
ment of a model with the damage scenarios (suspension fault conditions) to  
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Figure 27. Confusion matrix (secondary and primary suspension). 

 
predict on the test data. Based on the results obtained, the following conclusions 
were drawn:  

1) The developed simulink model of the suspension system was able to assist 
in identifying the nominal parameter values through the comparison of the si-
mulated and the measured data with an SSE of 24.459.  

2) The proposed models for the primary and secondary suspension were able 
to predict anticipated faults and the level of degradation of each component with 
an accuracy of 0.844.  

3) The spring and damper becomes faulty when the nominal values degrade 
by 50% and 40% and 30% and 40% for the secondary and primary suspension 
system respectively.  

4) The proposed hybrid model was able to predict on the test data, the exact 
fault in the suspension system.  
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